Effective: August 1990

Type ALS and DLS Power Supplies

CAUTION

Before putting this equipment into service, it is recommended that the user of this equipment become acquainted with the information in these instructions. This supply module should not be removed or inserted while the cabinet is energized with dc quantities. Failure to observe this precaution can result in undesired operation or component damage.

Some components used on this module are sensitive to and can be damaged by the discharge of static electricity. Electro-static discharge precautions should be observed when handling modules or individual components.

1. APPLICATION

The ALS and DLS power supply modules isolate the relay system logic and sensing circuits from the station battery. The ALS module provides a source of plus and minus 15 Vdc needed by the operational amplifier and digital logic circuits, while the DLS module provides the additional +15 Vdc capacity for driving large amounts of digital logic circuits and for extra trip outputs.

The ALS and DLS modules (with the AMP connector or the DIN connector), are grouped for ordering purposes as follows:

- G01 (48 Vdc) ALS for Uniflex
- G02 (125 Vdc) ALS for Uniflex
- G03 (250 Vdc) ALS for Uniflex
- G04 (48 Vdc) DLS
- G05 (125 Vdc) DLS
- G06 (250 Vdc) DLS
- G07 (48 Vdc) ALS for LDAR
- G08 (125 Vdc) ALS for LDAR
- G09 (250 Vdc) ALS for LDAR

Parts List 1349D85 (for ALS/DLS with AMP connector) shows PC Board 1584C87H01. Parts List 1355D49 (for ALS/DLS with DIN connector) shows PC Board 1609C48H01. Both PC Boards are used for all nine applications.

2. CONSTRUCTION

The ALS and DLS modules are self-contained power supplies with isolated outputs. The supplies consist of an inverter, rectifier assembly or assemblies, and feedback regulator that is sampled on the main +15 V supply for both the ALS and DLS modules. The-15V supply on the ALS is a shunt-regulated supply.

All of the circuitry for both supplies are housed in modules approximately 4.875 " x 10" x 2" and have 2" panels on which are mounted power ON/OFF switches, fuses, LED indicators, test jacks and output

[^0]adjusters. Except for the connectors, the modules are completely enclosed in aluminum cases which serve both as heat sinks and RFI noise shields. Each supply requires two module spaces in the standard 3 rack unit chassis and is designed to fit in any position in the chassis.

3. SPECIFICATIONS

DC Input

48 V (nom)	38 to 66	Vdc @ 2.6 Amps
125 V (nom)	80 to 145	Vdc @ 1.4 Amps
250 V (nom)	170 to 290	Vdc @ 0.6 Amps
DC Output		
ALS Supply	+15 volts @ 3 Amps (Max.)	
	-15 volts @ 1 Amp (Max.)	
DLS Supply	+15 volts @ 4 Amps (Max.)	

Regulation on the +15 Vdc supplies is $\pm 150 \mathrm{mV}$; regulation on the -15 Vdc supply is $\pm 450 \mathrm{mV}$.

NOTE: All ratings are at rated loads.

4. OPERATION

Referring to the ALS/DLS Block Diagram (Figure 1), the primary side is to the left while the secondary side is to the right. Rated dc input voltages are applied to terminals 33 (for battery positive) and 35 (for battery negative) for a power supply with the AMP connector; apply to terminals 30 A/C (for battery positive) and 32 A/C (for battery negative) for a power supply with a DIN connector. The rated input voltages are transmitted through the switch and fuses. During operation, any noise generated by the power supply or noise on the battery supply lines is attenuated by the common and differential mode noise rejection circuits. An energy storage capacitor is used to limit the effect of transitory input voltage fluctuations. The input voltage is also sensed for protection against overvoltage. The dc input light emitting diode is illuminated to indicate presence of the input voltage.

The switching signal from the control logic is applied to the pulse width modulator driver which, in turn, switches the primary of the transformer. The resulting secondary waveform is rectified and filtered at a sufficient voltage level that will sustain secondary circuit operation. The voltage level detection circuit dis-
ables the start-up oscillator through an optical isolator and also enables the pulse width modulator circuit to produce a 27.5 kHz switching signal. This signal from the pulse width modulator is coupled by a second optical isolator to the primary control logic, which is then applied to the pulse width modulator driver and the transformer primary is switched.

