
THE WESTINGHOUSE

I-TEKTOR

MODEL "LSIG" FIELD CONVERTIBLE SOLID STATE OVERCURRENT DEVICE

FOR RETROFIT OF LOW VOLTAGE AIR CIRCUIT BREAKERS

GENERAL

Distribution of electrical power is dependent upon well maintained and reliable equipment to detect and safely interrupt abnormal currents by means of circuit breakers. or other forms of interrupters, with the least disturbance to the power system. Series electro-mechanical overcurrent trip devices, installed on many existing low voltage power class circuit breakers, are prone to erratic tripping due to corrosion, contamination and wear. Frequent maintenance and adjustments are necessary to assure reasonably accurate and safe operation. Westinghouse has been the leader in providing a retrofit service to replace these series trip devices with modern state of the art solid state tripping systems featuring the proven Amptector, and similar solid state overcurrent devices. In the past, due to space limitations, it often was difficult to economically retrofit some breakers. By utilizing the compact, horizontally or vertically mounted, front adjustable, solid state Westinghouse I-TEKTOR, it is possible to retrofit, economically and quickly, just about every conceivable low voltage power class circuit breaker. regardless of physical size. The I-TEKTOR, has been designed with the end user's needs in mind "...minimum down time" and flexibility. It provides the facility for field selection of desired time-current characteristics which are similar to, and test facilities that are compatible with the Amptector.

While physically small, measuring just 8.13"L × 4.25"H × 2.06"D, the all inclusive, one type "does it all", model "LSIG" *I-TEKTOR* satisfies all system co-ordination requirements. With all protective adjustments covered in one unit, ordering and stocking is simplified. It requires no external auxiliary source. Instead, it obtains its input energy from a set of current sensors to continuously monitor system current levels. When pre-selected conditions of system current magnitude and duration are exceeded, it develops an output pulse to unlatch the breaker Direct Trip Actuator.

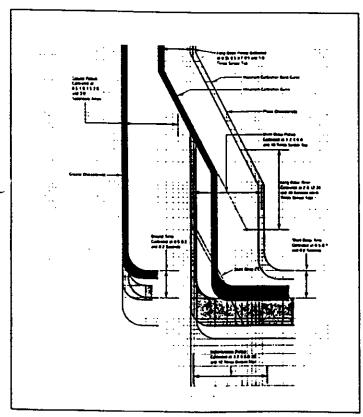
IMPORTANT APPLICATION CONSIDERATION

The interrupting capability of a low voltage air circular breaker, equipped with "LS" (long and short delay overcurrent trip devices, may be lower than for all equivalent breaker equipped with "LI" (long delay and instantaneous) overcurrent trip devices. This is regardless of manufacture or type of device. Therefore it is important to ensure that the breaker interrupting capability is not exceeded when changing from "LI to "LS" trip device characteristics. For further information refer to ANSI Std. C37.16. A system coordination may be desirable to safeguard against this possibility

WIDE RANGE

The wide adjustment range of the *I-TEKTOR* result in the need for fewer sensor taps, and eliminates the need for a "range" selector switch. Removal of the transparent cover, allows access to the screwdrive type, continuously adjustable function level control through the silkscreened metal front plate.

CHARACTERISTIC FIELD SELECTABILITY


While the I-TEKTOR is always shipped as "LSIG" any on of the ten (10) models listed below may be field selecte simply by adding or removing jumpers located on th front. Short delay I²T function is included as standard

1. LSIG-LONG & SHORT DELAY,	GROUND. &	INSTANTANEOUS	W/O SHORT DELAY I'T	JUMPER FT - DN & DD - DN
2. LSG-LONG & SHORT DELAY, &	GROUND		W/O SHORT DELAY IT	JUMPER FT - DN
3. LSG-LONG & SHORT DELAY, &	GROUND		WITH SHORT DELAY IT	JUMPERS NOT REQUIRED
4 LSIG-LONG & SHORT DELAY.	GROUND, &	INSTANTANEOUS	WITH SHORT DELAY I'T	JUMPER DD-ON
5. LIG-LONG DELAY	GROUND, &	INSTANTANEOUS	I'T NOT USED	JUMPER DD ON & DI - DN

