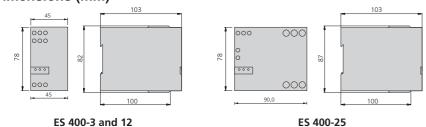

#### **Operation Diagrams**




1 Ramp-up time. Time from zero load voltage to full load voltage.

(2) Ramp-down time. Time from full load voltage to zero load voltage.

3 Initial torque. % of the nominal torque at the start of the ramp-up function.



## Dimensions (mm)



## Type selection (with recommended manual motor starters)

|                                 |             | Motor full load current (A) |       |        |     |       |       |      |        |      |        |          |      |
|---------------------------------|-------------|-----------------------------|-------|--------|-----|-------|-------|------|--------|------|--------|----------|------|
|                                 | 0,1<br>0,16 |                             |       |        |     |       |       |      |        |      |        | 20<br>25 |      |
| FANOX<br>Manual motors starters | M-0,16      | M-0,25                      | M-0,4 | M-0,63 | M-1 | M-1,6 | M-2,5 | M-4  | M-6,3  | M-10 | M-16   | M-20     | M-25 |
| Soft starter                    |             | ES 400-3                    |       |        |     |       |       | ES 4 | 100-12 |      | ES 400 | -25      |      |

# **Soft starters**



- The best solution for a soft start/stop for 3 phase inductive motors up to 11kW (400V).
- Potencial-free control input.
- Easy setting with 3 independent potenciometers -Ramp-down time
- Internal heatsink and bypass relay incorporated.
- Compact housing for DIN rail assembly.

## Mode of Operation

An electronic circuit comprising semiconductor components starts the motor without the use of contacts. Neither switching sparks nor contact erosion occur.

Only when the motor nominal voltage is reached the power semiconductor devices are bypassed by relay contacts. Thanks to this technology, the ES motor controllers are substantially longer lasting than conventional contactors.

Easy to install and control. The ES control can take place either from outside by means of a control signal, eg, a programmable controller, or directly via the power supply of the motor to be controlled.

### **Type selection**

|           | Nominal<br>current | Nominal<br>voltage | Motor<br>kW | rating<br>HP | Weight | Code No. |
|-----------|--------------------|--------------------|-------------|--------------|--------|----------|
| ES 400-3  | 3 A                | 400 Vac            | 1,1         | 1,5          | 270 gr | 41803    |
| ES 400-12 | 12 A               | ±15%               | 5,5         | 7,5          | 270 gr | 41812    |
| ES 400-25 | 25 A               | (50-60 Hz)         | 11          | 15           | 530 gr | 41825    |

### Input Specifications (Control Input)

| Control voltage U <sub>c</sub><br>A1-A2:<br>A1-A3:                         | 24 - 110 VAC/DC ±15%,<br>12 mA<br>110 - 480 VAC ±15%,<br>5 mA |
|----------------------------------------------------------------------------|---------------------------------------------------------------|
| Rated insulation voltage                                                   | 630 V rms<br>Overvoltage cat. III (IEC 664)                   |
| Dielectric strenght<br>Dielectric voltage<br>Rated impulse withstand volt. | 2 kV (rms)<br>4 kV (1,2/50 μs)                                |

#### **Output Specifications**

| Utilization category                                    | CA 53b integral bypassing                                                    |
|---------------------------------------------------------|------------------------------------------------------------------------------|
| Overload current profile<br>(overload relay trip class) | of semiconductors<br>ES 400-3: 6/13<br>ES 400-12: 6/13<br>ES 400-25: 3/4/120 |

-Ramp-up time

#### **Supply Specifications**

| Power supply<br>Rated operational volt. (U <sub>e</sub> )<br>trought terminals L1-L2-L3 | Overvoltage Cat. III (IEC 664)<br>(IEC 38)<br>400 Vac rms ±15%<br>50/60 Hz -5/+5 Hz | Accuracy<br>Ramp-up<br>Ramp-do |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------|
| Voltage interruption<br>Dielectric voltage<br>Rated impulse withstand volt.             | ≤40 ms<br>2 kV (rms)<br>4 kV (1,2/50 μs)                                            | - Initial tor                  |
| Rated operational power<br>supplied from                                                | 5 VA<br>L1-L2                                                                       |                                |