The switching frequency is always 27.5 kHz . However the "ON" time of the primary, which is the width of the pulse, is a function of the output voltage under load conditions. Power fold-back protection operates whenever the output load demand is greater than the power supply rating. The overload condition is constantly sensed by the power fold-back memory and allows normal operation once the overload condition is removed. The pulse width applied to the driver through the control logic, during overload conditions, is less than the pulse width under normal loads, which insures the safe operation of switching components.

5. DESCRIPTION

Referring to schematic drawing Figure 5A (ALS supply with AMP connector), or Figure 5B (ALS supply with DIN connector) the Balun transformer (T1) acts to suppress any noise that is of the same phase on both leads from the battery, or from the switching supply back through the leads. D1 protects against accidental battery polarity reversal or transient battery reversal while C7, L1, and C2 suppress differential mode noise. Resistor (R1) limits the inrush current to the supply and C1 stores energy to allow uninterrupted operation even when the dc input voltage experiences transients.

Components Z1, R9, R10, C9 and Q5 form an overvoltage shutdown circuit to limit the stress on components when subjected to prolonged overvoltage. Whenever the input voltage is too great, Z1 conducts turning on Q5, which blocks the signal at the gate of Q4 (the main switching device) through IC1, Q2 and Q3.

When the input dc voltage is applied, light emitting diode (D2) is turned ON. Z2, Q1, and associated circuitry will keep the startup oscillator disabled until a positive 15 volts is obtained at test point one. Once the 15 volts is there, the startup oscillator is enabled
and a 25 kHz switching signal is applied to the control circuit IC1 pin 2. This signal is applied by IC1 to transistors Q2 and Q3, providing a low impedance source and sink to drive the gate of the MOSFET Q4. Components C6, R6, and D3 form a circuit to allow a core recovery of the transformer (T2). Zener diodes (Z3 and Z7) prevent excessive voltage from appearing at the drain of the MOSFET (Q4) while R8 and C8 suppress transient ringing. Resistor (R7) functions as a current sensor. When an overcurrent condition occurs at a level which is determined by the adjustments of P1, Q6 is biased ON setting flip flop IC2. This causes the MOSFET to turn OFF immediately. The flip flop will remain in this state until the arrival of the next switching pulse from the pulse width modulator (IC5). The arrival of this switching pulse will reset the flip flop and allow the MOSFET to conduct. If the overcurrent condition still exists, the flip flop will be set again. As a result, the MOSFET will be switched ON and OFF until the overcurrent condition is removed.

The conduction time of the MOSFET is inversely proportional to the overcurrent magnitude, i.e., the more severe the overcurrent the shorter the MOSFET conduction time. This characterizes a unique feature known as power fold-back in the power supply design.

Components D6, R22, C13, R23 and D7, along with a transformer winding, form a circuit which provides auxiliary power to the primary side circuitry after startup. The secondary voltage is rectified by the fast recovery diodes (D9 and D10) for the negative supply and D11 and D12 for the positive supply. Filter circuits L2, C16, and L3, C19 produce the final supply voltages. During initial power-up, the voltage rises on the secondary and charges capacitors C21 and C22 through D13. When this voltage rises above 10 volts, zener diode (Z8) conducts, turning on transistors (Q7 and Q8). Q7 turns on optical isolator IC4, which disables the startup oscillator and, at the same time, enables the pulse width modulator (IC5) to produce a switching signal at test point 9. This signal is adjusted to 27.5 kHz by potentiometer (P2).

The positive output voltage level (which is also controlled by IC5), is adjusted to 15 Vdc by potentiometer P3 (referred to as "OUTPUT ADJUST" on the
front panel of the module). The negative 15 Vdc tracks the positive voltage by comparing both voltage levels in one section of operational amplifier IC6, which biases shunt regulator Q11 in order to regulate the negative 15 Vdc output.

The switching signal, at TP9, is coupled to the primary through optical isolator IC3. The output of the optical isolator is applied to the control circuit and then to the gate drive of the MOSFET.