CONTROL ADJUSTMENTS

FUNCTION		PANGE/CALIBRATION MARKS AT	
	LONG DELAY CURRENT PICKUP	.35,.5,.7,.9 & 1.0 × SENSOR TAP	
	LONG DELAY TIME	2.6.12,24 & 30 - SECONDS	
s	SHORT DELAY CURRENT PICKUP	1.2.4.6.8, & 10 × SENSOR TAP	
	SHORT DELAY TIME	0.2.0.3 & 0.5 - SECONDS	
1	INSTANTANEOUS CURRENT PICKUP	1,2,4,6.8,10 & 12 × SENSOR TAP	
G	GROUND CURRENT PICKUP	0.5,1.0,1.5,2.0 & 3.0 - AMPS	
	GROUND DELAY TIME	0.2.0.3 & 0.5 - SECONDS	

Refer to Curve #6273C07-C below for time-current characteristics of the I-TEKTOR

CURVE #6273C07-C

INDICATORS

Overload, fault and ground indication are provided by means of internally activated, magnetically held, trip indicators, which reset automatically in approximately 2 seconds, after the breaker is closed and normal current is established. The indicators cannot be reset by external means. Easily accessible terminals on the front of the I-TEKTOR are provided to facilitate remote indication, if required.

ADJUSTABLE DISCRIMINATOR

A built-in adjustable Discriminator is introduced autimatically when any characteristic without instantaneou. [I] is selected. Under these conditions, the I-TEKTOR ac as an instantaneous device until the breaker is close and normal current is established, to ensure the breaking not subjected to undue stresses, if closed onto a botte fault. Note: The discriminator value is determined by the setting of the instantaneous current pickup level control Suggested minimum setting is 10 times. Once normal system operation is established, the short delay [5] overides the Discriminator, thus, allowing the I-TEKTO to perform as a truly selective device, to enhance of ordination with other devices.

ENVIRONMENTAL PROTECTION CONSISTENT PERFORMANCE

To minimize the effects of airborne contaminants, ensur proper and reliable operation of the device over a lon period of time and provide effective environmental protection, all solid state components are machine solders to the printed circuit card and then the whole car assembly is conformal coated. The adjustable control and trimming resistors are computer selected to ensuconsistent performance.

DESIGN TESTS

The I-TEKTOR which conforms generally with the requirements of ANSI Std. C37.17-xxxx, has been subjected tand satisfactorily passed the following "design type" test

- -20°C to +85°C Operating range
- Electromagnetic susceptibility (EMI), per UL Standare
- Three phase, high power operation when mounted a part of a retrofit kit on a typical low voltage air circuit break

FIELD TESTING

Select any one of the ten (10) combinations listed under "Characteristic Field Selectability" to suit system coordination requirements, and test in accordance with IL#H33-791. An integrally mounted plug-in adapter which is compatible with the Westinghouse Amptector, means the I-TEKTOR can be easily field tested using the portable, time proven, Amptector "Secondary Injection Test Unit".

CONNECTION DIAGRAMS

- Refer to diagrams A, B, C and D

Diagram A Where Ground (G) protection is not required, connect the common return wire to the *I-TEKTOR* terminal N, and jumper terminals N & G

Diagram B Where 3-3W residual ground protection is required connect the common return wire to the *I-TEKTOR* terminal G. DO NOT JUMPER TERMINALS N & G.

Diagrams C & D Where ground protection via neutral sensor or external ground source is required connect the common return wire to the *I-TEKTOR* terminal G and add two wires to connect to the neutral sensor, or external ground source. DO NOT JUMPER TERMINALS N & G.

RETROFIT CONNECTION DIAGRAMS