#### Semiconductor Data

| Rated opera-<br>tional current | l²t for fusing<br>t = 1 - 10 ms | Ітѕм   | dl/dt    |
|--------------------------------|---------------------------------|--------|----------|
| 3 A                            | 72 A <sup>2</sup> s             | 120 Ap | 50 A/µs  |
| 12 A                           | 610 A <sup>2</sup> s            | 350 Ap | 50 A/µs  |
| 25 A                           | 1250 A <sup>2</sup> s           | 500 Ap | 100 A/µs |

#### Mode of Operation

This motor controller is intended to be used to soft start/stop 3 phase squirrel cage induction motors and thereby reduce the stress or wear on gear and belt/chain drives and to give smooth operation of machines. Soft starting and/or stopping is achieved by controlling the motor voltage.

During running operation the semiconductor is bypassed by an internal electromechanical relay

#### **Overtemperature (only ES400-25)**

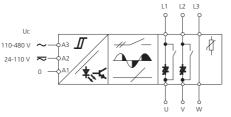
The ES 400-25 will not start if the heatsink has a temperature which is exceeding approx 100°C. When overtemperature occurs the soft starter will not ramp-up. Reset takes place when the temperature drops below the critical value and only if the supply is interrupted and reapplied.

### **Display Information**

|                 | ES400-3   | ES400-12 | ES400-25            |
|-----------------|-----------|----------|---------------------|
| Power Supply    | green     | green    | green               |
| Ramp            | 🕁 yelow   | 👳 yelow  | yelow<br>(flashing) |
| Bypass relay on | 🟒 _ yelow | ∠_ yelow | yelow               |
| Overtemperature |           |          | ⚠ red               |

#### **General Specifications**

ES 400-25


Minimun

Minimum

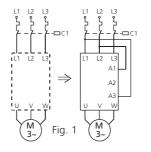
| Accuracy<br>Ramp-up                                                                                     | ≤ 0,5 s on min.<br>5,5-7,5s on max.(ES400-3 and 12<br>10±10% on max. (ES400-25) |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Ramp-down                                                                                               | ≤ 0,5 s on min.<br>6 -10s on max.(ES400-3 and 12<br>20±10% on max. (ES400-25)   |
| Initial torque                                                                                          | ±15% on max. (ES 400-3 and 12<br>±5% on max. (ES 400-25)<br>< 5% on min.        |
| EMC<br>Inmunity                                                                                         | Electromagnetic Compatibility<br>acc. to EN 50 082-2                            |
| Environment<br>Degree of protection<br>Pollution degree<br>Operating temperature<br>Storage temperature | IP 20<br>3<br>-20 a +50°C (-4 to +122°F)<br>-50 a +85°C (-58 to +185°F,         |
| ES 400-3 y ES-400-12<br>Control and Line screw terminals<br>Minimum<br>Max. tightening torque           | 2,5 mm² , AVG 14<br>0,5 mm² , AWG 20<br>0,6 Nm                                  |

2,5 mm<sup>2</sup>, AVG 14 Control screw terminals 0.5 mm<sup>2</sup>, AWG 20 Max. tightening torgue 0,6 Nm Line screw terminals 10 mm<sup>2</sup>, or 2 x 6 mm<sup>2</sup> AWG 6 or 2 x AWG 10 1 mm<sup>2</sup>, AWG 16 Max. tightening torgue 2 Nm

#### **Functional Diagram**



|                                   | ES400-3 | ES400-12 | ES400-25 |  |  |
|-----------------------------------|---------|----------|----------|--|--|
| tial torque<br>of nominal torque) | 0-85%   | 0-85%    | 5-50%    |  |  |
| np-up time                        | 0,5-5 s | 0,5-5 s  | 0,5-10 s |  |  |
| np-down time                      | 0,5-5 s | 0,5-5 s  | 0,5-20 s |  |  |


#### Applications

#### Changing from Direct ON Line start to soft start (Line controlled soft start) (Fig. 1)

Changing a Direct On Line start into a soft start is very simple with the ES soft starting relay:

- 1) Cut the cable to the motor and insert the ES relay.
- 2) Connect control input to two of the incoming lines. Set initial torque to minimum and ramp up and down to maximum.
- 3) Power up again, adjust the start torque so the motor starts turning immediatly after power is applied, and adjust ramp time to the appropriate value.