The output voltage of the power supply is monitored for over and undervoltage. The under and overvoltage is sensed by two sections of integrated OP-AMP circuit IC6. When an unfavorable voltage level exists, pins 1 or 7 or IC6 will go low, removing the base drive from Q10 thereby causing output LED D21 to turn OFF and alarm relay RR1 to drop out. In addition, bias is applied to transitor Q9 to drop the normal 10 Vdc PSME signal to a low of $<4 \mathrm{Vdc}$. The PSME signal is used to control logic circuits elsewhere in the relay system.

The DLS power supply (Figure 6A, DLS supply with AMP connector or Figure 6B, DLS supply with DIN connector) provides additional isolated +15 Vdc capacity for powering large numbers of digital logic circuits and for extra trip outputs. Figures 6A/6B do not include circuits for the generation of -15 Vdc . Otherwise, the construction and circuitry is identical to that for the ALS power supply. Deleted are the shunt regulator Q11 and the tracking voltage comparator IC6. In addition, the two secondary windings of T2 are paralleled to achieve the 60 watt power capability for the +15 Vdc output.

6. ACCEPTANCE CHECK

The following equipment is required:

- Digital Voltmeter (DVM)
- Loads for ALS and DLS supply)

ALS supply (5 and $15 \Omega, 100 \mathrm{~W}$)
DLS supply ($3.75 \Omega, 100 \mathrm{~W}$)

6.1 Input Voltage Range Check

a. Apply rated voltage to terminals of supply.
b. Turn on the power supply switch.
c. The DC INPUT light should come ON.
d. Raise the input voltage to the voltage value from the table below; the DC OUTPUT light should go OFF:

CAUTION: Apply the excess voltage for less than 1 second to prevent undue stress on components.

For AMP Connector

1349D85A01, A04, A07	85 V
1349D85A02, A05, A08	200 V
1349D85A03, A06, A09	350 V

For DIN Connector

1355D49A01, A04, A07	85 V
1355D49A02, A05, A08	200 V
1355D49A03, A06, A09	350 V

e. Lower the input voltage to the value from the table below; the DC INPUT light should remain ON.

For AMP Connector

1349D85A01, A04, A07	38 V
1349D85A02, A05, A08	80 V
1349D85A03, A06, A09	170 V
For DIN Connector	
1355D49A01, A04, A07	38 V
1355D49A02, A05, A08	80 V
1355D49A03, A06, A09	170 V

6.2 Output Voltage Checks

a. Apply rated nominal voltage to the input terminals of the supply.
b. Turn on the power supply switch.
c. Measure the open circuit voltage at terminals $21(+)$ and 31 (COM) with a digital voltmeter (for a power supply with the AMP connector); apply to terminals 18A/C (+) and 28A/C (COM) for a power supply with the DIN connector. The voltage should be +15 Vdc . "OUTPUT ADJUST" potentiometer (P3) can be used to adjust the output to +15 Vdc . The -15 Vdc output on the ALS supply should track the +15 Vdc output within ± 0.10 volts.
d. Load the outputs of the supplies per the following table.

```
ALS Supplies
+15 Vdc output (5\Omega,100W) 3A
-15 Vdc output (15\Omega, 100W) 1A
DLS Supplies
+15 Vdc output (3.75\Omega,100W) 4A
```

The output voltages should not change by > 0.150 Vdc from their adjusted open circuit values. No alarms should occur and the dc output LED should remain lit as the load is changed from full to no load.

7. REPAIR CALIBRATION

NOTE: If the power supply is malfunctioning, it is recommended that the supply be sent back to the factory for repair. However, if repairs must be made in the field, the following test and calibration procedure should be used.

Equipment Required:

- Oscillator (dual trace).
- Frequency counter.
- Digital voltmeter.
- Separately adjustable +15 Vdc and -15 Vdc power supplies.
- 0-350 Vdc power supply.
- Loads specified for the Acceptance Check (see segment 6).

