

Switchgear Maintenance Information

SUBJECT:

CIRCUIT BREAKER CONTACT RESISTANCE & TESTING

NOTE:

This information is soley for the use of A&ES employees only.

Background:

Evaluating contact quality, (condition and pressure), via the micro-dimmeter (or "ductor") test method has, over the last few years, become quite popular. Customers are adding this test to workscope specifications, and incorporating the requirement in their "bid" packages.

Manufacturers of low, medium and high voltage circuit breakers perform these tests in the factory as part of their quality assurance programs but have never published test values or acceptable test limits in their instruction books for LV/MV equipment (large HV/EHV oil circuit breakers \underline{do} have this information contained in the instruction-maintenance manuals.) The reason for \underline{not} publishing this information is possible customer misunderstanding $\underline{i.e.}$ if the published value is 50 micro ohms - the test shows 60 micro-ohms - is this acceptable or not? Overall the feeling is that the information would create more problems than it would solve, especially in the hands of the inexperienced.

However, in view of several recent shop "warranty" type failures that would probably have been prevented by utilizing this test method and an increasing number of customer requests, the following information is offered to A&ES Switchgear Specialists and a limited number of other interested personnel.

NOTE: The following tabulations were taken from <u>confidential</u> GE Product Department Application Engineering and Quality Control manuals. It is <u>specifically</u> for new General Electric type AK and AM breakers, it is however, reasonable to assume that other manufacturers breakers will <u>similar</u> micro-ohm resistance values, but you must <u>check</u> that manufacturer directly to be sure.

GENERAL & ELECTRIC

TABLE I - GE, AK BREAKERS

BREAKER FRAME SIZE	TRIP DEVICE COIL AMPERES	MICRO-OHMS
225 AMP ONLY	15 20 30 40	39,000 15,000 15,000 8,800
225 & 600 AMP	50 70 90 100 125 150 175 200 225	4,100 2,840 2,800 1,400 1,400 700 700 400 400
600 AMP ONLY	250 300 350 400 500 600	330 250 250 220 220 160
1600 AMP	200 225 250 300 350 400 500 600 800 1000 1200 1600	380 380 280 210 210 150 150 100 100 80 80 80
3000 AMP	2000 2500 3000	20 20 20
4000 AMP	2000 2500 3000 4000	20 20 20 20 20

TABLE II - GE AM BREAKERS

BREAKER RATING	CURRENT RATING	MICRO-OHMS (MEASURED FRONT BUSHING TO REAR BUSHING)	NOTE
AM-4.16-150	600 1200	75 50	(1)
AM-4.16-250	1200 2000	50 25	(1)
AM-4.16-350	1200 3000	50 20	(1)
AM-7.2-250	1200	50	(1)
AM-7.2-500	1200 2000	50 25	(1)
AM-13.8-150	1200	50	(1)
AM-13.8-250	1200 2000	50 25	(1)
AM-13.8-500	600 1200 2000	75 50 25	(1)
AM-13.8-750	1200 2000	50 30	(1)
AM-13.8-1000	1200 3000	50 20	(1)

TABLE III - GE POWER-VAC BREAKERS

VB-4.16/13/8	1200	40
VB-4.16/13.8	2000	35
VB-4.16/13.8	3000	15

Micro-ohm readings in Table II are based on a hollow core, copper bushing stud, for hollow core, copper bushing stud, for solid core bushing studs - 40 micro-ohms is the correct value.

<u>High Voltage Breakers</u> - See the appropriate breaker maintenance manuals for test values.

CAUTION: The values furnished in tables I & II are based on the following:

- 1. Tests being made with a <u>100 ampere</u> micro-ohmmeter, a 10 amp unit will give slightly different test values.
- 2. Values are for <u>NEW BREAKERS</u> breakers that have been in service will test differently, due to the following factors:
 - Contact wear/erosion
 - Changes in contact pressure due to the changes (aging) in contact pressure springs
 - Wear in contact links pivot and sliding contact surfaces
 - Environmental effects contamination, corrosion, etc.
 - Adjustments out of specification
 - Improper lubrication procedures, e.g. excessive contact grease (D50H47) on main movable/stationary contact surfaces and movable contact arm pivot area surfaces.

Causes of Variations in Test Results

- 1. Operator Error
 - a. Reading test set set scale at a "parallex"
 - b. Poor connection pressure test probe to contact surface

NOTE: Generally 2 different people will get 2 slightly different test results

- 2. Equipment
 - a. Test leads or probes in poor condition
 - b. Micro-ohmmeter out of calibration
- 3. Breaker Condition
 - a. Contact surface condition-deterioration
 - b. Contact hinge condition
 - Primary disconnect condition-either poor contact pressure, or poor contact surface
 - OVERALL- These are the <u>primary factors</u> involved in variances in test results next we must consider interpretation of the tests.

Test Result Interpretation

General:

In that test results will be expressed in <u>MICRO-OHMS</u> - millionths of an ohm, recognize that factors otherwise considered at the most, subtle, can have a substantial effect.

Example - test procedure:

Variations in the amount of pressure the test set operation puts on the test probes will be directly reflected in the micro-ohm reading, to little pressure and the probe contact may not break through the normal oxide film on the contact surface, and may give a false reading.

Example - contacts:

Contact resistance readings will change slightly each time the breaker is opened and closed as the contact surfaces may not "seat" in exactly the same location each operation. Multiple, repetitive closing/opening operations generally cause slight decreases in the test results.

Problem Areas-Examples

- 1. Type AK Breakers Poor connections at the movable contact assembly hinging area.
- Type AM Breakers Poor connections at the movable contact arm pivot assembly at the bottom of the primary bushings.

Conclusion:

Use the foregoing information in the context it is provided specifically as a guide. If when performing these tests you get results
which differ substantially from the tables, or vary between phases you
know a problem exists. You then must determine where. If you have any
problems or questions, contact the writer for recommendations.

R. G. Durso