When C1 is operated, the motor controller will perform soft start of the motor. When C1 is switched off, the motor will stop, the motor controller will reset and after 0.5 s a new soft-start can be performed.



#### Please note that the controller does not insulate the motor from the mains. Contactor C1 is therefore needed as a service switch for the motor

#### Soft start and soft stop (Fig. 2)

When S1 is closed, soft start of the motor will be performed according to the setting of the ramp-up potentiometer and the setting of the initial torque potentiometer. When S1 is opened, soft stop will be performed according to the setting of the ramp-down potentiometer.

#### **Fusing Considerations**

The motor controller provides bypassing of the semiconductors during running operation. Therefore the semiconductors can only be damaged by short-circuit currents during ramp-up and rampdown function.

A 3-phase induction motor with correctly installed and adjusted overload protection does not short totally between lines or directly to earth as some other types of loads, e.g. heater bands. In a failing motor there will always be some part of the winding to limit the fault current. If the motor is installed in an environment where the supply to the motor cannot be damaged, the short-circuit protection can be considered to be acceptable if the controller is protected by a 3-pole thermal-magnetic overload relay.

If the risk of short-circuit of the motor cable, the soft starter or the load exists, then the soft starter must be protected by ultrafast fuses, e.g. for a 3 A type: Ferraz 660 gRB 10-10, for an 12 A type: Ferraz 660 gRB 10-25. Fuseholder type PST 10.

## Time between rampings

To prevent the semiconductors from overheating, a certain time between ramping should be allowed. The time between rampings depends on the motor current during ramping and ramp time.

Fig. 2

12

|                       | ES 400-3 |     |       |                       | ES 400-12 |        |       |                   |       | ES 400-25 |      |       |       |       |
|-----------------------|----------|-----|-------|-----------------------|-----------|--------|-------|-------------------|-------|-----------|------|-------|-------|-------|
| Ramp time             |          |     |       |                       | Ramp time |        |       |                   |       | Ramp time |      |       |       |       |
| I <sub>ramp</sub> (A) | 1        | 2   | 5     | I <sub>ramp</sub> (A) | 1         | 2      | 5     | I <sub>ramp</sub> | (A)   | 1         | 2    | 5     | 7     | 10    |
| 18                    | 15s      | 30s | 15min | 72                    | 2,5min    | 5min   | 40min | 150               | )     | 4min      | 8min | 20min | -     | -     |
| 15                    | 12s      | 20s | 60s   | 60                    | 1,5min    | 3min   | 13min | 125               | 5     | 3min      | 6min | 14min | 19min | -     |
| 12                    | 10s      | 20s | 50s   | 48                    | 50s       | 1,5min | 5min  | 100               | )     | 2min      | 4min | 9min  | 12min | 18min |
| 9                     | 8s       | 12s | 30s   | 36                    | 30s       | 1min   | 3min  |                   | ,<br> |           |      |       |       |       |
| 6                     | 5s       | 9s  | 25s   | 24                    | 15s       | 40s    | 15min | 75                |       | 1min      | 2min | 5min  | 7min  | 10min |
| 3                     | 2s       | 5s  | 20s   | 12                    | 10s       | 20s    | 50s   | 50                |       | 27s       | 53s  | 2min  | 3min  | 4min  |
| 1,5                   | 1s       | 2s  | 5s    | 6                     | 5s        | 9s     | 20s   | 25                |       | 7s        | 13s  | 33s   | 47s   | 67s   |

Note: Table is valid for ambient temperature 25°C. For higher ambient temperature add 5% per°C to values in the tables. The more shaded areas in the tables are for blocked rotor. Do not repeat rampings with blocked rotor.

## Settings

Init (% Ran Ran