7.1 Procedures for ALS and DLS Power Supplies

This part should be done on a test bench and only if it is suspected that the supply is malfunctioning.
a. Working at a test bench, remove the cover and open any two leads from the MOSFET Q4, in order to separate the primary and secondary of the transformer (T2). (See Figure 2, bottom view; Q4 is the left-hand transistor when the case is open and the connector is to the right.) Refer to internal schematics (see Figures 5A, 5B or 6A, 6B).
b. Connect the DVM between TP1 (see Schematic, upper-left) and common (see Schematic, upper-right). Apply rated nominal input voltage to input terminals. The DVM should measure +15 Vdc at TP1.
c. The waveform at TP3 (see Schematic, uppercenter), monitored on an oscilloscope, should be a square wave pulse train, with an approximately 40% duty cycle on the positive portion, at a frequency of 25000 to 26000 Hz (see Figure A). The waveform at TP2 is the inverse of the waveform at TP3.

Figure A
d. Next, monitor TP3 with an oscilloscope. Jumper TP4 to TP3, and the waveform at TP3, will change to a positive duty cycle of $<10 \%$ (Figure B). Remove jumper and the waveform will return to the normal 40% duty cycle.

Figure B
e. Raise the input voltage to the value from the table below; the waveforms at TP2 and TP3 should disappear.

> 85 V for 48 V version
> 200 V for 125 V version
> 350 V for 250 V version
f. Next, lower the input dc voltage until 9 Vdc is measured with a digital voltmeter at TP1. The startup oscillator is disabled and the waveform at TP2 will disappear.
g. Turn off the input power supply.

7.2 Procedures for ALS ($\pm \mathbf{1 5}$ Vdc) Power Supplies

a. With external adjustable +15 Vdc and -15 Vdc power supplies, apply + and -14.5 Vdc to the output terminals of the ALS supply. Use a DVM for measurement. The LED (D21) will be turned ON.
b. Monitor TP9 (see Schematic, lower-right), with a frequency counter and adjust the frequency with potentiometer (P2) to $27.5 \pm 0.01 \mathrm{kHz}$. Lower the positive voltage from +14.5 Vdc to +7 Vdc and the waveform at TP9 will be disabled. Bring the voltage back to +14.5 Vdc .
c. Monitor output terminal PSMP to common with a DVM. The voltage should be $13.8 \mathrm{Vdc}(\pm 1$ Vdc).
d. Monitor output terminal PSME to common. The voltage should be 9 Vdc or greater. Increase the +14.5 Vdc to +16.4 Vdc . The voltage at terminal PSME will drop to 1 Vdc or less and LED (D21) will turn OFF. Lower the +14.5 Vdc to 13.4 Vdc ; terminal PSME will drop to 1 Vdc or less and LED (D21) will turn OFF. Return the positive voltage to +14.5 Vdc and follow the same procedure for the -14.5 Vdc .

7.3 Procedures for DLS (+15 Vdc) Power Supplies

Follow the same procedure as that in 7.2a, b, c, and d for +15 Vdc only (references to -15 Vdc do not apply).

7.4 Procedures for ALS and DLS Power Supplies

a. Apply rated voltage to the input terminals while maintaining the $\pm 14.5 \mathrm{Vdc}$ for ALS supplies and +14.5 Vdc for DLS supplies at the output terminals. With an oscilloscope, monitor TP11 (see Schematic, lower-center). The signal at TP11 (Figure C) will be a 27.5 kHz waveform generated by IC5 and isolated from the secondary by IC3. IC4 will shut down the startup oscillator, creating a +15 Vdc level at TP2.

Figure C
b. Monitor TP3 for the 27.5 kHz waveform (Figure D).

Figure D
c. Remove all external voltage supplies and reconnect the proper leads to Q4.
d. Replace cover and perform the Acceptance Check (see Section 6).

8. RENEWAL PARTS

Repair work can be done most satisfactorily at the factory. However, interchangeable parts can be furnished to customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data and appropriate factory style number.

Sub 3
1581C75

Figure 2. Location of Components not on PC Board

Sub 1
1501 B98

Sub 1
1501B99

[^1]Figure 5A. Internal Schematic ALS with AMP Connector

1349D85 ALS DLS Power Supply with AMP Connector 1355D49 ALS DLS Power Supply with DIN Connector Sub 3 1/31/90

PC BOARD

1584C87 H01 AMP Connector

1609C48 H01 DIN Connector

ALS for Uniflex	48V	1609C37G 01
	125 V	1609C37G Q
	250 V	1609C37G @
DLS	48 V	1609C37G 04
	125 V	1609C37G ¢
	250 V	1609C37G 06
ALS for LDAR	48 V	1609C37G 07
	125 V	1609C37G ©
	250 V	1609C37G ¢

COMP	DESCRIPTION	STYLE	GROUP \#
CAPACITORS			
C1	980 uF +50-10\% 100V ALUMINUM	3529A07H02	01,04,07
C1	210 uF $+50-10 \%$ 250V ALUMINUM	3529A07H01	02,05,08
C1	95 uF +50-10\% 400V ALUMINUM	3529A07H06	03,06,09
C2	0.1 uF 20\% 500V CERAMIC DISC	184A663H14	01 thru 09
C3	0.01 uF 20\% 100V CERAMIC DISC	184A663H01	01 thru 09
C4	5.0 uF +75-10\% 25V ALUMINUM	186A341H07	01 thru 09
C5	0.1 uF 20\% 100V MONO CERAMIC	762A680H14	01 thru 09
C6	0.47 UF 5\% 200V MET POLYESTER	876A409H17	01 thru 09
C7	0.1 UF 20\% 500V CERAMIC DISC	184A663H14	01 thru 09
C8	0.001 uF 10\% 1000V Z5P CERAMIC DISC	762A680H02	01 thru 09
C9	470 pF 10\% 1000V CERAMIC DISC	879A911H10	01 thru 09
C10	$1200 \mathrm{pF} 2 \% 200 \mathrm{~V}$ CoG MONO CERAMIC	880A397H08	01,04,07
C10	$200 \mathrm{pF} 2 \% 500 \mathrm{~V}$ DIPPED MICA	762A757H11	02,05,08
C10	470 pF 10\% 1000V CERAMIC DISC	879A911H10	03,06,09
C11	270 pF 2\% 500V DIPPED MICA	762A757H12	01 thru 09
C12	5.0 pF 2\% 500V DIPPED MICA	763A209H25	01 thru 09
C13	100 uF +100-10\% 50V ALUMINUM	3535A92H01	01 thru 09
C14	0.001 uF 10\% 1000V Z5P CERAMIC DISC	762A680H02	01,02,03,07,08,09
C15	$1500 \mathrm{pF} 10 \% 1000 \mathrm{~V}$ Y5E CERAMIC DISC	762A680H05	01,02,03,07,08,09

COMP	DESCRIPTION
C16	1000 uF 20\% 25V ALUMINUM
C17	0.001 uF 10\% 1000V Z5P CERAMIC DISC
C18	$1500 \mathrm{pF} 10 \%$ 1000V Y5E CERAMIC DISC
C19	1000 uF 20\% 25V ALUMINUM
C20	0.05 uF 20\% 100V CERAMIC DISC
C20	0.22 uF 20\% 100V MONO CERAMIC
C21	150 uF 5\% 35V TANTALUM
C22	0.1 uF 20\% 100V MONO CERAMIC
C23	0.01 uF 20\% 100V CERAMIC DISC
C24	0.001 uF 10\% 1000V Z5P CERAMIC DISC
C25	0.001 uF 10\% 1000V Z5P CERAMIC DISC
C26	0.027 uF 10\% 50V MET POLYESTER
C27	0.01 uF 5\% 200V MET POLYCARB
C28	0.01 uF 20\% 100V CERAMIC DISC
C29	0.001 uF 10\% 1000V Z5P CERAMIC DISC
C30	0.1 uF 20\% 100V MONO CERAMIC
C31	0.001 uF 20\% 3000V Z5U CERAMIC DISC
C32	0.001 uF 20\% 3000V Z5U CERAMIC DISC
C33	0.001 uF 20\% 3000V Z5U CERAMIC DISC
C34	270 pF 2\% 500V DIPPED MICA
C35	$20 \mathrm{pF} 2 \%$ 500V DIPPED MICA
C36	0.01 uF 20\% 50V Z5U MONO CERAMIC
C37	0.47 uF 20\% 50V DIPPED TANTALUM
C38	0.47 uF 20\% 50V DIPPED TANTALUM

CHOKES

68 uH 5 AMPS

188A342H23
3529A30H01
3535A29H01
836A928H06
837A692H03
837A692H03
3535A29H02
3535A29H02
3535A29H02
3535A29H02
837A692H03
837A692H03
837A692H03
837A692H03
837A692H03
837A692H03
837A692H03

3516A94H01

3535A63G01
3535A63G02

STYLE

3529A32H01
762A680H02
762A680H05
3529A32H01
184A663H02
3512A08H02
880A363H12
762A680H14
184A663H01
762A680H02
762A680H02
188A669H14 3534A68H03 184A663H01 762A680H02 762A680H14 3536A32H01 3536A32H01 3536A32H01 762A757H12 763A209H07 3509A34H02 3533A75H07 3533A75H07

GROUP\#
01,02,03,07,08,09
01 thru 09
01 thru 09
01 thru 09
01,04,07
02,03,05,06,08,09
01 thru 09
01 thru 09
01 thru 09
01,02,03,07,08,09
01,02,03,07,08,09
01 thru 09
01,02,03,07,08,09
01 thru 09
01 thru 09

01 thru 09

01,02,03,07,08,09
01 thru 09

02,03,05,06,08,09
01,04,07
01 thru 09
01 thru 09
01 thru 09
01 thru 09
01,02,03,07,08,09
01,02,03,07,08,09
01 thru 09
01,02,03,07,08,09

COMP

DESCRIPTION
FUSES

F1,F2	4A
F1,F2	2 A
F1,F2	1.5 A

IC SOCKETS

IC1	14 PIN
IC2	14 PIN
IC3	8 PIN
IC4	8 PIN
IC5	16 PIN AUGUT
IC6	14 PIN

3534A76H03
3534A76H03
3534A76H02
3534A76H02
3534A76H04
3534A76H03
INT CKTS

IC1	MC14011BAL QUAD 2-INPUT NAND
IC2	MC14011BAL QUAD 2-INPUT NAND
IC3	6N136 OPTOCOUPLER
IC4	6N136 OPTOCOUPLER
IC5	SG1524J PULSE-WIDTH MODULATOR
IC6	LM124J QUAD OP-AMP

JUMPERS

R1	ZERO OHM RESISTOR
R31	ZERO OHM RESISTOR
Z1B	ZERO OHM RESISTOR
Z7A	ZERO OHM RESISTOR
Z7B	ZERO OHM RESISTOR

862 A 478 H 01	$01,04,07$
862 A 478 H 01	$01,04,07$
862 A 478 H 01	$01,02,04,05,07,08$
862 A 478 H 01	$01,04,07$
862 A 478 H 01	$01,04,07$

OPTOELECTS

D2
D21

POTENTIOS

P1
P2
P3
1K 5W 25T TOP ADJ.
500-OHM 0.5W 1 TURN CERMET TOP ADJ.
3534A25H04
3502A17H08
3529A31H01

9645A10H04

763 A 127 H 03	$01,04,07$
763 A 129 H 09	$02,05,08$
763 A 130 H 10	$03,06,09$
863 A 175 H 97	01 thru 09
863 A 175 H 01	01 thru 09

COMP	DESCRIPTION
R5	30.1 OHMS 1\% 1W METAL FILM
R6	500 OHMS 1\% 10W
R7	0.1 OHMS 1\% 5W WIREWOUND
R7	0.2 OHMS 1\% 5W WIREWOUND
R7	0.4 OHMS 1\% 5W WIREWOUND
R8	250 OHMS 1\% 5W WIREWOUND NON
R9	2.0 KILOHMS $2 \% 1$ W METAL FILM
R10	10.0 KILOHMS $1 \% 0.25$ W METAL FILM
R11	2.00 KILOHMS $1 \% 0.25$ W METAL FILM
R12	1.00 KILOHMS $1 \% 0.25$ W METAL FILM
R13	10.0 KILOHMS $1 \% 0.25$ W METAL FILM
R14	2.00 KILOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R15	100 KILOHMS 5\% 0.25W METAL FILM
R16	20.0 KILOHMS $1 \% 0.25$ W METAL FILM
R17	20.0 KILOHMS $1 \% 0.25$ W METAL FILM
R18	51.1 KILOHMS $1 \% 0.25$ W METAL FILM
R19	30.1 KILOHMS 1\% 0.25W METAL FILM
R20	20.0 KILOHMS $1 \% 0.25$ W METAL FILM
R21	1.00 KILOHMS $1 \% 0.25$ W METAL FILM
R22	1.5 KILOHMS 2\% 1W METAL FILM
R23	10.0 OHMS 1\% 1W METAL FILM
R24	10.0 KILOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R25	750 KILOHMS 1\% 0.5W METAL FILM
R26	750 KILOHMS 1\% 0.5W METAL FILM
R27	1.00 KILOHMS $1 \% 0.5 \mathrm{~W}$ METAL FILM
R28	150 OHMS 1\% 0.25W METAL FILM
R28	2.00 KILOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R29	619 OHMS 1\% 0.5W METAL FILM
R30	1.00 KILOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R31	750 OHMS 1\% 0.25W METAL FILM
R32	20.0 KILOHMS $1 \% 0.25$ W METAL FILM
R33	2.00 KILOHMS 1\% 0.25W METAL FILM
R34	100 OHMS 1\% 0.5W METAL FILM
R35	100 OHMS $1 \% 0.5 \mathrm{~W}$ METAL FILM
R36	1.00 KILOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R37	511 OHMS 1\% 0.25W METAL FILM
R38	681 OHMS 1\% 0.25W METAL FILM
R39	1.50 MEGOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R40	2.74 KILOHMS $1 \% 0.25$ W METAL FILM
R41	10.5 KILOHMS 1\% 0.25W METAL FILM
R42	500 OHMS 1\% 4W WIREWOUND
R43	4.64 KILOHMS 1\% 0.25W METAL FILM
R44	470 OHMS 1\% 4W WIREWOUND
R45	10.5 KILOHMS 1\% 0.25W METAL FILM
R46	6.04 KILOHMS 1\% 0.25W METAL FILM
R47	1.50 MEGOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R48	1.00 KILOHMS 1\% 0.25W METAL FILM
R49	10.0 KILOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R50	25 OHMS 1 \% 10W

STYLE

862A374H47
3529A22H02
3529A29H01
3529A29H02
3529A29H03
3529A28H01
629A531H39
863A175H01
863A174H30
863A174H01
863A175H01
863A174H30
863A175H97
863A175H30
863A175H30
863A175H69
863A175H47
863A175H30
863A174H01
629A531H36
862A374H01
863A175H01
848A822H27
848A822H27
848A819H48
863A173H18
863A174H30
848A819H28
863A174H01
863A173H85
863A175H30
863A174H30
848A818H51
848A818H51
863A174H01
3535A39H69
863A173H81
3532A39H18
863A174H43
3535A37H03
763A126H11
3535A38H65
763A126H55
3535A37H03
3535A38H76
3532A39H18
863A174H01
863A175H01
3529A22H01

GROUP\#

01 thru 09
01 thru 09
01,04,07
02,05,08
03,06,09
01 thru 09
02,03,05,06,08,09
01,04,07
01 thru 09
01 thru 09
02,03,05,06,08,09
01 thru 09
01 thru 09
01 thru 09
01,02,03,07,08,09
01 thru 09
01,02,03,07,08,09
01 thru 09
01,02,03,07,08,09

COMP	DESCRIPTION
R51	750 OHMS 1\% 0.25W METAL FILM
R52	20.0 KILOHMS 0.1\% 1W METAL FILM
R53	2.00 KILOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R54	10.0 KILOHMS 0.1% 1W METAL FILM
R55	20.0 KILOHMS 0.1\% 1W METAL FILM
R56	10.0 KILOHMS 0.1\% 1W METAL FILM
R57	15.0 KILOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R58	32.4 KILOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R59	1.78 KILOHMS 1\% 0.25W METAL FILM
R60	5.11 KILOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R61	5.11 KILOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R62	2.74 KILOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R63	1.00 KILOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R65	1.00 KILOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R66	10.0 KILOHMS $1 \% 0.25 \mathrm{~W}$ METAL FILM
R67	0.2 OHMS 1\% 5W WIREWOUND
R67	0.562 OHMS 1\% 3W WIREWOUND
R68	511 OHMS 1\% 0.25W METAL FILM
R69	100 OHMS 1\% 0.5W METAL FILM
RZ2	10.0 KILOHMS 1\% 0.25W METAL FILM

SWITCHES

SW1

TERMINAL

TP1	TEST POINT	
TP2	TEST POINT	
TP3	TEST POINT	
TP4	TEST POINT	
TP5	TEST POINT	
TP7	TEST POINT +15V RED	
TP8	TEST POINT $-15 V$ BLACK	
TP9	TEST POINT	
TP10	TEST POINT	WHITE
TP11	TEST POINT	

THERMISTORS

R1

10 OHM 4A 1 INCH DIA.
182A879H02
02,03,05,06,08,09

TRANSFORMERS

RENCO 1361-2-270
T2
(Varies with voltage input; must be assembled at factory.)

TRANSISTORS

```
Q1 2N2222A 40V 0.8A 0.4W NPN
Q2 2N2222A 40V 0.8A 0.4W NPN
```

762A672H15
01,02,03,07,08,09
01 thru 09

COMP

ZENERS

DESCRIPTION

2N2907A @V 0.6A 0.4W PNP
IRF242
IRF342
MTM3N60
2N2222A 40V 0.8A 0.4W NPN
2N2222A 40V 0.8A 0.4W NPN
2N2222A 40V 0.8A 0.4W NPN
2N2222A 40V 0.8A 0.4W NPN 2N2907A 60V 0.6A 0.4W PNP 2N2222A 40V 0.8A 0.4W NPN

PMD13K80

1N4761A 75V 5\% 1W
1N5386B 180V 5\% 5W
1N5384B 160V 5\% 5W
1N960B 9.1V 5\% 0.4W
1N5388B 200V 5\% 5W
1N5384B 160V 5\% 5W
1N5386B 180V 5\% 5W
1N966B 16V 5\% 0.4W
1N959 8.2V 10\% 0.4W
1N756A 8.2V 5\% 0.4W
IN5384B 160V 5\% 5W
IN5388B 200V 5\% 5W
IN5384B 160V 5\% 5W
IN5388B 200V 5\% 5W
1N959 8.2V 10\% 0.4W
1N5352B 15V 5\% 5W
1N5354B 17V 5\% 5W
1N5354B 17V 5\% 5W

849A487H05
862A288H37
862A288H35
186A797H10
862A288H13
862A288H35
862A288H37
862A288H05
837A398H12
862A606H13
862A288H35
862A288H13
862A288H35
862A288H13
837A398H12
862A288H04
862A288H11
862A288H11

9646A11H02
9644A92H01
9640A72H01

GROUP\#

01 thru 09
01,04,07
02,05,08
03,06,09
01,02,03,07,08,09
01 thru 09
01,02,03,07,08,09
01,02,03,07,08,09
01,02,03,07,08,09
01,02,03,07,08,09
01,02,03,07,08,09

01,04,07
02,03,05,06,08,09
03,06,09
01 thru 09
03,06,09
01,04,07
02,05,08
01 thru 09
01,02,03,07,08,09
01,02,03,07,08,09
02,05,08
03,06,09
02,05,08
03,06,09
01,02,03,07,08,09
01,02,03,07,08,09
01,02,03,07,08,09
01 thru 09

01 thru 09
01 thru 09
01 thru 09

[^0]: All possible contingencies which may arise during installation, operation or maintenance, and all details and variations of this equipment do not purport to be covered by these instructions. If further information is desired by purchaser regarding this particular installation, operation of maintenance of this equipment, the local ABB Power T\&D Company Inc. representative should be contacted.

[^1]:

