# T60 Transformer Management Relay UR Series Instruction Manual 

T60 Revision: 4.8x

Manual P/N: 1601-0090-L2 (GEK-113059A) Copyright © 2006 GE Multilin


GE Multilin
215 Anderson Avenue, Markham, Ontario
Canada L6E 1B3
Tel: (905) 294-6222 Fax: (905) 201-2098
Internet: http://www.GEindustrial.com/multilin


## ADDENDUM

This Addendum contains information that relates to the T60 Transformer Management Relay relay, version 4.8x. This addendum lists a number of information items that appear in the instruction manual GEK-113059A (revision L2) but are not included in the current T60 operations.
The following functions/items are not yet available with the current version of the T60 relay:

- Signal Sources SRC 5 and SRC 6

Version 4.0x and higher releases of the T60 relay includes new hardware (CPU and CT/VT modules).

- The new CPU modules are specified with the following order codes: 9E, 9G, 9H, 9J, 9K, 9L, 9M, 9N, 9P, and 9R.
- The new CT/VT modules are specified with the following order codes: 8F, 8G, 8H, 8J.

The following table maps the relationship between the old CPU and CT/VT modules to the newer versions:

| MODULE | OLD | NEW | DESCRIPTION |
| :--- | :---: | :---: | :--- |
| CPU | 9 A | 9 E | RS485 and RS485 (Modbus RTU, DNP) |
|  | 9 C | 9 G | RS485 and 10Base-F (Ethernet, Modbus TCP/IP, DNP) |
|  | 9 D | 9 H | RS485 and redundant 10Base-F (Ethernet, Modbus TCP/IP, DNP) |
|  | -- | 9 J | RS485 and multi-mode ST 100Base-FX |
|  | -- | 9 K | RS485 and multi-mode ST redundant 100Base-FX |
|  | -- | 9 L | RS485 and single mode SC 100Base-FX |
|  | -- | 9 M | RS485 and single mode SC redundant 100Base-FX |
|  | -- | 9 N | RS485 and 10/100Base-T |
|  | -- | 9 P | RS485 and single mode ST 100Base-FX |
|  | -- | 9 R | RS485 and single mode ST redundant 100Base-FX |
|  | CT/VT | 8 A | 8 F |

The new CT/VT modules can only be used with the new CPUs (9E, 9G, 9H, 9J, 9K, 9L, 9M, 9N, 9P, 9R), and the old CT/ VT modules can only be used with the old CPU modules (9A, 9C, 9D). To prevent any hardware mismatches, the new CPU and CT/VT modules have blue labels and a warning sticker stating "Attn.: Ensure CPU and DSP module label colors are the same!". In the event that there is a mismatch between the CPU and CT/VT module, the relay will not function and a DSP ERROR or HARDWARE MISMATCH error will be displayed.
All other input/output modules are compatible with the new hardware.
With respect to the firmware, firmware versions 4.0 x and higher are only compatible with the new CPU and CT/VT modules. Previous versions of the firmware ( $3.4 x$ and earlier) are only compatible with the older CPU and CT/VT modules.

## 1. GETTING STARTED

## 2. PRODUCT DESCRIPTION

## 3. HARDWARE

### 3.1 DESCRIPTION

3.1.1 PANEL CUTOUT ........................................................................................ 3-1
3.1.2 MODULE WITHDRAWAL AND INSERTION .................................................. 3-4
3.1.3 REAR TERMINAL LAYOUT.......................................................................... 3-5
3.2 WIRING
3.2.1 TYPICAL WIRING ........................................................................................ 3-6
3.2.2 DIELECTRIC STRENGTH ............................................................................ 3-7
3.2.3 CONTROL POWER .................................................................................... 3-7
3.2.4 CT/VT MODULES ....................................................................................... 3-8
3.2.5 CONTACT INPUTS/OUTPUTS .................................................................. 3-10
3.2.6 TRANSDUCER INPUTS/OUTPUTS ........................................................... 3-17
3.2.7 RS232 FACEPLATE PORT ....................................................................... 3-18
3.2.8 CPU COMMUNICATION PORTS .................................................................. 3-18
3.2.9 IRIG-B ..................................................................................................... 3-21

### 3.3 DIRECT INPUT/OUTPUT COMMUNICATIONS

3.3.1 DESCRIPTION ..... 3-22
3.3.2 FIBER: LED AND ELED TRANSMITTERS ..... 3-24
3.3.3 FIBER-LASER TRANSMITTERS ..... 3-24
3.3.4 G.703 INTERFACE ..... 3-25
3.3.5 RS422 INTERFACE ..... 3-28
3.3.6 RS422 AND FIBER INTERFACE ..... 3-30
3.3.7 G.703 AND FIBER INTERFACE ..... 3-30
3.3.8 IEEE C37.94 INTERFACE ..... 3-31
3.3.9 C37.94SM INTERFACE ..... 3-33
4. HUMAN INTERFACES
5. SETTINGS
4.1 ENERVISTA UR SETUP SOFTWARE INTERFACE
4.1.1 INTRODUCTION ..... 4-1
4.1.2 CREATING A SITE LIST ..... 4-1
4.1.3 SOFTWARE OVERVIEW ..... 4-1
4.1.4 ENERVISTA UR SETUP MAIN WINDOW. ..... 4-3
4.2 FACEPLATE INTERFACE
4.2.1 FACEPLATE ..... 4-4
4.2.2 LED INDICATORS ..... 4-5
4.2.3 DISPLAY ..... 4-8
4.2.4 KEYPAD ..... 4-8
4.2.5 MENUS ..... 4-8
4.2.6 CHANGING SETTINGS ..... 4-10
5.1 OVERVIEW
5.1.1 SETTINGS MAIN MENU ..... 5-1
5.1.2 INTRODUCTION TO ELEMENTS ..... 5-3
5.1.3 INTRODUCTION TO AC SOURCES ..... 5-5
5.2 PRODUCT SETUP
5.2.1 PASSWORD SECURITY ..... 5-7
5.2.2 DISPLAY PROPERTIES ..... 5-8
5.2.3 CLEAR RELAY RECORDS ..... 5-10
5.2.4 COMMUNICATIONS ..... 5-11
5.2.5 MODBUS USER MAP ..... 5-22
5.2.6 REAL TIME CLOCK ..... 5-22
5.2.7 USER-PROGRAMMABLE FAULT REPORT ..... 5-22
5.2.8 OSCILLOGRAPHY ..... 5-23
5.2.9 DATA LOGGER ..... 5-26
5.2.10 DEMAND ..... 5-27
5.2.11 USER-PROGRAMMABLE LEDS ..... 5-28
5.2.12 USER-PROGRAMMABLE SELF TESTS ..... 5-32
5.2.13 CONTROL PUSHBUTTONS ..... 5-33
5.2.14 USER-PROGRAMMABLE PUSHBUTTONS ..... 5-34
5.2.15 FLEX STATE PARAMETERS ..... 5-35
5.2.16 USER-DEFINABLE DISPLAYS ..... 5-36
5.2.17 DIRECT INPUTS/OUTPUTS ..... 5-38
5.2.18 TELEPROTECTION ..... 5-43
5.2.19 INSTALLATION ..... 5-44
5.3 SYSTEM SETUP
5.3.1 AC INPUTS ..... 5-45
5.3.2 POWER SYSTEM ..... 5-47
5.3.3 SIGNAL SOURCES ..... 5-48
5.3.4 TRANSFORMER ..... 5-50
5.3.5 FLEXCURVES ${ }^{\text {™ }}$ ..... 5-62
5.4 FLEXLOGIC ${ }^{\text {M }}$
5.4.1 INTRODUCTION TO FLEXLOGIC ${ }^{\text {тм }}$ ..... 5-69
5.4.2 FLEXLOGIC ${ }^{\text {M }}$ RULES ..... 5-77
5.4.3 FLEXLOGIC ${ }^{\text {TM }}$ EVALUATION ..... 5-77
5.4.4 FLEXLOGIC™ EXAMPLE ..... 5-77
5.4.5 FLEXLOGIC ${ }^{\text {T }}$ EQUATION EDITOR ..... 5-82
5.4.6 FLEXLOGICTM TIMERS ..... 5-82
5.4.7 FLEXELEMENTSTM ..... 5-83
5.4.8 NON-VOLATILE LATCHES ..... 5-87
5.5 GROUPED ELEMENTS
5.5.1 OVERVIEW ..... 5-88
5.5.2 SETTING GROUP ..... 5-88
5.5.3 TRANSFORMER ELEMENTS ..... 5-88
5.5.4 PHASE CURRENT ..... 5-96
5.5.5 NEUTRAL CURRENT ..... 5-107
5.5.6 GROUND CURRENT ..... 5-115
5.5.7 VOLTAGE ELEMENTS ..... 5-122
5.6 CONTROL ELEMENTS
5.6.1 OVERVIEW ..... 5-130
5.6.2 SETTING GROUPS ..... 5-130
5.6.3 SELECTOR SWITCH ..... 5-131
5.6.4 UNDERFREQUENCY ..... 5-137
5.6.5 OVERFREQUENCY ..... 5-138
5.6.6 DIGITAL ELEMENTS ..... 5-139
5.6.7 DIGITAL COUNTERS ..... 5-142
5.6.8 MONITORING ELEMENTS ..... 5-144
5.7 INPUTS/OUTPUTS
5.7.1 CONTACT INPUTS ..... 5-146
5.7.2 VIRTUAL INPUTS ..... 5-148
5.7.3 CONTACT OUTPUTS ..... 5-149
5.7.4 VIRTUAL OUTPUTS ..... 5-151
5.7.5 REMOTE DEVICES ..... 5-152
5.7.6 REMOTE INPUTS. ..... 5-153
5.7.7 REMOTE OUTPUTS ..... 5-154
5.7.8 RESETTING ..... 5-155
5.7.9 DIRECT INPUTS/OUTPUTS ..... 5-155
5.7.10 TELEPROTECTION INPUTS/OUTPUTS ..... 5-159
5.8 TRANSDUCER INPUTSIOUTPUTS
5.8.1 DCMA INPUTS ..... 5-161
5.8.2 RTD INPUTS ..... 5-162
5.8.3 DCMA OUTPUTS ..... 5-162
5.9 TESTING
5.9.1 TEST MODE ..... 5-166
5.9.2 FORCE CONTACT INPUTS ..... 5-166
5.9.3 FORCE CONTACT OUTPUTS ..... 5-167
6.1 OVERVIEW
6.1.1 ACTUAL VALUES MAIN MENU ................................................................... 6-1

### 6.2 STATUS

6.2.1 CONTACT INPUTS...................................................................................... 6-3
6.2.2 VIRTUAL INPUTS.......................................................................................... 6-3
6.2.3 REMOTE INPUTS.......................................................................................6-3
6.2.4 TELEPROTECTION INPUTS ......................................................................... 6-4
6.2.5 CONTACT OUTPUTS.................................................................................6-4
6.2.6 VIRTUAL OUTPUTS...................................................................................6-4
6.2.7 REMOTE DEVICES.................................................................................... 6-5
6.2.8 DIGITAL COUNTERS.................................................................................6-5
6.2.9 SELECTOR SWITCHES .............................................................................. 6-6
6.2.10 FLEX STATES .............................................................................................6-6
6.2.11 ETHERNET.................................................................................................... 6-6
6.2.12 DIRECT INPUTS.......................................................................................... 6-7
6.2.13 DIRECT DEVICES STATUS ........................................................................... 6-7
6.2.14 EGD PROTOCOL STATUS ........................................................................... 6-8
6.2.15 TELEPROTECTION CHANNEL TESTS........................................................ 6-8

### 6.3 METERING

6.3.1 METERING CONVENTIONS ........................................................................ 6-9
6.3.2 TRANSFORMER ........................................................................................ 6-12
6. ACTUAL VALUES
6.3.3 SOURCES ..... 6-13
6.3.4 TRACKING FREQUENCY ..... 6-17
6.3.5 FLEXELEMENTS ${ }^{\text {TM }}$ ..... 6-17
6.3.6 VOLTS PER HERTZ ..... 6-17
6.3.7 RESTRICTED GROUND FAULT ..... 6-18
6.3.8 TRANSDUCER INPUTS/OUTPUTS. ..... 6-18
6.4 RECORDS
6.4.1 USER-PROGRAMMABLE FAULT REPORTS ..... 6-19
6.4.2 EVENT RECORDS ..... 6-19
6.4.3 OSCILLOGRAPHY ..... 6-19
6.4.4 DATA LOGGER ..... 6-20
6.4.5 BREAKER MAINTENANCE ..... 6-20
6.5 PRODUCT INFORMATION
6.5.1 MODEL INFORMATION ..... 6-21
6.5.2 FIRMWARE REVISIONS ..... 6-21
7. COMMANDS AND TARGETS
7.1 COMMANDS
7.1.1 COMMANDS MENU ..... 7-1
7.1.2 VIRTUAL INPUTS ..... 7-1
7.1.3 CLEAR RECORDS ..... 7-1
7.1.4 SET DATE AND TIME ..... 7-2
7.1.5 RELAY MAINTENANCE ..... 7-2
7.2 TARGETS
7.2.1 TARGETS MENU ..... 7-4
7.2.2 TARGET MESSAGES ..... 7-4
7.2.3 RELAY SELF-TESTS ..... 7-4
8. COMMISSIONING
8.1 DIFFERENTIAL CHARACTERISTIC TESTS
8.1.1 DESCRIPTION ..... 8-1
8.2 DIFFERENTIAL CHARACTERISTIC TEST EXAMPLES
8.2.1 INTRODUCTION ..... 8-3
8.2.2 TEST EXAMPLE 1 (DETAILED) ..... 8-4
8.2.3 TEST EXAMPLE 2 ..... 8-9
8.2.4 TEST EXAMPLE 3 ..... 8-10
8.2.5 TEST EXAMPLE 4 ..... 8-11
8.3 INRUSH INHIBIT TEST
8.3.1 INRUSH INHIBIT TEST PROCEDURE ..... 8-12
8.4 OVEREXCITATION INHIBIT TEST
8.4.1 OVEREXCITATION INHIBIT TEST PROCEDURE ..... 8-13
8.5 COMMISSIONING TEST TABLES
8.5.1 DIFFERENTIAL RESTRAINT TESTS ..... 8-14
8.5.2 INRUSH INHIBIT TESTS ..... 8-14
8.5.3 OVEREXCITATION INHIBIT TESTS ..... 8-15
A. FLEXANALOG

PARAMETERS
A. 1 PARAMETER LIST
B.1.1 INTRODUCTION ................................................................................................ B-1
B.1.2 PHYSICAL LAYER ........................................................................................... B-1
B.1.3-DATA LINK LAYER B-1
B.1.4 CRC-16 ALGORITHM ..... B-2

## C. IEC 61850 COMMUNICATIONS

B. 2 MODBUS FUNCTION CODES
B.2.1 SUPPORTED FUNCTION CODES ..... B-3
B.2.2 READ ACTUAL VALUES OR SETTINGS (FUNCTION CODE 03/04H) ..... B-3
B.2.3 EXECUTE OPERATION (FUNCTION CODE 05H) ..... B-4
B.2.4 STORE SINGLE SETTING (FUNCTION CODE 06H) ..... B-4
B.2.5 STORE MULTIPLE SETTINGS (FUNCTION CODE 10H) ..... B-5
B.2.6 EXCEPTION RESPONSES ..... B-5
B. 3 FILE TRANSFERS
B.3.1 OBTAINING UR FILES VIA MODBUS ..... B-6
B.3.2 MODBUS PASSWORD OPERATION ..... B-7
B. 4 MEMORY MAPPING
B.4.1 MODBUS MEMORY MAP ..... B-8
B.4.2 DATA FORMATS ..... B-51
C. 1 INTRODUCTION
C.1.1 OVERVIEW ..... C-1
C.1.2 COMMUNICATION PROFILES ..... C-1
C.1.3 MMS PROTOCOL ..... C-1
C.1.4 PEER-TO-PEER COMMUNICATION ..... C-1
C.1.5 FILE SERVICES ..... C-1
C.1.6 COMMUNICATION SOFTWARE UTILITIES ..... C-2
C.1.7 NON-IEC 61850 DATA ..... C-2
C.1.8 TCP CONNECTION TIMING ..... C-2
C.1.9 LOGICAL NODE MMXU DATA MAPPING ..... C-2
C.1.10 LOGICAL NODE GGIO DATA MAPPING ..... C-2
C.1.11 OTHER LOGICAL NODE MAPPING ..... C-2
C. 2 ACSIACSI CONFORMANCE
C.2.1 ACSI BASIC CONFORMANCE STATEMENT ..... C-3
C.2.2 ACSI MODELS CONFORMANCE STATEMENT ..... C-3
C.2.3 ACSI SERVICES CONFORMANCE STATEMENT ..... C-4
C. 3 LOGICAL NODES
C.3.1 LOGICAL NODES TABLE ..... C-7
D. IEC 60870-5-104 COMMS.
D. 1 IEC 60870-5-104 PROTOCOL
D.1.1 INTEROPERABILITY DOCUMENT ..... D-1
D.1.2 POINT LIST ..... D-9
E. DNP COMMUNICATIONS
E. 1 DEVICE PROFILE DOCUMENT
E.1.1 DNP V3.00 DEVICE PROFILE ..... E-1
E.1.2 IMPLEMENTATION TABLE ..... E-4
E. 2 DNP POINT LISTS
E.2.1 BINARY INPUT POINTS ..... E-8
E.2.2 BINARY AND CONTROL RELAY OUTPUT ..... E-9
E.2.3 COUNTERS ..... E-10
E.2.4 ANALOG INPUTS ..... E-11
F. MISCELLANEOUS
F. 1 CHANGE NOTES
F.1.1 REVISION HISTORY ..... F-1
F.1.2 CHANGES TO THE T60 MANUAL ..... F-1
F. 2 ABBREVIATIONS
F.2.1 STANDARD ABBREVIATIONS ..... F-4
F. 3 WARRANTY

Please read this chapter to help guide you through the initial setup of your new relay.

Before attempting to install or use the relay, it is imperative that all WARNINGS and CAUTIONS in this manual are reviewed to help prevent personal injury, equipment damage, and/ or downtime.

- Open the relay packaging and inspect the unit for physical damage.
- View the rear nameplate and verify that the correct model has been ordered.

| 760 Transformer Management Relay <br> GE Multilin |  | RATINGS: |  | Model: <br> Mods: <br> Wiring Diagram <br> Inst. Manual: <br> Serial Number: <br> Firmware: <br> Mfg. Date: | T60H0OHCHF8FH6AM6BP8GX7A <br> 000 <br> 828749 <br> D <br> MAZB98000029 <br> 1998/01/05 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Technical Support: <br> Tel: (905) 294-6222 <br> Fax: (905) 201-2098 | http://www.GEindustrial.com/multilin |  | * Madain ${ }_{\text {Conada }}$ |  |  |

Figure 1-1: REAR NAMEPLATE (EXAMPLE)

- Ensure that the following items are included:
- Instruction Manual
- GE enerVista CD (includes the EnerVista UR Setup software and manuals in PDF format)
- mounting screws
- registration card (attached as the last page of the manual)
- Fill out the registration form and return to GE Multilin (include the serial number located on the rear nameplate).
- For product information, instruction manual updates, and the latest software updates, please visit the GE Multilin website at http://www.GEindustrial.com/multilin.

If there is any noticeable physical damage, or any of the contents listed are missing, please contact GE Multilin immediately.

## GE MULTILIN CONTACT INFORMATION AND CALL CENTER FOR PRODUCT SUPPORT:

GE Multilin
215 Anderson Avenue
Markham, Ontario
Canada L6E 1B3
TELEPHONE: (905) 294-6222, 1-800-547-8629 (North America only)
FAX: (905) 201-2098
E-MAIL: gemultilin@indsys.ge.com
HOME PAGE: http://www.GEindustrial.com/multilin

Historically, substation protection, control, and metering functions were performed with electromechanical equipment. This first generation of equipment was gradually replaced by analog electronic equipment, most of which emulated the singlefunction approach of their electromechanical precursors. Both of these technologies required expensive cabling and auxiliary equipment to produce functioning systems.
Recently, digital electronic equipment has begun to provide protection, control, and metering functions. Initially, this equipment was either single function or had very limited multi-function capability, and did not significantly reduce the cabling and auxiliary equipment required. However, recent digital relays have become quite multi-functional, reducing cabling and auxiliaries significantly. These devices also transfer data to central control facilities and Human Machine Interfaces using electronic communications. The functions performed by these products have become so broad that many users now prefer the term IED (Intelligent Electronic Device).
It is obvious to station designers that the amount of cabling and auxiliary equipment installed in stations can be even further reduced, to $20 \%$ to $70 \%$ of the levels common in 1990, to achieve large cost reductions. This requires placing even more functions within the IEDs.

Users of power equipment are also interested in reducing cost by improving power quality and personnel productivity, and as always, in increasing system reliability and efficiency. These objectives are realized through software which is used to perform functions at both the station and supervisory levels. The use of these systems is growing rapidly.

High speed communications are required to meet the data transfer rates required by modern automatic control and monitoring systems. In the near future, very high speed communications will be required to perform protection signaling with a performance target response time for a command signal between two IEDs, from transmission to reception, of less than 3 milliseconds. This has been established by the IEC 61850 standard.

IEDs with the capabilities outlined above will also provide significantly more power system data than is presently available, enhance operations and maintenance, and permit the use of adaptive system configuration for protection and control systems. This new generation of equipment must also be easily incorporated into automation systems, at both the station and enterprise levels. The GE Multilin Universal Relay (UR) has been developed to meet these goals.

## a) UR BASIC DESIGN

The UR is a digital-based device containing a central processing unit (CPU) that handles multiple types of input and output signals. The UR can communicate over a local area network (LAN) with an operator interface, a programming device, or another UR device.


Figure 1-2: UR CONCEPT BLOCK DIAGRAM
The CPU module contains firmware that provides protection elements in the form of logic algorithms, as well as programmable logic gates, timers, and latches for control features.
Input elements accept a variety of analog or digital signals from the field. The UR isolates and converts these signals into logic signals used by the relay.
Output elements convert and isolate the logic signals generated by the relay into digital or analog signals that can be used to control field devices.

## b) UR SIGNAL TYPES

The contact inputs and outputs are digital signals associated with connections to hard-wired contacts. Both 'wet' and 'dry' contacts are supported.
The virtual inputs and outputs are digital signals associated with UR-series internal logic signals. Virtual inputs include signals generated by the local user interface. The virtual outputs are outputs of FlexLogic ${ }^{\top M}$ equations used to customize the device. Virtual outputs can also serve as virtual inputs to FlexLogic ${ }^{\text {TM }}$ equations.
The analog inputs and outputs are signals that are associated with transducers, such as Resistance Temperature Detectors (RTDs).

The CT and VT inputs refer to analog current transformer and voltage transformer signals used to monitor AC power lines. The UR-series relays support 1 A and 5 A CTs.
The remote inputs and outputs provide a means of sharing digital point state information between remote UR-series devices. The remote outputs interface to the remote inputs of other UR-series devices. Remote outputs are FlexLogic ${ }^{\text {TM }}$ operands inserted into IEC 61850 GSSE and GOOSE messages.
The direct inputs and outputs provide a means of sharing digital point states between a number of UR-series IEDs over a dedicated fiber (single or multimode), RS422, or G. 703 interface. No switching equipment is required as the IEDs are connected directly in a ring or redundant (dual) ring configuration. This feature is optimized for speed and intended for pilotaided schemes, distributed logic applications, or the extension of the input/output capabilities of a single relay chassis.

## c) UR SCAN OPERATION

The UR-series devices operate in a cyclic scan fashion. The device reads the inputs into an input status table, solves the logic program (FlexLogic ${ }^{\text {TM }}$ equation), and then sets each output to the appropriate state in an output status table. Any resulting task execution is priority interrupt-driven.


Figure 1-3: UR-SERIES SCAN OPERATION
1.2.3 SOFTWARE ARCHITECTURE

The firmware (software embedded in the relay) is designed in functional modules which can be installed in any relay as required. This is achieved with Object-Oriented Design and Programming (OOD/OOP) techniques.
Object-Oriented techniques involve the use of 'objects' and 'classes'. An 'object' is defined as "a logical entity that contains both data and code that manipulates that data". A 'class' is the generalized form of similar objects. By using this concept, one can create a Protection Class with the Protection Elements as objects of the class such as Time Overcurrent, Instantaneous Overcurrent, Current Differential, Undervoltage, Overvoltage, Underfrequency, and Distance. These objects represent completely self-contained software modules. The same object-class concept can be used for Metering, Input/Output Control, HMI, Communications, or any functional entity in the system.

Employing OOD/OOP in the software architecture of the Universal Relay achieves the same features as the hardware architecture: modularity, scalability, and flexibility. The application software for any Universal Relay (e.g. Feeder Protection, Transformer Protection, Distance Protection) is constructed by combining objects from the various functionality classes. This results in a 'common look and feel' across the entire family of UR-series platform-based applications.

As described above, the architecture of the UR-series relays differ from previous devices. To achieve a general understanding of this device, some sections of Chapter 5 are quite helpful. The most important functions of the relay are contained in "elements". A description of the UR-series elements can be found in the Introduction to Elements section in Chapter 5. An example of a simple element, and some of the organization of this manual, can be found in the Digital Elements section. An explanation of the use of inputs from CTs and VTs is in the Introduction to AC Sources section in Chapter 5. A description of how digital signals are used and routed within the relay is contained in the Introduction to FlexLogic ${ }^{\text {™ }}$ section in Chapter 5.

The faceplate keypad and display or the EnerVista UR Setup software interface can be used to communicate with the relay. The EnerVista UR Setup software interface is the preferred method to edit settings and view actual values because the PC monitor can display more information in a simple comprehensible format.
The following minimum requirements must be met for the EnerVista UR Setup software to properly operate on a PC.

- Pentium class or higher processor (Pentium II 300 MHz or higher recommended)
- Windows 95, 98, 98SE, ME, NT 4.0 (Service Pack 4 or higher), 2000, XP
- Internet Explorer 4.0 or higher
- 128 MB of RAM ( 256 MB recommended)
- 200 MB of available space on system drive and 200 MB of available space on installation drive
- Video capable of displaying $800 \times 600$ or higher in high-color mode (16-bit color)
- RS232 and/or Ethernet port for communications to the relay

The following qualified modems have been tested to be compliant with the T60 and the EnerVista UR Setup software.

- US Robotics external 56K FaxModem 5686
- US Robotics external Sportster 56K X2
- PCTEL 2304WT V. 92 MDC internal modem

After ensuring the minimum requirements for using EnerVista UR Setup are met (see previous section), use the following procedure to install the EnerVista UR Setup from the enclosed GE enerVista CD.

1. Insert the GE enerVista CD into your CD-ROM drive.
2. Click the Install Now button and follow the installation instructions to install the no-charge enerVista software.
3. When installation is complete, start the enerVista Launchpad application.
4. Click the IED Setup section of the Launch Pad window.

5. In the enerVista Launch Pad window, click the Install Software button and select the "T60 Transformer Management Relay" from the Install Software window as shown below. Select the "Web" option to ensure the most recent software
release, or select "CD" if you do not have a web connection, then click the Check Now button to list software items for the T60.

6. Select the T60 software program and release notes (if desired) from the list and click the Download Now button to obtain the installation program.

7. enerVista Launchpad will obtain the installation program from the Web or CD. Once the download is complete, doubleclick the installation program to install the EnerVista UR Setup software.
8. Select the complete path, including the new directory name, where the EnerVista UR Setup will be installed.
9. Click on Next to begin the installation. The files will be installed in the directory indicated and the installation program will automatically create icons and add EnerVista UR Setup to the Windows start menu.
10. Click Finish to end the installation. The T60 device will be added to the list of installed IEDs in the enerVista Launchpad window, as shown below.

1.3.3 CONNECTING ENERVISTA UR SETUP WITH THE T60

This section is intended as a quick start guide to using the EnerVista UR Setup software. Please refer to the EnerVista UR Setup Help File and Chapter 4 of this manual for more information.

## a) CONFIGURING AN ETHERNET CONNECTION

Before starting, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay. To setup the relay for Ethernet communications, it will be necessary to define a Site, then add the relay as a Device at that site.

1. Install and start the latest version of the EnerVista UR Setup software (available from the GE enerVista CD or online from http://www.GEindustrial.com/multilin (see previous section for installation instructions).
2. Select the "UR" device from the enerVista Launchpad to start EnerVista UR Setup.
3. Click the Device Setup button to open the Device Setup window, then click the Add Site button to define a new site.
4. Enter the desired site name in the "Site Name" field. If desired, a short description of site can also be entered along with the display order of devices defined for the site. Click the OK button when complete.
5. The new site will appear in the upper-left list in the EnerVista UR Setup window. Click on the new site name and then click the Device Setup button to re-open the Device Setup window.
6. Click the Add Device button to define the new device.
7. Enter the desired name in the "Device Name" field and a description (optional) of the site.
8. Select "Ethernet" from the Interface drop-down list. This will display a number of interface parameters that must be entered for proper Ethernet functionality.

- Enter the relay IP address (from SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ NETWORK $\Rightarrow$ IP ADDRESS) in the "IP Address" field.
- Enter the relay Modbus address (from the PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ MODBUS PROTOCOL $\Rightarrow$ MODbus slave address setting) in the "Slave Address" field.
- Enter the Modbus port address (from the PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ MODBUS PROTOCOL $\Rightarrow \sqrt{ }$ MODBUS TCP PORT NUMBER setting) in the "Modbus Port" field.

9. Click the Read Order Code button to connect to the T60 device and upload the order code. If an communications error occurs, ensure that the three EnerVista UR Setup values entered in the previous step correspond to the relay setting values.
10. Click OK when the relay order code has been received. The new device will be added to the Site List window (or Online window) located in the top left corner of the main EnerVista UR Setup window.
The Site Device has now been configured for Ethernet communications. Proceed to Section c) below to begin communications.

## b) CONFIGURING AN RS232 CONNECTION

Before starting, verify that the RS232 serial cable is properly connected to the RS232 port on the front panel of the relay.

1. Install and start the latest version of the EnerVista UR Setup software (available from the GE enerVista CD or online from http://www. GEindustrial.com/multilin.
2. Select the Device Setup button to open the Device Setup window and click the Add Site button to define a new site.
3. Enter the desired site name in the "Site Name" field. If desired, a short description of site can also be entered along with the display order of devices defined for the site. Click the OK button when complete.
4. The new site will appear in the upper-left list in the EnerVista UR Setup window. Click on the new site name and then click the Device Setup button to re-open the Device Setup window.
5. Click the Add Device button to define the new device.
6. Enter the desired name in the "Device Name" field and a description (optional) of the site.
7. Select "Serial" from the Interface drop-down list. This will display a number of interface parameters that must be entered for proper serial communications.

- Enter the relay slave address and COM port values (from the SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ SERIAL PORTS menu) in the "Slave Address" and "COM Port" fields.
- Enter the physical communications parameters (baud rate and parity settings) in their respective fields.

8. Click the Read Order Code button to connect to the T60 device and upload the order code. If an communications error occurs, ensure that the EnerVista UR Setup serial communications values entered in the previous step correspond to the relay setting values.
9. Click "OK" when the relay order code has been received. The new device will be added to the Site List window (or Online window) located in the top left corner of the main EnerVista UR Setup window.
The Site Device has now been configured for RS232 communications. Proceed to Section c) Connecting to the Relay below to begin communications.

## c) CONNECTING TO THE RELAY

1. Open the Display Properties window through the Site List tree as shown below:

2. The Display Properties window will open with a status indicator on the lower left of the EnerVista UR Setup window.
3. If the status indicator is red, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay and that the relay has been properly setup for communications (steps $A$ and $B$ earlier).

If a relay icon appears in place of the status indicator, than a report (such as an oscillography or event record) is open. Close the report to re-display the green status indicator.
4. The Display Properties settings can now be edited, printed, or changed according to user specifications.

Refer to Chapter 4 in this manual and the EnerVista UR Setup Help File for more information about the using the EnerVista UR Setup software interface.

Please refer to Chapter 3: Hardware for detailed mounting and wiring instructions. Review all WARNINGS and CAUTIONS carefully.

The EnerVista UR Setup software communicates to the relay via the faceplate RS232 port or the rear panel RS485 / Ethernet ports. To communicate via the faceplate RS232 port, a standard "straight-through" serial cable is used. The DB-9 male end is connected to the relay and the DB-9 or DB-25 female end is connected to the PC COM1 or COM2 port as described in the CPU Communications Ports section of Chapter 3.


Figure 1-4: RELAY COMMUNICATIONS OPTIONS
To communicate through the T60 rear RS485 port from a PC RS232 port, the GE Multilin RS232/RS485 converter box is required. This device (catalog number F485) connects to the computer using a "straight-through" serial cable. A shielded twisted-pair (20, 22, or 24 AWG) connects the F485 converter to the T60 rear communications port. The converter terminals (,+- , GND) are connected to the T60 communication module (,,+- COM) terminals. Refer to the CPU Communications Ports section in Chapter 3 for option details. The line should be terminated with an R-C network (i.e. $120 \Omega, 1 \mathrm{nF}$ ) as described in the Chapter 3.

### 1.4.3 FACEPLATE DISPLAY

All messages are displayed on a $2 \times 20$ character vacuum fluorescent display to make them visible under poor lighting conditions. An optional liquid crystal display (LCD) is also available. Messages are displayed in English and do not require the aid of an instruction manual for deciphering. While the keypad and display are not actively being used, the display will default to defined messages. Any high priority event driven message will automatically override the default message and appear on the display.

Display messages are organized into 'pages' under the following headings: Actual Values, Settings, Commands, and Targets. The MENu key navigates through these pages. Each heading page is broken down further into logical subgroups.
The $\triangle$ MESSAGE $\square$ keys navigate through the subgroups. The $\Theta$ VALUE $\vartheta$ keys scroll increment or decrement numerical setting values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values may also be entered with the numeric keypad.

The . $\cdot$ key initiates and advance to the next character in text edit mode or enters a decimal point. The help key may be pressed at any time for context sensitive help messages. The ENTER key stores altered setting values.
1.5.2 MENU NAVIGATION

Press the MENU key to select the desired header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the MENU key advances through the main heading pages as illustrated below.


### 1.5.3 MENU HIERARCHY

The setting and actual value messages are arranged hierarchically. The header display pages are indicated by double scroll bar characters (■■), while sub-header pages are indicated by single scroll bar characters ( $\mathbf{\square}$ ). The header display pages represent the highest level of the hierarchy and the sub-header display pages fall below this level. The MESSAGE $\Delta$ and $\nabla$ keys move within a group of headers, sub-headers, setting values, or actual values. Continually pressing the MESSAGE key from a header display displays specific information for the header category. Conversely, continually pressing the MESSAGE key from a setting value or actual value display returns to the header display.

HIGHEST LEVEL


LOWEST LEVEL (SETTING VALUE)



The relay is defaulted to the "Not Programmed" state when it leaves the factory. This safeguards against the installation of a relay whose settings have not been entered. When powered up successfully, the Trouble LED will be on and the In Service LED off. The relay in the "Not Programmed" state will block signaling of any output relay. These conditions will remain until the relay is explicitly put in the "Programmed" state.
Select the menu message SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ INSTALLATION $\Rightarrow$ RELAY SETTINGS

> | RELAY SETTINGS: |
| :--- |
| Not Programmed |

To put the relay in the "Programmed" state, press either of the VALUE $\varnothing$ keys once and then press ENTER. The faceplate Trouble LED will turn off and the In Service LED will turn on. The settings for the relay can be programmed manually (refer to Chapter 5) via the faceplate keypad or remotely (refer to the EnerVista UR Setup Help file) via the EnerVista UR Setup software interface.

It is recommended that passwords be set up for each security level and assigned to specific personnel. There are two user password security access levels, COMMAND and SETTING:

## 1. COMMAND

The COMMAND access level restricts the user from making any settings changes, but allows the user to perform the following operations:

- change state of virtual inputs
- clear event records
- clear oscillography records
- operate user-programmable pushbuttons


## 2. SETTING

The SETTING access level allows the user to make any changes to any of the setting values.

Refer to the Changing Settings section in Chapter 4 for complete instructions on setting up security level passwords.

### 1.5.6 FLEXLOGIC ${ }^{\text {TM }}$ CUSTOMIZATION

FlexLogic ${ }^{\text {TM }}$ equation editing is required for setting up user-defined logic for customizing the relay operations. See the FlexLogic ${ }^{\top \mathrm{M}}$ section in Chapter 5 for additional details.

Templated tables for charting all the required settings before entering them via the keypad are available from the GE Multilin website at http://www. GEindustrial.com/multilin. Commissioning tests are also included in the Commissioning chapter of this manual.
The T60 requires a minimum amount of maintenance when it is commissioned into service. The T60 is a microprocessorbased relay and its characteristics do not change over time. As such no further functional tests are required.

Furthermore the T60 performs a number of ongoing self-tests and takes the necessary action in case of any major errors (see the Relay Self-Test section in Chapter 7 for details). However, it is recommended that maintenance on the T60 be scheduled with other system maintenance. This maintenance may involve the following.
In-service maintenance:

1. Visual verification of the analog values integrity such as voltage and current (in comparison to other devices on the corresponding system).
2. Visual verification of active alarms, relay display messages, and LED indications.
3. LED test.
4. Visual inspection for any damage, corrosion, dust, or loose wires.
5. Event recorder file download with further events analysis.

Out-of-service maintenance:

1. Check wiring connections for firmness.
2. Analog values (currents, voltages, RTDs, analog inputs) injection test and metering accuracy verification. Calibrated test equipment is required.
3. Protection elements setpoints verification (analog values injection or visual verification of setting file entries against relay settings schedule).
4. Contact inputs and outputs verification. This test can be conducted by direct change of state forcing or as part of the system functional testing.
5. Visual inspection for any damage, corrosion, or dust.
6. Event recorder file download with further events analysis.
7. LED Test and pushbutton continuity check.

Unscheduled maintenance such as during a disturbance causing system interruption:

1. View the event recorder and oscillography or fault report for correct operation of inputs, outputs, and elements.

If it is concluded that the relay or one of its modules is of concern, contact GE Multilin or one of its representatives for prompt service.

The T60 Transformer Management Relay is a microprocessor-based relay for protection of small, medium, and large threephase power transformers. The relay can be configured with a maximum of four three-phase current inputs and four ground current inputs, and can satisfy applications with transformer windings connected between two breakers, such as in a ring bus or in breaker-and-a-half configurations. The T60 performs magnitude and phase shift compensation internally, eliminating requirements for external CT connections and auxiliary CTs.

The Percent Differential element is the main protection device in the T60. Instantaneous Differential protection, Volts-perHertz, Restricted Ground Fault, and many current, voltage, and frequency-based protection elements are also incorporated. The T60 includes sixteen fully programmable universal comparators, or FlexElements ${ }^{\text {TM }}$, that provide additional flexibility by allowing the user to customize their own protection functions that respond to any signals measured or calculated by the relay.
The metering functions of the T60 include true RMS and phasors for currents and voltages, current harmonics and THD, symmetrical components, frequency, power, power factor, and energy.
Diagnostic features include an event recorder capable of storing 1024 time-tagged events, oscillography capable of storing up to 64 records with programmable trigger, content and sampling rate, and data logger acquisition of up to 16 channels, with programmable content and sampling rate. Diagnostic features include a sequence of records capable of storing 1024 time-tagged events. The internal clock used for time-tagging can be synchronized with an IRIG-B signal or via the SNTP protocol over the Ethernet port. This precise time stamping allows the sequence of events to be determined throughout the system. Events can also be programmed (via FlexLogic ${ }^{\text {TM }}$ equations) to trigger oscillography data capture which may be set to record the measured parameters before and after the event for viewing on a personal computer (PC). These tools significantly reduce troubleshooting time and simplify report generation in the event of a system fault.

A faceplate RS232 port may be used to connect to a PC for the programming of settings and the monitoring of actual values. A variety of communications modules are available. Two rear RS485 ports allow independent access by operating and engineering staff. All serial ports use the Modbus ${ }^{\circledR}$ RTU protocol. The RS485 ports may be connected to system computers with baud rates up to 115.2 kbps . The RS232 port has a fixed baud rate of 19.2 kbps . Optional communications modules include a 10BaseF Ethernet interface which can be used to provide fast, reliable communications in noisy environments. Another option provides two 10BaseF fiber optic ports for redundancy. The Ethernet port supports IEC 61850, Modbus ${ }^{\circledR} /$ TCP, and TFTP protocols, and allows access to the relay via any standard web browser (T60 web pages). The IEC 60870-5-104 protocol is supported on the Ethernet port. DNP 3.0 and IEC 60870-5-104 cannot be enabled at the same time.
The T60 IEDs use flash memory technology which allows field upgrading as new features are added. The following Single Line Diagram illustrates the relay functionality using ANSI (American National Standards Institute) device numbers.

Table 2-1: DEVICE NUMBERS AND FUNCTIONS

| DEVICE <br> NUMBER | FUNCTION |
| :--- | :--- |
| 24 | Volts Per Hertz |
| 27 | Phase Undervoltage |
| $27 X$ | Auxiliary Undervoltage |
| $50 / 87$ | Instantaneous Differential Overcurrent |
| $50 G$ | Ground Instantaneous Overcurrent |
| 50 N | Neutral Instantaneous Overcurrent |
| 50 P | Phase Instantaneous Overcurrent |
| 51 G | Ground Time Overcurrent |
| 51 N | Neutral Time Overcurrent |
| 51 P | Phase Time Overcurrent |


| DEVICE <br> NUMBER | FUNCTION |
| :--- | :--- |
| 59N | Neutral Overvoltage |
| $59 P$ | Phase Overvoltage |
| 59 X | Auxiliary Overvoltage |
| 67 N | Neutral Directional Overcurrent |
| 67 P | Phase Directional Overcurrent |
| 810 | Overfrequency |
| 81 U | Underfrequency |
| 87 G | Restricted Ground Fault |
| 87 T | Transformer Differential |



Figure 2-1: SINGLE LINE DIAGRAM

Table 2-2: OTHER DEVICE FUNCTIONS

| FUNCTION |
| :--- |
| Breaker Arcing Current ${ }^{2} \mathrm{t}$ |
| Contact Inputs (up to 96) |
| Contact Outputs (up to 64) |
| Control Pushbuttons |
| Data Logger |
| Digital Counters (8) |
| Digital Elements (48) |
| Direct Inputs/Outputs (32) |
| DNP 3.0 or IEC 60870-5-104 Protocol |
| Ethernet Global Data (EGD) Protocol |
| Event Recorder |
| FlexElements |


| FUNCTION |
| :--- |
| FlexLogic ${ }^{\text {TM }}$ Equations |
| IEC 61850 Communications |
| Metering:Current, Voltage, Power, <br> Power Factor, Energy, <br> Frequency, Harmonics, THD |
| Modbus Communications |
| Modbus User Map |
| Non-Volatile Latches |
| Non-Volatile Selector Switch |
| Oscillography |
| Setting Groups (6) |
| Time Synchronization over SNTP |


| FUNCTION |
| :--- |
| Transducer Inputs/Outputs |
| Transformer Aging Factor |
| Transformer Hottest-Spot Temperature |
| Transformer Loss-of-Life |
| User Definable Displays |
| User Programmable Fault Reports |
| User Programmable LEDs |
| User Programmable Pushbuttons |
| User Programmable Self-Tests |
| Virtual Inputs (64) |
| Virtual Outputs (96) |

The relay is available as a 19 -inch rack horizontal mount unit or a reduced size $(3 / 4)$ vertical mount unit, and consists of the following modules: power supply, CPU, CT/VT, digital input/output, transducer input/output. Each of these modules can be supplied in a number of configurations specified at the time of ordering. The information required to completely specify the relay is provided in the following table (see Chapter 3 for full details of relay modules).

Table 2-3: T60 ORDER CODES


The order codes for replacement modules to be ordered separately are shown in the following table. When ordering a replacement CPU module or faceplate, please provide the serial number of your existing unit.
Table 2-4: ORDER CODES FOR REPLACEMENT MODULES

|  |  |  |
| :---: | :---: | :---: |
| POWER SUPPLY (redundant supply only available in horizontal units; must be same type as main supply) | 1 H | $125 / 250 \mathrm{~V}$ AC/DC |
|  | 1 L | 24 to 48 V (DC only) |
|  | RH | redundant 24 to 48 V (DC only) |
| CPU | 9E | RS485 and RS485 (ModBus RTU, DNP 3.0) |
|  | 9G | RS485 and 10Base-F (Ethernet, Modbus TCP/IP, DNP 3.0) |
|  | 9 H | RS485 and Redundant 10Base-F (Ethernet, ModBus TCP/IP, DNP 3.0) |
|  | 9 J | RS485 and multi-mode ST 100Base-FX |
|  | 9K | RS485 and multi-mode ST redundant 100Base-FX |
|  | 9L | RS485 and single mode SC 100Base-FX |
|  | 9 M | RS485 and single mode SC redundant 100Base-FX |
|  | 9 N | RS485 and 10/100Base-T |
|  | 9 P | RS485 and single mode ST 100Base-FX |
|  | 9 P | RS485 and single mode ST redundant 100Base-FX |
| FACEPLATEIDISPLAY | 3 C | Horizontal faceplate with keypad and English display |
|  | 3 P | Horizontal faceplate with keypad, user-programmable pushbuttons, and English display |
|  | 3R | Horizontal faceplate with keypad and Russian display |
|  | 3 S | Horizontal faceplate with keypad, user-programmable pushbuttons, and Russian display |
|  | 3A | Horizontal faceplate with keypad and Chinese display |
|  | 3B | Horizontal faceplate with keypad, user-programmable pushbuttons, and Chinese display |
|  | 3D | Horizontal faceplate with keypad and French display |
|  | 3G | Horizontal faceplate with keypad, user-programmable pushbuttons, and French display |
|  | 3F | Vertical faceplate with keypad and English display |
| DIGITAL INPUTS/OUTPUTS | 4A | 4 Solid-State (no monitoring) MOSFET outputs |
|  | 4B | 4 Solid-State (voltage with optional current) MOSFET outputs |
|  | 4 C | 4 Solid-State (current with optional voltage) MOSFET outputs |
|  | 4D | 16 digital inputs with Auto-Burnishing |
|  | 4L | 14 Form-A (no monitoring) Latching outputs |
|  | 67 | 8 Form-A (no monitoring) outputs |
|  | 6A | 2 Form-A (voltage with optional current) and 2 Form-C outputs, 8 digital inputs |
|  | 6B | 2 Form-A (voltage with optional current) and 4 Form-C outputs, 4 digital inputs |
|  | 6C | 8 Form-C outputs |
|  | 6D | 16 digital inputs |
|  | 6 E | 4 Form-C outputs, 8 digital inputs |
|  | 6F | 8 Fast Form-C outputs |
|  | 6G | 4 Form-A (voltage with optional current) outputs, 8 digital inputs |
|  | 6 H | 6 Form-A (voltage with optional current) outputs, 4 digital inputs |
|  | 6K | 4 Form-C and 4 Fast Form-C outputs |
|  | 6L | 2 Form-A (current with optional voltage) and 2 Form-C outputs, 8 digital inputs |
|  | 6M | 2 Form-A (current with optional voltage) and 4 Form-C outputs, 4 digital inputs |
|  | 6 N | 4 Form-A (current with optional voltage) outputs, 8 digital inputs |
|  | 6P | 6 Form-A (current with optional voltage) outputs, 4 digital inputs |
|  | 6R | 2 Form-A (no monitoring) and 2 Form-C outputs, 8 digital inputs |
|  | 6 S | 2 Form-A (no monitoring) and 4 Form-C outputs, 4 digital inputs |
|  | 6 T | 4 Form-A (no monitoring) outputs, 8 digital inputs |
|  | 6 U | 6 Form-A (no monitoring) outputs, 4 digital inputs |
| CTIVT <br> MODULES <br> (NOT AVAILABLE FOR THE C30) | 8 F | Standard $4 \mathrm{CT} / 4 \mathrm{VT}$ |
|  | 8 G | Sensitive Ground 4CT/4VT |
|  | 8 H | Standard 8CT |
|  | 8 J | Sensitive Ground 8CT |
| UR INTER-RELAY COMMUNICATIONS | 2A | C37.94SM, 1300nm single-mode, ELED, 1 channel single-mode |
|  | 2B | C37.94SM, 1300nm single-mode, ELED, 2 channel single-mode |
|  | 72 | 1550 nm , single-mode, LASER, 1 Channel |
|  | 73 | 1550 nm , single-mode, LASER, 2 Channel |
|  | 74 | Channel 1 - RS422; Channel $2-1550 \mathrm{~nm}$, single-mode, LASER |
|  | 75 | Channel 1-G.703; Channel 2 -1550 nm, Single-mode LASER |
|  | 76 | IEEE C37.94, 820 nm , multimode, LED, 1 Channel |
|  | 77 | IEEE C37.94, 820 nm , multimode, LED, 2 Channels |
|  | 7A | 820 nm , multi-mode, LED, 1 Channel |
|  | 7B | 1300 nm , multi-mode, LED, 1 Channel |
|  | 7 C | 1300 nm , single-mode, ELED, 1 Channel |
|  | 7D | 1300 nm , single-mode, LASER, 1 Channel |
|  | 7E | Channel 1-G.703; Channel 2 - 820 nm , multi-mode |
|  | 7F | Channel 1-G.703; Channel 2-1300 nm, multi-mode |
|  | 7G | Channel 1-G.703; Channel 2-1300 nm, single-mode ELED |
|  | 7H | 820 nm , multi-mode, LED, 2 Channels |
|  | 71 | 1300 nm , multi-mode, LED, 2 Channels |
|  | 7 J | 1300 nm , single-mode, ELED, 2 Channels |
|  | 7K | 1300 nm , single-mode, LASER, 2 Channels |
|  | 7L | Channel 1-RS422; Channel 2-820 nm, multi-mode, LED |
|  | 7M | Channel 1-RS422; Channel 2-1300 nm, multi-mode, LED |
|  | 7N | Channel 1-RS422; Channel $2-1300 \mathrm{~nm}$, single-mode, ELED |
|  | 7P | Channel 1-RS422; Channel $2-1300 \mathrm{~nm}$, single-mode, LASER |
|  | 7 C | Channel 1-G.703; Channel 2-1300 nm, single-mode LASER |
|  | 7R | G.703, 1 Channel |
|  | 7 S | G.703, 2 Channels |
|  | 7 T | RS422, 1 Channel |
|  | 7W | RS422, 2 Channels |
| TRANSDUCER INPUTSIOUTPUTS | 5A | 4 dcmA inputs, 4 dcmA outputs (only one 5A module is allowed) |
|  | 5 C | 8 RTD inputs |
|  | 5D | 4 RTD inputs, 4 dcmA outputs (only one 5D module is allowed) |
|  | 5E | 4 dcmA inputs, 4 RTD inputs |
|  | 5F | 8 dcmA inputs |

### 2.2.1 PROTECTION ELEMENTS

The operating times below include the activation time of a trip rated Form-A output contact unless otherwise indicated. FlexLogic ${ }^{\text {TM }}$ operands of a given element are 4 ms faster. This should be taken into account when using FlexLogic ${ }^{\text {TM }}$ to interconnect with other protection or control elements of the relay, building FlexLogic ${ }^{\text {TM }}$ equations, or interfacing with other IEDs or power system devices via communications or different output contacts.

## PERCENT DIFFERENTIAL

Characteristic: $\quad$ Differential Restraint pre-set
Number of zones: 2
Minimum pickup: $\quad 0.05$ to 1.00 pu in steps of 0.001
Slope 1 range: $\quad 15$ to $100 \%$ in steps of $1 \%$
Slope 2 range: $\quad 50$ to $100 \%$ in steps of $1 \%$
Kneepoint 1: 1.0 to 2.0 pu in steps of 0.0001

Kneepoint 2: $\quad 2.0$ to 30.0 pu in steps of 0.0001
$2^{\text {nd }}$ harmonic inhibit level: 1.0 to $40.0 \%$ in steps of 0.1
$2^{\text {nd }}$ harmonic inhibit function: Adaptive, Traditional, Disabled
$2^{\text {nd }}$ harmonic inhibit mode: Per-phase, 2-out-of-3, Average
$5^{\text {th }}$ harmonic inhibit range: 1.0 to $40.0 \%$ in steps of 0.1
Operate times:
Harmonic inhibits selected: 20 to 30 ms at 60 Hz ; 20 to 35 ms at 50 Hz
No harmonic inhibits selected: 5 to 20 ms
Dropout level: $\quad 97$ to $98 \%$ of pickup
Level accuracy: $\quad \pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greater)

## INSTANTANEOUS DIFFERENTIAL

Pickup level: $\quad 2.00$ to 30.00 pu in steps of 0.01
Dropout level:
Level accuracy:
Operate time: $\quad<20 \mathrm{~ms}$ at $3 \times$ pickup at 60 Hz

## RESTRICTED GROUND FAULT

Pickup:
Dropout:
Slope:
Pickup delay:
Dropout delay:
Operate time:
0.000 to 30.000 pu in steps of 0.001

97 to $98 \%$ of Pickup
0 to $100 \%$ in steps of $1 \%$
0 to 600.00 s in steps of 0.01
0 to 600.00 s in steps of 0.01
<1 power system cycle

97 to $98 \%$ of pickup
$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greater)

## PHASE/NEUTRAL/GROUND TOC

Current:
Phasor or RMS
Pickup level:
Dropout level:
Level accuracy:
for 0.1 to $2.0 \times \mathrm{CT}$ :
for $>2.0 \times \mathrm{CT}$ :
Curve shapes:

Curve multiplier:
Reset type:
Timing accuracy:

## Phasor or RMS

$97 \%$ to $98 \%$ of Pickup (whichever is greater) base curve) 0.01 (whichever is greater)

## PHASE/NEUTRALIGROUND IOC

0.000 to 30.000 pu in steps of 0.001
$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated $\pm 1.5 \%$ of reading $>2.0 \times$ CT rating
IEEE Moderately/Very/Extremely Inverse; IEC (and BS) A/B/C and Short Inverse; GE IAC Inverse, Short/Very/ Extremely Inverse; $I^{2}$ t; FlexCurves ${ }^{\text {TM }}$ (programmable); Definite Time ( 0.01 s
base curve) 00 to 600.00 in steps of

Instantaneous/Timed (per IEEE) Operate at $>1.03 \times$ actual Pickup $\pm 3.5 \%$ of operate time or $\pm 1 / 2$ cycle

| Pickup level: | 0.000 to 30.000 pu in steps of 0.001 |
| :---: | :---: |
| Dropout level: | 97 to $98 \%$ of pickup |
| Level accuracy: |  |
| 0.1 to $2.0 \times$ CT rating: | $\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greater) |
| > $2.0 \times$ CT rating | $\pm 1.5 \%$ of reading |
| Overreach: | <2\% |
| Pickup delay: | 0.00 to 600.00 s in steps of 0.01 |
| Reset delay: | 0.00 to 600.00 s in steps of 0.01 |
| Operate time: | $<16 \mathrm{~ms}$ at $3 \times$ Pickup at 60 Hz (Phase/Ground IOC) $<20 \mathrm{~ms}$ at $3 \times$ Pickup at 60 Hz (Neutral IOC) |
| Timing accuracy: | Operate at $1.5 \times$ Pickup <br> $\pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greater) |

## PHASE DIRECTIONAL OVERCURRENT

Relay connection: $\quad 90^{\circ}$ (quadrature)
Quadrature voltage:
$A B C$ phase seq.: phase $A\left(V_{B C}\right)$, phase $B\left(V_{C A}\right)$, phase $C\left(V_{A B}\right)$
ACB phase seq.: phase $A\left(V_{C B}\right)$, phase $B\left(V_{A C}\right)$, phase $C\left(V_{B A}\right)$
Polarizing voltage threshold: 0.000 to 3.000 pu in steps of 0.001
Current sensitivity threshold: 0.05 pu
Characteristic angle: 0 to $359^{\circ}$ in steps of 1
Angle accuracy: $\pm 2^{\circ}$
Operation time (FlexLogic ${ }^{\text {TM }}$ operands):
Tripping (reverse load, forward fault): $<12 \mathrm{~ms}$, typically
Blocking (forward load, reverse fault): $<8 \mathrm{~ms}$, typically

## NEUTRAL DIRECTIONAL OVERCURRENT

Directionality:
Polarizing: Polarizing voltage: Polarizing current: Operating current: Level sensing:

Restraint, $K$ : Characteristic angle: Limit angle:

Angle accuracy: Offset impedance: Pickup level: Dropout level: Operation time:

Co-existing forward and reverse
Voltage, Current, Dual
V_0 or VX
IG
I_0
$3 \times\left(\mid I \_0\right.$ ㅇ $-K \times\left|\left|\_1\right|\right)$, IG Independent for forward and reverse 0.000 to 0.500 in steps of 0.001 -90 to $90^{\circ}$ in steps of 1
40 to $90^{\circ}$ in steps of 1 , independent for forward and reverse
$\pm 2^{\circ}$
0.00 to $250.00 \Omega$ in steps of 0.01
0.002 to 30.000 pu in steps of 0.01

97 to 98\%
$<16 \mathrm{~ms}$ at $3 \times$ Pickup at 60 Hz

## PHASE UNDERVOLTAGE

Pickup level:
Dropout level:
Level accuracy:
Curve shapes:
Curve multiplier:
Timing accuracy:
0.000 to 3.000 pu in steps of 0.001 102 to $103 \%$ of pickup $\pm 0.5 \%$ of reading from 10 to 208 V GE IAV Inverse; Definite Time (0.1s base curve) Time dial $=0.00$ to 600.00 in steps of 0.01

Operate at < $0.90 \times$ pickup $\pm 3.5 \%$ of operate time or $\pm 4 \mathrm{~ms}$ (whichever is greater)

## AUXILIARY UNDERVOLTAGE

Pickup level:
Dropout level:
Level accuracy:
Curve shapes:
Curve multiplier:
Timing accuracy:
0.000 to 3.000 pu in steps of 0.001

102 to $103 \%$ of pickup
$\pm 0.5 \%$ of reading from 10 to 208 V
GE IAV Inverse, Definite Time
Time Dial $=0$ to 600.00 in steps of 0.01
$\pm 3 \%$ of operate time or $\pm 4 \mathrm{~ms}$ (whichever is greater)

## PHASE OVERVOLTAGE

## Voltage:

Pickup level:
Dropout level:
Level accuracy:
Pickup delay:
Operate time:
Timing accuracy:

Phasor only
0.000 to 3.000 pu in steps of 0.001 97 to $98 \%$ of Pickup
$\pm 0.5 \%$ of reading from 10 to 208 V 0.00 to 600.00 in steps of 0.01 s
$<30 \mathrm{~ms}$ at $1.10 \times$ Pickup at 60 Hz $\pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greater)

## NEUTRAL OVERVOLTAGE

Pickup level:
Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time:
0.000 to 1.250 pu in steps of 0.001 97 to $98 \%$ of Pickup
$\pm 0.5 \%$ of reading from 10 to 208 V 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 $\pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greater) $<30 \mathrm{~ms}$ at $1.10 \times$ Pickup at 60 Hz

## AUXILIARY OVERVOLTAGE

Pickup level:
Dropout level:
Level accuracy:
Pickup delay:
Reset delay:
Timing accuracy:
Operate time:
VOLTS PER HERTZ
Voltage: Phasor only
Pickup level: $\quad 0.80$ to 4.00 in steps of $0.01 \mathrm{pu} \mathrm{V} / \mathrm{Hz}$
Dropout level: $\quad 97$ to $98 \%$ of Pickup
Level accuracy: $\quad \pm 0.02 \mathrm{pu}$
Timing curves: Definite Time; Inverse A, B, and C,
FlexCurves ${ }^{\text {TM }} \mathrm{A}, \mathrm{B}, \mathrm{C}$, and D
TD Multiplier: $\quad 0.05$ to 600.00 s in steps of 0.01
Reset delay: $\quad 0.0$ to 1000.0 s in steps of 0.1
Timing accuracy: $\quad \pm 3 \%$ or $\pm 15$ cycles (whichever is greater)
TRANSFORMER HOTTEST-SPOT TEMPERATURE
Operating quantity: computed temperature in ${ }^{\circ} \mathrm{C}$
Pickup level: $\quad 50$ to $300^{\circ} \mathrm{C}$ in steps of 1
Dropout level: $\quad 1^{\circ} \mathrm{C}$ below pickup
Pickup delay: $\quad 0$ to 30000 min . in steps of 1

## TRANSFORMER AGING FACTOR

Operating quantity: computed aging acceleration factor (pu)
Pickup level: $\quad 1$ to 10 pu in steps of 0.1
Pickup delay: $\quad 0$ to 30000 min . in steps of 1

## TRANSFORMER LOSS OF LIFE

| Operating quantity: | computed accumulated transformer loss <br> of life, in hours |
| :--- | :--- |
| Pickup level: | 0 to 500000 hours in steps of 1 |

## UNDERFREQUENCY

Minimum signal: $\quad 0.10$ to 1.25 pu in steps of 0.01
Pickup level:
Dropout level:
Level accuracy:
Time delay:
Timer accuracy:
20.00 to 65.00 Hz in steps of 0.01

Pickup +0.03 Hz
$\pm 0.01 \mathrm{~Hz}$
0 to 65.535 s in steps of 0.001
$\pm 3 \%$ or 4 ms , whichever is greater
OVERFREQUENCY
Pickup level:
20.00 to 65.00 Hz in steps of 0.01

Dropout level:
Level accuracy:
Time delay:
Timer accuracy:
$\pm 3 \%$ or 4 ms , whichever is greater

## BREAKER ARCING CURRENT

Principle:
Initiation:
accumulates breaker duty $\left(1^{2} t\right)$ and measures fault duration
programmable per phase from any FlexLogic ${ }^{\text {TM }}$ operand
Compensation for auxiliary relays: 0 to 65.535 s in steps of 0.001
Alarm threshold: $\quad 0$ to 50000 kA2-cycle in steps of 1
Fault duration accuracy: 0.25 of a power cycle
Availability
1 per CT bank with a minimum of 2

## FLEXLOGIC ${ }^{\text {M }}$

Programming language: Reverse Polish Notation with graphical visualization (keypad programmable)

| Lines of code: | 512 |
| :--- | :--- |
| Internal variables: | 64 |
| Supported operations: | NOT, XOR, OR (2 to 16 inputs), AND (2 <br> to 16 inputs), NOR (2 to 16 inputs), |
|  | NAND (2 to 16 inputs), Latch (Reset <br> dominant), Edge Detectors, Timers <br> any logical variable, contact, or virtual <br> input |
| Inputs: | 32 | | Number of timers: | 0 to $60000(\mathrm{~ms}$, sec., min.) in steps of 1 |
| :--- | :--- |
| Pickup delay: | 0 to $60000(\mathrm{~ms}$, sec., min.) in steps of 1 |

## FLEXCURVES ${ }^{\text {™ }}$

Number:
Reset points:
Operate points:
Time delay:

## FLEX STATES

Number:

Programmability

FLEXELEMENTS ${ }^{\text {TM }}$
Number of elements: 16
Operating signal:
Operating signal mode:

## Operating mode:

Comparator direction:
Pickup Level:
Hysteresis:
Delta dt:
Pickup \& dropout delay: 0.000 to 65.535 s in steps of 0.001

## NON-VOLATILE LATCHES

Type:
Number:
Output:
Execution sequence: As input prior to protection, control, and FlexLogic ${ }^{\text {™ }}$

## USER-PROGRAMMABLE LEDs

| Number: | 48 plus Trip and Alarm |
| :--- | :--- |
| Programmability: | from any logical variable, contact, or vir- <br> tual input |
| Reset mode: | Self-reset or Latched |
| LED TEST |  |
| Initiation: | from any digital input or user-program- <br> mable condition |
| Number of tests: | 3, interruptible at any time <br> approximately 3 minutes |
| Duration of full test: | all LEDs on |
| Test sequence 1: | all LEDs off, one LED at a time on for 1 s |
| Test sequence 2: | all LEDs on, one LED at a time off for 1 s |

## CONTROL PUSHBUTTONS

Number of pushbuttons: 7
Operation: drive FlexLogic ${ }^{\text {TM }}$ operands

## OSCILLOGRAPHY

Maximum records:
Sampling rate: $\quad 64$ samples per power cycle
Triggers:

Data:

Data storage: In non-volatile memory

## EVENT RECORDER

Capacity:
Time-tag:
Triggers:

Data storage:
1024 events
to 1 microsecond
Any element pickup, dropout or operate Digital input change of state Digital output change of state Self-test events
In non-volatile memory

## USER-PROGRAMMABLE FAULT REPORT

Number of elements: 2
Pre-fault trigger: any FlexLogic ${ }^{\text {TM }}$ operand
Fault trigger: any FlexLogic ${ }^{\text {TM }}$ operand
Recorder quantities: 32 (any FlexAnalog value)
DATA LOGGER
Number of channels:
Parameters:
Sampling rate:
Trigger:
Mode:
Storage capacity:
1-second rate:
$\downarrow$
60-minute rate:

1 to 16
Any available analog actual value
15 to 3600000 ms in steps of 1
any FlexLogic ${ }^{\text {TM }}$ operand continuous or triggered ( NN is dependent on memory)
01 channel for NN days 16 channels for NN days $\downarrow$

01 channel for NN days 16 channels for NN days

## RMS CURRENT: PHASE, NEUTRAL, AND GROUND

Accuracy at

| 0.1 to $2.0 \times$ CT rating: | $\pm 0.25 \%$ of reading or $\pm 0.1 \%$ of rated <br> (whichever is greater) <br> $>2.0 \times$ CT rating: <br> $\pm 1.0 \%$ of reading |
| :--- | :--- |
| RMS VOLTAGE | $\pm 0.5 \%$ of reading from 10 to 208 V |
| Accuracy: |  |

REAL POWER (WATTS)
Accuracy: $\quad \pm 1.0 \%$ of reading at $-0.8<\mathrm{PF} \leq-1.0$ and $0.8<\mathrm{PF} \leq 1.0$

REACTIVE POWER (VARS)
Accuracy: $\quad \pm 1.0 \%$ of reading at $-0.2 \leq \mathrm{PF} \leq 0.2$

## APPARENT POWER (VA)

Accuracy: $\quad \pm 1.0 \%$ of reading
WATT-HOURS (POSITIVE AND NEGATIVE)

Accuracy:
Range:
Parameters:
Update rate:
$\pm 2.0 \%$ of reading $\pm 0$ to $2 \times 10^{9} \mathrm{MWh}$
3 -phase only

VAR-HOURS (POSITIVE AND NEGATIVE)
Accuracy:
Range:
Parameters:
Update rate:
$\pm 2.0 \%$ of reading $\pm 0$ to $2 \times 10^{9}$ Mvarh
3-phase only
50 ms

## CURRENT HARMONICS

Harmonics:
2nd to 25th harmonic: per phase, displayed as a $\%$ of $f_{1}$ (fundamental frequency phasor)
THD: per phase, displayed as a $\%$ of $f_{1}$

## Accuracy:

HARMONICS:

THD:

## FREQUENCY

Accuracy at

| $V=0.8$ to $1.2 \mathrm{pu}:$ | $\pm 0.01 \mathrm{~Hz}$ (when voltage signal is used |
| :--- | :--- |
|  | for frequency measurement) <br> $I=0.1$ to $0.25 \mathrm{pu}:$ <br> $\mathrm{I}>0.25 \mathrm{pu}:$ |
|  | $\pm 0.05 \mathrm{~Hz}$ |
|  | frequency measurement) |

DEMAND
Measurements:

Accuracy:

1. $f_{1}>0.4$ pu: $(0.20 \%+0.035 \% /$ harmonic $)$ of reading or $0.15 \%$ of $100 \%$, whichever is greater
2. $f_{1}<0.4$ pu: as above plus \%error of $f_{1}$ 1. $\mathrm{f}_{1}>0.4 \mathrm{pu}:(0.25 \%+0.035 \% /$ harmonic $)$ o reading or $0.20 \%$ of $100 \%$, whichever is greater
3. $f_{1}<0.4$ pu: as above plus \%error of $f_{1}$
$V=0.8$ to $1.2 \mathrm{pu}:$
$\mathrm{I}=0.1$ to $0.25 \mathrm{pu}:$
I > 0.25 pu :
mum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents $\pm 2.0 \%$

## AC CURRENT

| CT rated primary: | 1 to 50000 A |
| :--- | :--- |
| CT rated secondary: | 1 A or 5 A by connection |
| Nominal frequency: | 20 to 65 Hz <br> Relay burden: |
| Conversion range: | 0.2 VA at rated secondary |
| $\quad$Standard CT: <br> Sensitive Ground metrical |  |

Sensitive Ground module:
0.002 to $4.6 \times$ CT rating RMS symmetrical

Current withstand: 20 ms at 250 times rated
1 sec . at 100 times rated continuous at 3 times rated

## AC VOLTAGE

VT rated secondary: $\quad 50.0$ to 240.0 V
VT ratio: $\quad 1.00$ to 24000.00
Nominal frequency:
20 to 65 Hz
Relay burden:
< 0.25 VA at 120 V
Conversion range: 1 to 275 V
Voltage withstand: continuous at 260 V to neutral 1 min./hr at 420 V to neutral

## CONTACT INPUTS

| Dry contacts: | $1000 \Omega$ maximum |
| :--- | :--- |
| Wet contacts: | 300 V DC maximum |
| Selectable thresholds: | $17 \mathrm{~V}, 33 \mathrm{~V}, 84 \mathrm{~V}, 166 \mathrm{~V}$ |
| Tolerance: | $\pm 10 \%$ |

Contacts per common return: 4
Recognition time: $<1 \mathrm{~ms}$
Debounce time: $\quad 0.0$ to 16.0 ms in steps of 0.5
Continuous current draw: 3 mA (when energized)
CONTACT INPUTS WITH AUTO-BURNISHING
Dry contacts:
Wet contacts:
$1000 \Omega$ maximum
300 V DC maximum
Selectable thresholds: $17 \mathrm{~V}, 33 \mathrm{~V}, 84 \mathrm{~V}, 166 \mathrm{~V}$
Tolerance: $\pm 10 \%$
Contacts per common return: 2
Recognition time: $<1 \mathrm{~ms}$
Debounce time: $\quad 0.0$ to 16.0 ms in steps of 0.5
Continuous current draw: 3 mA (when energized)
Auto-burnish impulse current: 50 to 70 mA
Duration of auto-burnish impulse: 25 to 50 ms

DCMA INPUTS

| Current input (mA DC): | 0 to $-1,0$ to $+1,-1$ to $+1,0$ to 5,0 to 10 , 0 to 20, 4 to 20 (programmable) |
| :---: | :---: |
| Input impedance: | 379 ת $\pm 10 \%$ |
| Conversion range: | -1 to + 20 mA DC |
| Accuracy: | $\pm 0.2 \%$ of full scale |
| Type: | Passive |
| RTD INPUTS |  |
| Types (3-wire): | $100 \Omega$ Platinum, 100 \& $120 \Omega$ Nickel, 10 $\Omega$ Copper |
| Sensing current: | 5 mA |
| Range: | -50 to $+250^{\circ} \mathrm{C}$ |
| Accuracy: | $\pm 2^{\circ} \mathrm{C}$ |
| Isolation: | 36 V pk-pk |
| IRIG-B INPUT |  |
| Amplitude modulation: | 1 to 10 V pk-pk |
| DC shift: | TTL |
| Input impedance: | $22 \mathrm{k} \Omega$ |
| Isolation: | 2 kV |

## REMOTE INPUTS (MMS GOOSE)

Number of input points: 32, configured from 64 incoming bit pairs Number of remote devices:16

Default states on loss of comms.: On, Off, Latest/Off, Latest/On

## DIRECT INPUTS

Number of input points: 32
No. of remote devices: 16
Default states on loss of comms.: On, Off, Latest/Off, Latest/On
Ring configuration: Yes, No
Data rate: 64 or 128 kbps
CRC: 32-bit
CRC alarm:
Responding to: Rate of messages failing the CRC
Monitoring message count: 10 to 10000 in steps of 1
Alarm threshold: $\quad 1$ to 1000 in steps of 1
Unreturned message alarm:
Responding to: Rate of unreturned messages in the ring configuration
Monitoring message count: 10 to 10000 in steps of 1
Alarm threshold: 1 to 1000 in steps of 1

## TELEPROTECTION

Number of input points: 16
No. of remote devices: 3
Default states on loss of comms.: On, Off, Latest/Off, Latest/On
Ring configuration: No
Data rate: $\quad 64$ or 128 kbps
CRC: 32-bit

## LOW RANGE

Nominal DC voltage: 24 to 48 V
Min/max DC voltage: $20 / 60 \mathrm{~V}$
Voltage loss hold-up: 20 ms duration at nominal
NOTE: Low range is DC only.
HIGH RANGE
Nominal DC voltage
Min/max DC voltage
Nominal AC voltage
Min/max AC voltage:
125 to 250 V
88 / 300 V
100 to 240 V at $50 / 60 \mathrm{~Hz}$
$88 / 265 \mathrm{~V}$ at 25 to 100 Hz
Voltage loss hold-up: $\quad 200 \mathrm{~ms}$ duration at nominal

## ALL RANGES

Volt withstand:
Power consumption:
$2 \times$ Highest Nominal Voltage for 10 ms typical $=15$ to 20 W/VA maximum = $50 \mathrm{~W} / \mathrm{VA}$ contact factory for exact order code consumption

## INTERNAL FUSE

RATINGS
Low range power supply: $8 \mathrm{~A} / 250 \mathrm{~V}$
High range power supply: $4 \mathrm{~A} / 250 \mathrm{~V}$
INTERRUPTING CAPACITY
$\begin{array}{ll}\text { AC: } & 100000 \mathrm{~A} \text { RMS symmetrical } \\ \text { DC: } & 10000 \mathrm{~A}\end{array}$

## FORM-A RELAY

Make and carry for $0.2 \mathrm{~s}: 30 \mathrm{~A}$ as per ANSI C37.90
Carry continuous: 6 A
Break (DC inductive, L/R $=40 \mathrm{~ms}$ ):

| VOLTAGE | CURRENT |
| :---: | :---: |
| 24 V | 1 A |
| 48 V | 0.5 A |
| 125 V | 0.3 A |
| 250 V | 0.2 A |

Operate time:
Contact material: silver alloy

## LATCHING RELAY

Make and carry for 0.2 s : 30 A as per ANSI C37.90
Carry continuous: 6 A
Break at L/R of 40 ms : 0.25 A DC max.
Operate time: $<4 \mathrm{~ms}$
Contact material: silver alloy
Control: separate operate and reset inputs Control mode: operate-dominant or reset-dominant
FORM-A VOLTAGE MONITOR
Applicable voltage: approx. 15 to 250 V DC
Trickle current: approx. 1 to 2.5 mA

## FORM-A CURRENT MONITOR

Threshold current: approx. 80 to 100 mA

## FORM-C AND CRITICAL FAILURE RELAY

Make and carry for 0.2 s : 30 A as per ANSI C37.90
Carry continuous: 8 A
Break (DC inductive, L/R = 40 ms ):

| VOLTAGE | CURRENT |
| :---: | :---: |
| 24 V | 1 A |
| 48 V | 0.5 A |
| 125 V | 0.3 A |
| 250 V | 0.2 A |

Operate time:
Contact material:

## FAST FORM-C RELAY

Make and carry: $\quad$ 0.1 A max. (resistive load)
Minimum load impedance:

| INPUT <br> VOLTAGE | IMPEDANCE |  |
| :---: | :---: | :---: |
|  | 2 W RESISTOR | 1 W RESISTOR |
| 250 V DC | $20 \mathrm{~K} \Omega$ | $50 \mathrm{~K} \Omega$ |
| 120 V DC | $5 \mathrm{~K} \Omega$ | $2 \mathrm{~K} \Omega$ |
| 48 V DC | $2 \mathrm{~K} \Omega$ | $2 \mathrm{~K} \Omega$ |
| 24 V DC | $2 \mathrm{~K} \Omega$ | $2 \mathrm{~K} \Omega$ |

Note: values for 24 V and 48 V are the same due to a required 95\% voltage drop across the load impedance.
Operate time: $\quad<0.6 \mathrm{~ms}$
Internal Limiting Resistor: $100 \Omega, 2 \mathrm{~W}$
SOLID-STATE OUTPUT RELAY
Operate and release time: $<100 \mu \mathrm{~s}$
Maximum voltage: 265 V DC
Maximum continuous current: 5 A at $45^{\circ} \mathrm{C} ; 4 \mathrm{~A}$ at $65^{\circ} \mathrm{C}$
Make and carry:
for $0.2 \mathrm{~s}: \quad 30 \mathrm{~A}$ as per ANSI C37.90
for $0.03 \mathrm{~s} \quad 300 \mathrm{~A}$
Breaking capacity:

|  | UL508 | Utility application (autoreclose scheme) | Industrial application |
| :---: | :---: | :---: | :---: |
| Operations/ interval | $\begin{gathered} 5000 \text { ops / } \\ 1 \text { s-On, } 9 \text { s-Off } \end{gathered}$ | $\begin{gathered} \hline 5 \mathrm{ops} / \\ 0.2 \mathrm{~s} \text {-On, } \\ 0.2 \mathrm{~s} \text {-Off } \\ \text { within } 1 \\ \text { minute } \end{gathered}$ | $\begin{gathered} 10000 \mathrm{ops} / \\ 0.2 \mathrm{~s}-\mathrm{On}, \\ 30 \mathrm{~s} \text {-Off } \end{gathered}$ |
|  | $\begin{gathered} 1000 \text { ops } / \\ 0.5 \text { s-On, } 0.5 \text { s-Off } \end{gathered}$ |  |  |
| Break capability (0 to 250 V DC) | $\begin{gathered} 3.2 \mathrm{~A} \\ \mathrm{~L} / \mathrm{R}=10 \mathrm{~ms} \end{gathered}$ | $\begin{gathered} 10 \mathrm{~A} \\ \mathrm{~L} / \mathrm{R} \\ =40 \mathrm{~ms} \end{gathered}$ | $\begin{gathered} 10 \mathrm{~A} \\ \mathrm{~L} / \mathrm{R} \\ =40 \mathrm{~ms} \end{gathered}$ |
|  | $\begin{gathered} 1.6 \mathrm{~A} \\ \mathrm{~L} / \mathrm{R}=20 \mathrm{~ms} \end{gathered}$ |  |  |
|  | $\begin{gathered} 0.8 \mathrm{~A} \\ \mathrm{~L} / \mathrm{R} \stackrel{40 \mathrm{~ms}}{ } \end{gathered}$ |  |  |

## IRIG-B OUTPUT

Amplitude:
Maximum load:
Time delay:

Isolation:
CONTROL POWER EXTERNAL OUTPUT
(FOR DRY CONTACT INPUT)
Capacity:
100 mA DC at 48 V DC $\pm 300$ Vpk

REMOTE OUTPUTS (IEC 61850 GSSE/GOOSE)
Standard output points: 32
User output points: 32

## DIRECT OUTPUTS

Output points: 32
DCMA OUTPUTS
Range: $\quad-1$ to $1 \mathrm{~mA}, 0$ to $1 \mathrm{~mA}, 4$ to 20 mA
Max. load resistance: $12 \mathrm{k} \Omega$ for -1 to 1 mA range
$12 \mathrm{k} \Omega$ for 0 to 1 mA range $600 \Omega$ for 4 to 20 mA range
Accuracy:
$\pm 0.75 \%$ of full-scale for 0 to 1 mA range $\pm 0.5 \%$ of full-scale for -1 to 1 mA range
$\pm 0.75 \%$ of full-scale for 0 to 20 mA range
99\% Settling time to a step change: 100 ms
Isolation:
1.5 kV

Driving signal: any FlexAnalog quantity
Upper and lower limit for the driving signal: -90 to 90 pu in steps of 0.001

RS232
Front port:
RS485
1 or 2 rear ports:
Typical distance:
Isolation:
19.2 kbps, Modbus ${ }^{\circledR}$ RTU

Up to 115 kbps, Modbus ${ }^{\circledR}$ RTU, isolated together at 36 Vpk
1200 m
2 kV

ETHERNET (FIBER)

| PARAMETER | FIBER TYPE |  |  |
| :--- | :---: | :---: | :---: |
|  | 10MB MULTI- <br> MODE | 100MB MULTI- <br> MODE | 100MB SINGLE- <br> MODE |
| Wavelength | 820 nm | 1310 nm | 1310 nm |
| Connector | ST | ST | SC |
| Transmit power | -20 dBm | -20 dBm | -15 dBm |
| Receiver sensitivity | -30 dBm | -30 dBm | -30 dBm |
| Power budget | 10 dB | 10 dB | 15 dB |
| Maximum input <br> power | -7.6 dBm | -14 dBm | -7 dBm |
| Typical distance | 1.65 km | 2 km | 15 km |
| Duplex | full/half | full/half | full/half |
| Redundancy | yes | yes | yes |

## ETHERNET (COPPER)

Modes: $\quad 10 \mathrm{MB}, 10 / 100 \mathrm{MB}$ (auto-detect)
Connector: RJ45
SNTP clock synchronization error: <10 ms (typical)

SHIELDED TWISTED-PAIR INTERFACE OPTIONS

| INTERFACE TYPE | TYPICAL DISTANCE |
| :--- | :--- |
| RS422 | 1200 m |
| G.703 | 100 m |

RS422 distance is based on transmitter power and does not take into consideration the clock source provided by the user.
LINK POWER BUDGET

| EMITTER, <br> FIBER TYPE | TRANSMIT <br> POWER | RECEIVED <br> SENSITIVITY | POWER <br> BUDGET |
| :--- | :---: | :---: | :---: |
| 820 nm LED, <br> Multimode | -20 dBm | -30 dBm | 10 dB |
| 1300 nm LED, <br> Multimode | -21 dBm | -30 dBm | 9 dB |
| 1300 nm ELED, <br> Singlemode | -21 dBm | -30 dBm | 9 dB |
| 1300 nm Laser, <br> Singlemode | -1 dBm | -30 dBm | 29 dB |
| 1550 nm Laser, <br> Singlemode | +5 dBm | -30 dBm | 35 dB |

These Power Budgets are calculated from the manufacturer's worst-case transmitter power and worst case receiver sensitivity.

## MAXIMUM OPTICAL INPUT POWER

| EMITTER, FIBER TYPE | MAX. OPTICAL <br> INPUT POWER |
| :--- | :---: |
| 820 nm LED, Multimode | -7.6 dBm |
| 1300 nm LED, Multimode | -11 dBm |
| 1300 nm ELED, Singlemode | -14 dBm |
| 1300 nm Laser, Singlemode | -14 dBm |
| 1550 nm Laser, Singlemode | -14 dBm |

## TYPICAL LINK DISTANCE

| EMITTER TYPE | FIBER TYPE | CONNECTOR <br> TYPE | TYPICAL <br> DISTANCE |
| :--- | :--- | :---: | :---: |
| 820 nm LED | Multimode | ST | 1.65 km |
| 1300 nm LED | Multimode | ST | 3.8 km |
| 1300 nm ELED | Singlemode | ST | 11.4 km |
| 1300 nm Laser | Singlemode | ST | 64 km |
| 1550 nm Laser | Singlemode | ST | 105 km |

룬

Typical distances listed are based on the following assumptions for system loss. As actual losses will vary from one installation to another, the distance covered by your system may vary.

## CONNECTOR LOSSES (TOTAL OF BOTH ENDS) <br> ST connector $\quad 2 \mathrm{~dB}$

FIBER LOSSES

820 nm multimode
1300 nm multimode
1300 nm singlemode
1550 nm singlemode
Splice losses:
$3 \mathrm{~dB} / \mathrm{km}$
$1 \mathrm{~dB} / \mathrm{km}$
$0.35 \mathrm{~dB} / \mathrm{km}$
$0.25 \mathrm{~dB} / \mathrm{km}$
One splice every 2 km , at 0.05 dB loss per splice.

## SYSTEM MARGIN

3 dB additional loss added to calculations to compensate for all other losses.

Compensated difference in transmitting and receiving (channel asymmetry) channel delays using GPS satellite clock: 10 ms

## AMBIENT TEMPERATURES

| Operating: | -40 to $60^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Storage: | -40 to $80^{\circ} \mathrm{C}$ |

The LCD contrast may be impaired at temperatures less than $-20^{\circ} \mathrm{C}$.

## OTHER

Humidity (non-condensing): IEC 60068-2-30, 95\%, Variant 1, 6
days

Altitude: Up to 2000 m
Installation Category: II

|  |  |  |
| :--- | :--- | :--- |
| 2.2.11 TYPE TESTS |  |  |
| Electrical fast transient: | ANSI/IEEE C37.90.1 |  |
|  | IEC 61000-4-4 <br>  <br> IEC 60255-22-4 | Voltage dips/interruptions/variations: |
| IEC 61000-4-11 |  |  |

2.2.12 PRODUCTION TESTS

## THERMAL

Products go through an environmental test based upon an Accepted Quality Level (AQL) sampling process.

### 2.2.13 APPROVALS

## APPROVALS

CE:

| LVD 73/23/EEC: | IEC 1010-1 |
| :--- | :--- |
| EMC 81/336/EEC: | EN 50081-2, EN 50082-2 |

2.2.14 MAINTENANCE

## MOUNTING

Attach mounting brackets using 20 inch-pounds ( $\pm 2$ inch-pounds) of torque.


Units that are stored in a de-energized state should be powered up once per year, for one hour continuously, to avoid deterioration of electrolytic capacitors.

## CLEANING

Normally, cleaning is not required; but for situations where dust has accumulated on the faceplate display, a dry cloth can be used.

The relay is available as a 19-inch rack horizontal mount unit or as a reduced size ( $3 / 4$ ) vertical mount unit, with a removable faceplate. The modular design allows the relay to be easily upgraded or repaired by a qualified service person. The faceplate is hinged to allow easy access to the removable modules, and is itself removable to allow mounting on doors with limited rear depth. There is also a removable dust cover that fits over the faceplate, which must be removed when attempting to access the keypad or RS232 communications port.

The vertical and horizontal case dimensions are shown below, along with panel cutout details for panel mounting. When planning the location of your panel cutout, ensure that provision is made for the faceplate to swing open without interference to or from adjacent equipment.
The relay must be mounted such that the faceplate sits semi-flush with the panel or switchgear door, allowing the operator access to the keypad and the RS232 communications port. The relay is secured to the panel with the use of four screws supplied with the relay.


Figure 3-1: T60 VERTICAL MOUNTING AND DIMENSIONS


Figure 3-2: T60 VERTICAL SIDE MOUNTING INSTALLATION


Figure 3-3: T60 VERTICAL SIDE MOUNTING REAR DIMENSIONS


Figure 3-4: T60 HORIZONTAL MOUNTING AND DIMENSIONS

Module withdrawal and insertion may only be performed when control power has been removed from the unit. Inserting an incorrect module type into a slot may result in personal injury, damage to the unit or connected equipment, or undesired operation!
Proper electrostatic discharge protection (i.e. a static strap) must be used when coming in contact with modules while the relay is energized!

The relay, being modular in design, allows for the withdrawal and insertion of modules. Modules must only be replaced with like modules in their original factory configured slots. The faceplate can be opened to the left, once the sliding latch on the right side has been pushed up, as shown below. This allows for easy accessibility of the modules for withdrawal.


Figure 3-5: UR MODULE WITHDRAWALIINSERTION

- MODULE WITHDRAWAL: The ejector/inserter clips, located at the top and bottom of each module, must be pulled simultaneously to release the module for removal. Before performing this action, control power must be removed from the relay. Record the original location of the module to ensure that the same or replacement module is inserted into the correct slot. Modules with current input provide automatic shorting of external CT circuits.
- MODULE INSERTION: Ensure that the correct module type is inserted into the correct slot position. The ejector/ inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

All CPU modules except the 9E are equipped with 10Base-T or 10Base-F Ethernet connectors. These connectors must be individually disconnected from the module before it can be removed from the chassis.

The version 4.0 release of the T60 relay includes new hardware (CPU and CT/VT modules). The new CPU modules are specified with the following order codes: 9E, 9G, 9H, 9J, 9K, 9L, 9M, 9N, 9P, 9R. The new CT/VT modules are specified with the following order codes: $8 \mathrm{~F}, 8 \mathrm{G}, 8 \mathrm{H}, 8 \mathrm{~J}$.

The new CT/VT modules (8F, 8G, 8H, 8J) can only be used with new CPUs (9E, 9G, 9H, 9J, 9K, 9L, 9M, 9N, 9P, 9R); similarly, old CT/VT modules (8A, 8B, 8C, 8D) can only be used with old CPUs (9A, 9C, 9D). To prevent hardware mismatches, the new modules have blue labels and a warning sticker stating "Attn.: Ensure CPU and DSP module label colors are the same!". In the event that there is a mismatch between the CPU and CT/VT module, the relay will not function and a DSP ERROR or HARDWARE MISMATCH error will be displayed.
All other input/output modules are compatible with the new hardware. Firmware versions 4.0 x and higher are only compatible with the new CPU and CT/VT modules. Previous versions of the firmware ( 3.4 x and earlier) are only compatible with the older CPU and CT/VT modules.


Figure 3-6: REAR TERMINAL VIEW


Do not touch any rear terminals while the relay is energized!

The relay follows a convention with respect to terminal number assignments which are three characters long assigned in order by module slot position, row number, and column letter. Two-slot wide modules take their slot designation from the first slot position (nearest to CPU module) which is indicated by an arrow marker on the terminal block. See the following figure for an example of rear terminal assignments.


Figure 3-7: EXAMPLE OF MODULES IN F AND H SLOTS


Figure 3-8: TYPICAL WIRING DIAGRAM

The dielectric strength of the UR-series module hardware is shown in the following table:
Table 3-1: DIELECTRIC STRENGTH OF UR-SERIES MODULE HARDWARE

| MODULE TYPE | MODULE FUNCTION | TERMINALS |  | DIELECTRIC STRENGTH (AC) |
| :---: | :---: | :---: | :---: | :---: |
|  |  | FROM | TO |  |
| 1 | Power Supply | High (+); Low (+); (-) | Chassis | 2000 V AC for 1 minute |
| 1 | Power Supply | 48 V DC (+) and (-) | Chassis | 2000 V AC for 1 minute |
| 1 | Power Supply | Relay Terminals | Chassis | 2000 V AC for 1 minute |
| 2 | Reserved | N/A | N/A | N/A |
| 3 | Reserved | N/A | N/A | N/A |
| 4 | Reserved | N/A | N/A | N/A |
| 5 | Analog Inputs/Outputs | All except 8b | Chassis | $<50 \mathrm{~V}$ DC |
| 6 | Digital Inputs/Outputs | All | Chassis | 2000 V AC for 1 minute |
| 7 | G. 703 | All except 2b, 3a, 7b, 8a | Chassis | 2000 V AC for 1 minute |
|  | RS422 | All except 6a, 7b, 8a | Chassis | $<50 \mathrm{~V}$ DC |
| 8 | CT/VT | All | Chassis | 2000 V AC for 1 minute |
| 9 | CPU | All | Chassis | 2000 V AC for 1 minute |

Filter networks and transient protection clamps are used in the hardware to prevent damage caused by high peak voltage transients, radio frequency interference (RFI), and electromagnetic interference (EMI). These protective components can be damaged by application of the ANSI/IEEE C37.90 specified test voltage for a period longer than the specified one minute.

### 3.2.3 CONTROL POWER



## CONTROL POWER SUPPLIED TO THE RELAY MUST BE CONNECTED TO THE MATCHING POWER SUPPLY RANGE OF THE RELAY. IF THE VOLTAGE IS APPLIED TO THE WRONG TERMINALS, DAMAGE MAY OCCUR!

The T60 relay, like almost all electronic relays, contains electrolytic capacitors. These capacitors are well known to be subject to deterioration over time if voltage is not applied periodically. Deterioration can be avoided by powering the relays up once a year.

The power supply module can be ordered for two possible voltage ranges, with or without a redundant power option. Each range has a dedicated input connection for proper operation. The ranges are as shown below (see the Technical Specifications section of Chapter 2 for additional details):

LO range: 24 to 48 V (DC only) nominal
HI range: 125 to 250 V nominal
The power supply module provides power to the relay and supplies power for dry contact input connections.
The power supply module provides 48 V DC power for dry contact input connections and a critical failure relay (see the Typical Wiring Diagram earlier). The critical failure relay is a Form-C that will be energized once control power is applied and the relay has successfully booted up with no critical self-test failures. If on-going self-test diagnostic checks detect a critical failure (see the Self-Test Errors table in Chapter 7) or control power is lost, the relay will de-energize.
For high reliability systems, the T60 has a redundant option in which two T60 power supplies are placed in parallel on the bus. If one of the power supplies become faulted, the second power supply will assume the full load of the relay without any interruptions. Each power supply has a green LED on the front of the module to indicate it is functional. The critical fail relay of the module will also indicate a faulted power supply.
An LED on the front of the module shows the status of the power supply:

| LED INDICATION | POWER SUPPLY |
| :--- | :--- |
| ON | OK |
| ON / OFF CYCLING | Failure |
| OFF | Failure |



Figure 3-9: CONTROL POWER CONNECTION
3.2.4 CT/VT MODULES

A CT/VT module may have voltage inputs on Channels 1 through 4 inclusive, or Channels 5 through 8 inclusive. Channels 1 and 5 are intended for connection to Phase A, and are labeled as such in the relay. Channels 2 and 6 are intended for connection to Phase B, and are labeled as such in the relay. Channels 3 and 7 are intended for connection to Phase $C$ and are labeled as such in the relay. Channels 4 and 8 are intended for connection to a single phase source. If voltage, this channel is labelled the auxiliary voltage (VX). If current, this channel is intended for connection to a CT between a system neutral and ground, and is labelled the ground current (IG).

## a) CT INPUTS

## VERIFY THAT THE CONNECTION MADE TO THE RELAY NOMINAL CURRENT OF 1 A OR 5 A MATCHES THE SECONDARY RATING OF THE CONNECTED CTs. UNMATCHED CTs MAY RESULT IN EQUIPMENT DAMAGE OR INADEQUATE PROTECTION.

The CT/VT module may be ordered with a standard ground current input that is the same as the phase current inputs (Type 8F) or with a sensitive ground input (Type 8G) which is 10 times more sensitive (see the Technical Specifications section for additional details). Each AC current input has an isolating transformer and an automatic shorting mechanism that shorts the input when the module is withdrawn from the chassis. There are no internal ground connections on the current inputs. Current transformers with 1 to 50000 A primaries and 1 A or 5 A secondaries may be used.
CT connections for both ABC and ACB phase rotations are identical as shown in the Typical Wiring Diagram.
The exact placement of a zero-sequence CT so that ground fault current will be detected is shown below. Twisted pair cabling on the zero-sequence CT is recommended.


Figure 3-10: ZERO-SEQUENCE CORE BALANCE CT INSTALLATION
b) VT INPUTS

The phase voltage channels are used for most metering and protection purposes. The auxiliary voltage channel is used as input for the Synchrocheck and Volts/Hertz features.

| $\frac{0}{2}$ | $\frac{0}{2}$ | $\frac{0}{2}$ | $\begin{array}{\|c\|} \hline \underset{2}{N} \\ \underset{y}{\mid} \\ \hline \end{array}$ | $$ | $\begin{array}{\|c} 0 \\ \underset{2}{2} \end{array}$ | $\underset{2}{\text { M }}$ | $\begin{array}{\|c\|} \hline \text { N } \\ \mathrm{Z} \\ \hline \end{array}$ | $\begin{array}{\|c} 0 \\ m \\ 2 \end{array}$ | $\begin{array}{\|c} \underset{i}{8} \\ \hline \end{array}$ | $\stackrel{\circ}{2}$ | $\begin{array}{\|c} \hline 0 \\ 4 \\ 2 \end{array}$ | $\stackrel{\circ}{\circ}$ | $\begin{array}{\|c} \hline 0 \\ \text { م } \\ 2 \end{array}$ | $\begin{aligned} & 0 \\ & \hline 6 \\ & 2 \end{aligned}$ | $\begin{array}{\|l} \hline 0 \\ 0 \\ 2 \\ \hline \end{array}$ | $\stackrel{0}{2}$ | $\frac{0}{2}$ | $\begin{gathered} 0 \\ \hline \infty \\ 2 \end{gathered}$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\leq$ | $\frac{\square}{4}$ | $\begin{aligned} & \stackrel{\leftrightarrow}{0} \\ & \underline{0} \end{aligned}$ | $\underline{\square}$ | $\frac{\underline{\square}}{\underline{m}}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underline{0} \end{aligned}$ | $\bigcirc$ | - | - | $\bigcirc$ | $\overline{\overline{0}}$ | $\frac{1}{4}$ | $\ddagger$ | $\frac{\square}{9}$ | ¢ | - | $\bigcirc$ | $\stackrel{+}{>}$ | $\stackrel{\times}{>}$ |
|  | $\xrightarrow{1}$ |  |  | $\xrightarrow{7}$ |  |  |  |  |  | $\sqrt{\mid}$ |  | $\cdots$ |  | , |  | $\bigcirc$ |  |  |  |
| CURRENT INPUTS |  |  |  |  |  |  |  |  |  |  |  | VOLTAGE INPUTS |  |  |  |  |  |  |  |
| 8F / 8G |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



Figure 3-11: CT/VT MODULE WIRING
Wherever a tilde " " symbol appears, substitute with the Slot Position of the module.

Every digital input/output module has 24 terminal connections. They are arranged as three terminals per row, with eight rows in total. A given row of three terminals may be used for the outputs of one relay. For example, for Form-C relay outputs, the terminals connect to the normally open (NO), normally closed (NC), and common contacts of the relay. For a Form-A output, there are options of using current or voltage detection for feature supervision, depending on the module ordered. The terminal configuration for contact inputs is different for the two applications.

The digital inputs are grouped with a common return. The T60 has two versions of grouping: four inputs per common return and two inputs per common return. When a digital input/output module is ordered, four inputs per common is used. The four inputs per common allows for high-density inputs in combination with outputs, with a compromise of four inputs sharing one common. If the inputs must be isolated per row, then two inputs per common return should be selected (4D module).

The tables and diagrams on the following pages illustrate the module types ( 6 A , etc.) and contact arrangements that may be ordered for the relay. Since an entire row is used for a single contact output, the name is assigned using the module slot position and row number. However, since there are two contact inputs per row, these names are assigned by module slot position, row number, and column position.

## UR-SERIES FORM-A I SOLID STATE (SSR) OUTPUT CONTACTS:

Some Form-A/SSR outputs include circuits to monitor the DC voltage across the output contact when it is open, and the DC current through the output contact when it is closed. Each of the monitors contains a level detector whose output is set to logic "On = 1" when the current in the circuit is above the threshold setting. The voltage monitor is set to "On = 1" when the current is above about 1 to 2.5 mA , and the current monitor is set to "On = 1 " when the current exceeds about 80 to 100 mA . The voltage monitor is intended to check the health of the overall trip circuit, and the current monitor can be used to seal-in the output contact until an external contact has interrupted current flow. The block diagrams of the circuits are below above for the Form-A outputs with:
a) optional voltage monitor
b) optional current monitor
c) with no monitoring


Figure 3-12: FORM-A ISOLID STATE CONTACT FUNCTIONS

The operation of voltage and current monitors is reflected with the corresponding FlexLogic ${ }^{\text {TM }}$ operands (Cont Op \# Von, Cont Op \# Voff, Cont Op \# Ion, and Cont Op \# loff) which can be used in protection, control and alarm logic. The typical application of the voltage monitor is breaker trip circuit integrity monitoring; a typical application of the current monitor is seal-in of the control command. Refer to the Digital Elements section of Chapter 5 for an example of how Form-A/SSR contacts can be applied for breaker trip circuit integrity monitoring.


Relay contacts must be considered unsafe to touch when the unit is energized! If the relay contacts need to be used for low voltage accessible applications, it is the customer's responsibility to ensure proper insulation levels!

## 둔

## USE OF FORM-A/SSR OUTPUTS IN HIGH IMPEDANCE CIRCUITS

For Form-A/SSR output contacts internally equipped with a voltage measuring clrcuit across the contact, the circuit has an impedance that can cause a problem when used in conjunction with external high input impedance monitoring equipment such as modern relay test set trigger circuits. These monitoring circuits may continue to read the Form-A contact as being closed after it has closed and subsequently opened, when measured as an impedance.
The solution to this problem is to use the voltage measuring trigger input of the relay test set, and connect the Form-A contact through a voltage-dropping resistor to a DC voltage source. If the 48 V DC output of the power supply is used as a source, a $500 \Omega, 10 \mathrm{~W}$ resistor is appropriate. In this configuration, the voltage across either the Form-A contact or the resistor can be used to monitor the state of the output.
Wherever a tilde "~" symbol appears, substitute with the slot position of the module; wherever a number sign "\#" appears, substitute the contact number

When current monitoring is used to seal-in the Form-A/SSR contact outputs, the FlexLogic ${ }^{\text {TM }}$ operand driving the contact output should be given a reset delay of 10 ms to prevent damage of the output contact (in situations when the element initiating the contact output is bouncing, at values in the region of the pickup value).

Table 3-2: DIGITAL INPUT/OUTPUT MODULE ASSIGNMENTS

| $\sim 6 A$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT OR <br> INPUT |
| $\sim 1$ | Form-A |
| $\sim 2$ | Form-A |
| $\sim 3$ | Form-C |
| $\sim 4$ | Form-C |
| $\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$ | 2 Inputs |
| $\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$ | 2 Inputs |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |


| $\sim 6 \mathrm{~B}$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT OR <br> INPUT |
| $\sim 1$ | Form-A |
| $\sim 2$ | Form-A |
| $\sim 3$ | Form-C |
| $\sim 4$ | Form-C |
| $\sim 5$ | Form-C |
| $\sim 6$ | Form-C |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |


| $\sim 6 \mathrm{C}$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT |
| $\sim 1$ | Form-C |
| $\sim 2$ | Form-C |
| $\sim 3$ | Form-C |
| $\sim 4$ | Form-C |
| $\sim 5$ | Form-C |
| $\sim 6$ | Form-C |
| $\sim 7$ | Form-C |
| $\sim 8$ | Form-C |


| $\sim 6 \mathrm{D}$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT |
| $\sim 1 \mathrm{a}, \sim 1 \mathrm{c}$ | 2 Inputs |
| $\sim 2 \mathrm{a}, \sim 2 \mathrm{c}$ | 2 Inputs |
| $\sim 3 \mathrm{a}, \sim 3 \mathrm{c}$ | 2 Inputs |
| $\sim 4 \mathrm{a}, \sim 4 \mathrm{c}$ | 2 Inputs |
| $\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$ | 2 Inputs |
| $\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$ | 2 Inputs |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |


| $\sim 6 E$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT OR <br> INPUT |
| $\sim 1$ | Form-C |
| $\sim 2$ | Form-C |
| $\sim 3$ | Form-C |
| $\sim 4$ | Form-C |
| $\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$ | 2 Inputs |
| $\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$ | 2 Inputs |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |


| $\sim 6 F$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT |
| $\sim 1$ | Fast Form-C |
| $\sim 2$ | Fast Form-C |
| $\sim 3$ | Fast Form-C |
| $\sim 4$ | Fast Form-C |
| $\sim 5$ | Fast Form-C |
| $\sim 6$ | Fast Form-C |
| $\sim 7$ | Fast Form-C |
| $\sim 8$ | Fast Form-C |


| $\sim 6 \mathrm{G}$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT OR <br> INPUT |
| $\sim 1$ | Form-A |
| $\sim 2$ | Form-A |
| $\sim 3$ | Form-A |
| $\sim 4$ | Form-A |
| $\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$ | 2 Inputs |
| $\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$ | 2 Inputs |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |


| $\sim 6 \mathrm{H}$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT OR <br> INPUT |
| $\sim 1$ | Form-A |
| $\sim 2$ | Form-A |
| $\sim 3$ | Form-A |
| $\sim 4$ | Form-A |
| $\sim 5$ | Form-A |
| $\sim 6$ | Form-A |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |


| $\sim 6 \mathrm{~K}$ MODULE |  |
| :---: | :---: |
| TERMINAL |  |
| ASSIGNMENT | OUTPUT |
| $\sim 1$ | Form-C |
| $\sim 2$ | Form-C |
| $\sim 3$ | Form-C |
| $\sim 4$ | Form-C |
| $\sim 5$ | Fast Form-C |
| $\sim 6$ | Fast Form-C |
| $\sim 7$ | Fast Form-C |
| $\sim 8$ | Fast Form-C |


| $\sim 6 \mathrm{~L}$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT OR <br> INPUT |
| $\sim 1$ | Form-A |
| $\sim 2$ | Form-A |
| $\sim 3$ | Form-C |
| $\sim 4$ | Form-C |
| $\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$ | 2 Inputs |
| $\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$ | 2 Inputs |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |


| $\sim 6 \mathrm{M}$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT OR <br> INPUT |
| $\sim 1$ | Form-A |
| $\sim 2$ | Form-A |
| $\sim 3$ | Form-C |
| $\sim 4$ | Form-C |
| $\sim 5$ | Form-C |
| $\sim 6$ | Form-C |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |


| $\sim 6 N$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT OR <br> INPUT |
| $\sim 1$ | Form-A |
| $\sim 2$ | Form-A |
| $\sim 3$ | Form-A |
| $\sim 4$ | Form-A |
| $\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$ | 2 Inputs |
| $\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$ | 2 Inputs |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |


| $\sim 6 \mathrm{P}$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT OR <br> INPUT |
| $\sim 1$ | Form-A |
| $\sim 2$ | Form-A |
| $\sim 3$ | Form-A |
| $\sim 4$ | Form-A |
| $\sim 5$ | Form-A |
| $\sim 6$ | Form-A |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |


| $\sim 6 R$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT OR <br> INPUT |
| $\sim 1$ | Form-A |
| $\sim 2$ | Form-A |
| $\sim 3$ | Form-C |
| $\sim 4$ | Form-C |
| $\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$ | 2 Inputs |
| $\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$ | 2 Inputs |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |


| $\sim 6 \mathbf{6 S}$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT OR <br> INPUT |
| $\sim 1$ | Form-A |
| $\sim 2$ | Form-A |
| $\sim 3$ | Form-C |
| $\sim 4$ | Form-C |
| $\sim 5$ | Form-C |
| $\sim 6$ | Form-C |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |


| $\sim 6 T$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT OR <br> INPUT |
| $\sim 1$ | Form-A |
| $\sim 2$ | Form-A |
| $\sim 3$ | Form-A |
| $\sim 4$ | Form-A |
| $\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$ | 2 Inputs |
| $\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$ | 2 Inputs |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |


| $\sim 6 U$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT OR <br> INPUT |
| $\sim 1$ | Form-A |
| $\sim 2$ | Form-A |
| $\sim 3$ | Form-A |
| $\sim 4$ | Form-A |
| $\sim 5$ | Form-A |
| $\sim 6$ | Form-A |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |


| $\sim 67$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT |
| $\sim 1$ | Form-A |
| $\sim 2$ | Form-A |
| $\sim 3$ | Form-A |
| $\sim 4$ | Form-A |
| $\sim 5$ | Form-A |
| $\sim 6$ | Form-A |
| $\sim 7$ | Form-A |
| $\sim 8$ | Form-A |


| $\sim$ 4A MODULE |  |
| :---: | :---: |
| TERMINAL | OUTPUT |
| ASSIGNMENT |  |
| $\sim 1$ | Not Used |
| $\sim 2$ | Solid-State |
| $\sim 3$ | Not Used |
| $\sim 4$ | Solid-State |
| $\sim 5$ | Not Used |
| $\sim 6$ | Solid-State |
| $\sim 7$ | Not Used |
| $\sim 8$ | Solid-State |


| $\sim$ 4B MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT |
| $\sim 1$ | Not Used |
| $\sim 2$ | Solid-State |
| $\sim 3$ | Not Used |
| $\sim 4$ | Solid-State |
| $\sim 5$ | Not Used |
| $\sim 6$ | Solid-State |
| $\sim 7$ | Not Used |
| $\sim 8$ | Solid-State |


| $\sim 4 \mathrm{C}$ MODULE |  |
| :---: | :---: |
| TERMINAL | OUTPUT |
| ASSIGNMENT |  |
| $\sim 1$ | Not Used |
| $\sim 2$ | Solid-State |
| $\sim 3$ | Not Used |
| $\sim 4$ | Solid-State |
| $\sim 5$ | Not Used |
| $\sim 6$ | Solid-State |
| $\sim 7$ | Not Used |
| $\sim 8$ | Solid-State |


| $\sim 4 \mathrm{D}$ MODULE |  |
| :---: | :---: |
| TERMINAL <br> ASSIGNMENT | OUTPUT |
| $\sim 1 \mathrm{a}, \sim 1 \mathrm{c}$ | 2 Inputs |
| $\sim 2 \mathrm{a}, \sim 2 \mathrm{c}$ | 2 Inputs |
| $\sim 3 \mathrm{a}, \sim 3 \mathrm{c}$ | 2 Inputs |
| $\sim 4 \mathrm{a}, \sim 4 \mathrm{c}$ | 2 Inputs |
| $\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$ | 2 Inputs |
| $\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$ | 2 Inputs |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |


| $\sim 4 \mathrm{~L}$ MODULE |  |
| :---: | :---: |
| TERMINAL | OUTPUT |
| ASSIGNMENT |  |
| $\sim 1$ | 2 Outputs |
| $\sim 2$ | 2 Outputs |
| $\sim 3$ | 2 Outputs |
| $\sim 4$ | 2 Outputs |
| $\sim 5$ | 2 Outputs |
| $\sim 6$ | 2 Outputs |
| $\sim 7$ | 2 Outputs |
| $\sim 8$ | Not Used |





Figure 3-13: DIGITAL INPUT/OUTPUT MODULE WIRING (1 of 2)



827719D2-X1.CDR

Figure 3-14: DIGITAL INPUT/OUTPUT MODULE WIRING (2 of 2)
CORRECT POLARITY MUST BE OBSERVED FOR ALL CONTACT INPUT AND SOLID STATE OUTPUT CONNECTIONS FOR PROPER FUNCTIONALITY.

## 3 HARDWARE

## CONTACT INPUTS:

A dry contact has one side connected to Terminal B3b. This is the positive 48 V DC voltage rail supplied by the power supply module. The other side of the dry contact is connected to the required contact input terminal. Each contact input group has its own common (negative) terminal which must be connected to the DC negative terminal (B3a) of the power supply module. When a dry contact closes, a current of 1 to 3 mA will flow through the associated circuit.

A wet contact has one side connected to the positive terminal of an external DC power supply. The other side of this contact is connected to the required contact input terminal. In addition, the negative side of the external source must be connected to the relay common (negative) terminal of each contact input group. The maximum external source voltage for this arrangement is 300 V DC.
The voltage threshold at which each group of four contact inputs will detect a closed contact input is programmable as 17 V DC for 24 V sources, 33 V DC for 48 V sources, 84 V DC for 110 to 125 V sources, and 166 V DC for 250 V sources.
 Wherever a tilde " " symbol appears, substitute with the Slot Position of the module.

## CONTACT OUTPUTS:

Contact outputs may be ordered as Form-A or Form-C. The Form A contacts may be connected for external circuit supervision. These contacts are provided with voltage and current monitoring circuits used to detect the loss of DC voltage in the circuit, and the presence of DC current flowing through the contacts when the Form-A contact closes. If enabled, the current monitoring can be used as a seal-in signal to ensure that the Form-A contact does not attempt to break the energized inductive coil circuit and weld the output contacts.

There is no provision in the relay to detect a DC ground fault on 48 V DC control power external output. We recommend using an external DC supply.

## USE OF CONTACT INPUTS WITH AUTO-BURNISHING:

The contact inputs sense a change of the state of the external device contact based on the measured current. When external devices are located in a harsh industrial environment (either outdoor or indoor), their contacts can be exposed to various types of contamination. Normally, there is a thin film of insulating sulfidation, oxidation, or contaminates on the surface of the contacts, sometimes making it difficult or impossible to detect a change of the state. This film must be removed to establish circuit continuity - an impulse of higher than normal current can accomplish this.
The contact inputs with auto-burnish create a high current impulse when the threshold is reached to burn off this oxidation layer as a maintenance to the contacts. Afterwards the contact input current is reduced to a steady-state current. The impulse will have a 5 second delay after a contact input changes state.


Figure 3-16: CURRENT THROUGH CONTACT INPUTS WITH AUTO-BURNISHING
Regular contact inputs limit current to less than 3 mA to reduce station battery burden. In contrast, contact inputs with autoburnishing allow currents up to 50 to 70 mA at the first instance when the change of state was sensed. Then, within 25 to 50 ms , this current is slowly reduced to 3 mA as indicated above. The 50 to 70 mA peak current burns any film on the contacts, allowing for proper sensing of state changes. If the external device contact is bouncing, the auto-burnishing starts when external device contact bouncing is over.

Another important difference between the auto-burnishing input module and the regular input modules is that only two contact inputs have common ground, as opposed to four contact inputs sharing one common ground (refer to the Digital Input/ Output Module Wiring diagrams). This is beneficial when connecting contact inputs to separate voltage sources. Consequently, the threshold voltage setting is also defined per group of two contact inputs.

The auto-burnish feature can be disabled or enabled using the DIP switches found on each daughter card. There is a DIP switch for each contact, for a total of 16 inputs.


Figure 3-17: AUTO-BURNISH DIP SWITCHES
The auto-burnish circuitry has an internal fuse for safety purposes. During regular maintenance, the auto-burnish functionality can be checked using an oscilloscope.

Transducer input modules can receive input signals from external dcmA output transducers (dcmA In ) or resistance temperature detectors (RTD). Hardware and software is provided to receive signals from these external transducers and convert these signals into a digital format for use as required.
Transducer output modules provide DC current outputs in several standard dcmA ranges. Software is provided to configure virtually any analog quantity used in the relay to drive the analog outputs.

Every transducer input/output module has a total of 24 terminal connections. These connections are arranged as three terminals per row with a total of eight rows. A given row may be used for either inputs or outputs, with terminals in column "a" having positive polarity and terminals in column "c" having negative polarity. Since an entire row is used for a single input/ output channel, the name of the channel is assigned using the module slot position and row number.

Each module also requires that a connection from an external ground bus be made to Terminal 8b. The current outputs require a twisted-pair shielded cable, where the shield is grounded at one end only. The figure below illustrates the transducer module types (5A, 5C, 5D, 5E, and 5F) and channel arrangements that may be ordered for the relay.


Figure 3-18: TRANSDUCER INPUT/OUTPUT MODULE WIRING

A 9-pin RS232C serial port is located on the relay's faceplate for programming with a portable (personal) computer. All that is required to use this interface is a personal computer running the EnerVista UR Setup software provided with the relay. Cabling for the RS232 port is shown in the following figure for both 9 pin and 25 pin connectors.

The baud rate for this port is fixed at 19200 bps.

Front panel 9 pin RS232 Program port


Figure 3-19: RS232 FACEPLATE PORT CONNECTION

## a) OPTIONS

In addition to the RS232 port on the faceplate, the relay provides the user with two additional communication port(s) depending on the CPU module installed.


The CPU modules do not require a surge ground connection.

| CPU TYPE | COM1 | COM2 |
| :--- | :--- | :--- |
| 9E | RS485 | RS485 |
| 9G | 10Base-F and 10Base-T | RS485 |
| 9H | Redundant 10Base-F | RS485 |
| 9 J | 10Base-FX | RS485 |
| 9 K | Redundant 10Base-FX | RS485 |
| 9 L | 100Base-FX | RS485 |
| 9 M | Redundant 100Base-FX | RS485 |
| 9 N | 10/100Base-T | RS485 |
| 9 P | 100Base-FX | RS485 |
| $9 R$ | Redundant 100Base-FX | RS485 |




Figure 3-20: CPU MODULE COMMUNICATIONS WIRING

## b) RS485 PORTS

RS485 data transmission and reception are accomplished over a single twisted pair with transmit and receive data alternating over the same two wires. Through the use of these port(s), continuous monitoring and control from a remote computer, SCADA system or PLC is possible.

To minimize errors from noise, the use of shielded twisted pair wire is recommended. Correct polarity must also be observed. For instance, the relays must be connected with all RS485 " + " terminals connected together, and all RS485 " - " terminals connected together. The COM terminal should be connected to the common wire inside the shield, when provided. To avoid loop currents, the shield should be grounded at one point only. Each relay should also be daisy chained to the next one in the link. A maximum of 32 relays can be connected in this manner without exceeding driver capability. For larger systems, additional serial channels must be added. It is also possible to use commercially available repeaters to increase the number of relays on a single channel to more than 32 . Star or stub connections should be avoided entirely.

Lightning strikes and ground surge currents can cause large momentary voltage differences between remote ends of the communication link. For this reason, surge protection devices are internally provided at both communication ports. An isolated power supply with an optocoupled data interface also acts to reduce noise coupling. To ensure maximum reliability, all equipment should have similar transient protection devices installed.

Both ends of the RS485 circuit should also be terminated with an impedance as shown below.


Figure 3-21: RS485 SERIAL CONNECTION
c) 10BASE-FL AND 100BASE-FX FIBER OPTIC PORTS

## ENSURE THE DUST COVERS ARE INSTALLED WHEN THE FIBER IS NOT IN USE. DIRTY OR SCRATCHED CONNECTORS CAN LEAD TO HIGH LOSSES ON A FIBER LINK.

OBSERVING ANY FIBER TRANSMITTER OUTPUT MAY CAUSE INJURY TO THE EYE.

CAUTION
The fiber optic communication ports allow for fast and efficient communications between relays at 10 or 100 Mbps . Optical fiber may be connected to the relay supporting a wavelength of 820 nm in multi-mode or 1310 nm in multi-mode and singlemode. The 10 Mbps rate is available for CPU modules 9 G and $9 \mathrm{H} ; 100 \mathrm{Mbps}$ is available for modules $9 \mathrm{~J}, 9 \mathrm{~K}, 9 \mathrm{~L}$, and 9 M . The 9H, 9K and 9M modules have a second pair of identical optical fiber transmitter and receiver for redundancy.
The optical fiber sizes supported include $50 / 125 \mu \mathrm{~m}, 62.5 / 125 \mu \mathrm{~m}$ and $100 / 140 \mu \mathrm{~m}$ for 10 Mbps . The fiber optic port is designed such that the response times will not vary for any core that is $100 \mu \mathrm{~m}$ or less in diameter, $62.5 \mu \mathrm{~m}$ for 100 Mbps . For optical power budgeting, splices are required every 1 km for the transmitter/receiver pair. When splicing optical fibers, the diameter and numerical aperture of each fiber must be the same. In order to engage or disengage the ST type connector, only a quarter turn of the coupling is required.

## 3 HARDWARE

### 3.2 WIRING

IRIG-B is a standard time code format that allows stamping of events to be synchronized among connected devices within 1 millisecond. The IRIG time code formats are serial, width-modulated codes which can be either DC level shifted or amplitude modulated (AM). Third party equipment is available for generating the IRIG-B signal; this equipment may use a GPS satellite system to obtain the time reference so that devices at different geographic locations can also be synchronized.


The IRIG-B repeater provides an amplified DC-shift IRIG-B signal to other equipment. By using one IRIG-B serial connection, several UR-series relays can be synchronized. The IRIG-B repeater has a bypass function to maintain the time signal even when a relay in the series is powered down.


Figure 3-23: IRIG-B REPEATER

The T60 direct inputs/outputs feature makes use of the Type 7 series of communications modules. These modules are also used by the L90 Line Differential Relay for inter-relay communications. The direct input/output feature uses the communications channel(s) provided by these modules to exchange digital state information between relays. This feature is available on all UR-series relay models except for the L90 Line Differential relay.

The communications channels are normally connected in a ring configuration as shown below. The transmitter of one module is connected to the receiver of the next module. The transmitter of this second module is then connected to the receiver of the next module in the ring. This is continued to form a communications ring. The figure below illustrates a ring of four UR-series relays with the following connections: UR1-Tx to UR2-Rx, UR2-Tx to UR3-Rx, UR3-Tx to UR4-Rx, and UR4-Tx to UR1-Rx. A maximum of sixteen (16) UR-series relays can be connected in a single ring


Figure 3-24: DIRECT INPUT/OUTPUT SINGLE CHANNEL CONNECTION
The interconnection for dual-channel Type 7 communications modules is shown below. Two channel modules allow for a redundant ring configuration. That is, two rings can be created to provide an additional independent data path. The required connections are: UR1-Tx1 to UR2-Rx1, UR2-Tx1 to UR3-Rx1, UR3-Tx1 to UR4-Rx1, and UR4-Tx1 to UR1-Rx1 for the first ring; and UR1-Tx2 to UR4-Rx2, UR4-Tx2 to UR3-Rx2, UR3-Tx2 to UR2-Rx2, and UR2-Tx2 to UR1-Rx2 for the second ring.


Figure 3-25: DIRECT INPUT/OUTPUT DUAL CHANNEL CONNECTION
The following diagram shows the connection for three UR-series relays using two independent communication channels. UR1 and UR3 have single Type 7 communication modules; UR2 has a dual-channel module. The two communication channels can be of different types, depending on the Type 7 modules used. To allow the direct input/output data to 'crossover' from Channel 1 to Channel 2 on UR2, the DIRECT I/O CHANNEL CROSSOVER setting should be "Enabled" on UR2. This forces UR2 to forward messages received on Rx1 out Tx2, and messages received on Rx2 out Tx1.


Figure 3-26: DIRECT INPUT/OUTPUT SINGLEIDUAL CHANNEL COMBINATION CONNECTION
The interconnection requirements are described in further detail in this section for each specific variation of Type 7 communications module. These modules are listed in the following table. All fiber modules use ST type connectors.

Table 3-3: CHANNEL COMMUNICATION OPTIONS

| MODULE | SPECIFICATION |
| :---: | :---: |
| 2A | C37.94SM, 1300 nm , single-mode, ELED, 1 channel single-mode |
| 2B | C37.94SM, 1300 nm , single-mode, ELED, 2 channel single-mode |
| 7A | 820 nm , multi-mode, LED, 1 channel |
| 7B | 1300 nm , multi-mode, LED, 1 channel |
| 7 C | 1300 nm , single-mode, ELED, 1 channel |
| 7D | 1300 nm , single-mode, LASER, 1 channel |
| 7E | Channel 1: G.703, Channel 2: 820 nm , multi-mode |
| 7F | Channel 1: G.703, Channel 2: 1300 nm , multi-mode |
| 7G | Channel 1: G.703, Channel 2: 1300 nm , single-mode ELED |
| 7H | 820 nm , multi-mode, LED, 2 channels |
| 71 | 1300 nm , multi-mode, LED, 2 channels |
| 7J | 1300 nm , single-mode, ELED, 2 channels |
| 7K | 1300 nm, single-mode, LASER, 2 channels |
| 7L | Channel 1: RS422, Channel 2: 820 nm , multi-mode, LED |
| 7M | Channel 1: RS422, Channel 2: 1300 nm , multi-mode, LED |
| 7N | Channel 1: RS422, Channel 2: 1300 nm , single-mode, ELED |
| 7P | Channel 1: RS422, Channel 2: 1300 nm , single-mode, LASER |
| 7Q | Channel 1: G.703, Channel 2: 1300 nm , single-mode, LASER |
| 7R | G.703, 1 channel |
| 7 S | G.703, 2 channels |
| 7T | RS422, 1 channel |
| 7W | RS422, 2 channels |
| 72 | 1550 nm , single-mode, LASER, 1 channel |
| 73 | 1550 nm, single-mode, LASER, 2 channels |
| 74 | Channel 1 - RS422; Channel 2 - 1550 nm , single-mode, LASER |
| 75 | Channel 1-G.703; Channel 2-1550 nm, single-mode, LASER |
| 76 | IEEE C37.94, 820 nm , multi-mode, LED, 1 channel |
| 77 | IEEE C37.94, 820 nm , multi-mode, LED, 2 channels |

## OBSERVING ANY FIBER TRANSMITTER OUTPUT MAY CAUSE INJURY TO THE EYE.

The following figure shows the configuration for the $7 \mathrm{~A}, 7 \mathrm{~B}, 7 \mathrm{C}, 7 \mathrm{H}, 7 \mathrm{I}$, and 7 J fiber-only modules.


Figure 3-27: LED AND ELED FIBER MODULES
3.3.3 FIBER-LASER TRANSMITTERS

The following figure shows the configuration for the $72,73,7 \mathrm{D}$, and 7 K fiber-laser module.


Figure 3-28: LASER FIBER MODULES

When using a LASER Interface, attenuators may be necessary to ensure that you do not exceed Maximum Optical Input Power to the receiver.

## a) DESCRIPTION

The following figure shows the 64 K ITU G. 703 co-directional interface configuration.

The G. 703 module is fixed at 64 kbps only. The SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ DIRECT I/O $\Rightarrow \sqrt{ } \sqrt{ }$ DIRECT I/O DATA RATE setting is not applicable to this module.

AWG 24 twisted shielded pair is recommended for external connections, with the shield grounded only at one end. Connecting the shield to Pin X1a or X6a grounds the shield since these pins are internally connected to ground. Thus, if Pin X1a or X6a is used, do not ground at the other end. This interface module is protected by surge suppression devices.

| $\stackrel{\text { ¢ }}{\sim}$ | $\begin{aligned} & \text { G. } 703 \\ & \text { CHANNEL } 1 \end{aligned}$ | Shld. | X1a |
| :---: | :---: | :---: | :---: |
|  |  | Tx- | X1b |
|  |  | Rx- | X2a |
|  |  | Tx + | X2b |
|  |  | Rx + | X3a |
|  | SURGE | $\underline{1}$ | X3b |
|  | $\begin{gathered} \text { G. } 703 \\ \text { CHANNEL } 2 \end{gathered}$ | Shld. | X6a |
|  |  | Tx - | X6b |
|  |  | Rx- | X7a |
| $\left\|\sum_{0}^{2}\right\|$ |  | Tx + | X7b |
|  |  | Rx + | X8a |
|  | SURGE | $\underline{1}$ | X8b |

The following figure shows the typical pin interconnection between two G. 703 interfaces. For the actual physical arrangement of these pins, see the Rear Terminal Assignments section earlier in this chapter. All pin interconnections are to be maintained for a connection to a multiplexer.

| $\mathfrak{N}$ | $\begin{gathered} \text { G. } 703 \\ \text { CHANNEL } 1 \end{gathered}$ | Shld. | X1a | X1a | Shld. | G. 703 <br> CHANNEL 1 | $\stackrel{\sim}{\sim}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tx - | X1b | X1b | Tx - |  |  |
|  |  | Rx - | X2a | X2a | Rx - |  |  |
|  |  | Tx + | X2b | X2b | Tx + |  |  |
|  |  | Rx+ | X3a | X3a | Rx + |  |  |
|  | SURGE | $\stackrel{1}{ \pm}$ | X3b | X3b | $\stackrel{1}{ \pm}$ | SURGE |  |
|  | G. 703 CHANNEL 2 | Shld. | X6a | X6a | Shld. | G. 703 <br> CHANNEL 2 |  |
|  |  | Tx - | X6b | X6b | Tx - |  |  |
|  |  | Rx - | X7a | X7a | Rx - |  |  |
|  |  | Tx + | X7b | X7b | Tx + |  |  |
|  |  | Rx+ | X8a | X8a | Rx + |  |  |
|  | SURGE | $\stackrel{1}{=}$ | X8b | X8b | $\frac{1}{=}$ | SURGE |  |

Figure 3-30: TYPICAL PIN INTERCONNECTION BETWEEN TWO G. 703 INTERFACES
Pin nomenclature may differ from one manufacturer to another. Therefore, it is not uncommon to see pinouts numbered TXA, TxB, RxA and RxB. In such cases, it can be assumed that " $A$ " is equivalent to " + " and " $B$ " is equivalent to "-".

## b) G. 703 SELECTION SWITCH PROCEDURES

1. Remove the G. 703 module ( 7 R or 7 S ):

The ejector/inserter clips located at the top and at the bottom of each module, must be pulled simultaneously in order to release the module for removal. Before performing this action, control power must be removed from the relay. The original location of the module should be recorded to help ensure that the same or replacement module is inserted into the correct slot.
2. Remove the module cover screw.
3. Remove the top cover by sliding it towards the rear and then lift it upwards.
4. Set the Timing Selection Switches (Channel 1, Channel 2) to the desired timing modes.
5. Replace the top cover and the cover screw.
6. Re-insert the G. 703 module Take care to ensure that the correct module type is inserted into the correct slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.


Figure 3-31: G. 703 TIMING SELECTION SWITCH SETTING
Table 3-4: G. 703 TIMING SELECTIONS

| SWITCHES | FUNCTION |
| :--- | :--- |
| S1 | OFF $\rightarrow$ Octet Timing Disabled <br> ON $\rightarrow$ Octet Timing 8 kHz |
| S5 and S6 | S5 $=$ OFF and S6 $=$ OFF $\rightarrow$ Loop Timing Mode <br>  <br>  <br>  S5 = ON and S6 = OFF $\rightarrow$ Internal Timing Mode |
|  | S5 = ON and S6 $=$ ON $\rightarrow$ Minimum Remote Loopback Mode $=$ ON $\rightarrow$ Dual Loopback Mode |

## c) OCTET TIMING (SWITCH S1)

If Octet Timing is enabled (ON), this 8 kHz signal will be asserted during the violation of Bit 8 (LSB) necessary for connecting to higher order systems. When T60s are connected back to back, Octet Timing should be disabled (OFF).

## d) TIMING MODES (SWITCHES S5 AND S6)

There are two timing modes for the G. 703 module: internal timing mode and loop timing mode (default).

- Internal Timing Mode: The system clock is generated internally. Therefore, the G. 703 timing selection should be in the Internal Timing Mode for back-to-back (UR-to-UR) connections. For back-to-back connections, set for Octet Timing (S1 = OFF) and Timing Mode = Internal Timing (S5 = ON and S6 = OFF).
- Loop Timing Mode: The system clock is derived from the received line signal. Therefore, the G. 703 timing selection should be in Loop Timing Mode for connections to higher order systems. For connection to a higher order system (UR-to-multiplexer, factory defaults), set to Octet Timing ( $\mathrm{S} 1=\mathrm{ON}$ ) and set Timing Mode = Loop Timing (S5 = OFF and S6 = OFF).


## 3 HARDWARE

The switch settings for the internal and loop timing modes are shown below:


Loop Timing Mode
(Factory Default)


842752A1.CDR

## e) TEST MODES (SWITCHES S5 AND S6)

## MINIMUM REMOTE LOOPBACK MODE:

In Minimum Remote Loopback mode, the multiplexer is enabled to return the data from the external interface without any processing to assist in diagnosing G. 703 Line Side problems irrespective of clock rate. Data enters from the G. 703 inputs, passes through the data stabilization latch which also restores the proper signal polarity, passes through the multiplexer and then returns to the transmitter. The Differential Received Data is processed and passed to the G. 703 Transmitter module after which point the data is discarded. The G. 703 Receiver module is fully functional and continues to process data and passes it to the Differential Manchester Transmitter module. Since timing is returned as it is received, the timing source is expected to be from the G. 703 line side of the interface.


## DUAL LOOPBACK MODE:

In Dual Loopback Mode, the multiplexers are active and the functions of the circuit are divided into two with each receiver/ transmitter pair linked together to deconstruct and then reconstruct their respective signals. Differential Manchester data enters the Differential Manchester Receiver module and then is returned to the Differential Manchester Transmitter module. Likewise, G. 703 data enters the G. 703 Receiver module and is passed through to the G. 703 Transmitter module to be returned as G .703 data. Because of the complete split in the communications path and because, in each case, the clocks are extracted and reconstructed with the outgoing data, in this mode there must be two independent sources of timing. One source lies on the G. 703 line side of the interface while the other lies on the Differential Manchester side of the interface.


## a) DESCRIPTION

The following figure shows the RS422 2-terminal interface configuration at 64 kbps . AWG 24 twisted shielded pair is recommended for external connections. This interface module is protected by surge suppression devices which optically isolated.

The RS422 module is fixed at 64 kbps only. The SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ DIRECT I/O $\Rightarrow \sqrt{ }$ DIRECT I/O DATA RATE setting is not applicable to this module.

## SHIELD TERMINATION

The shield pins ( 6 a and 7 b ) are internally connected to the ground pin (8a). Proper shield termination is as follows:
Site 1: Terminate shield to pins 6 a and/or 7b; Site 2: Terminate shield to 'COM' pin 2b.
The clock terminating impedance should match the impedance of the line.

| W3b | Tx - | $\begin{gathered} \text { RS422 } \\ \text { CHANNEL } 1 \end{gathered}$ | 3 |
| :---: | :---: | :---: | :---: |
| W3a | Rx - |  |  |
| W2a | Tx + |  |  |
| W4b | Rx+ |  |  |
| W6a | Shld. |  |  |
| W5b | Tx - | $\begin{gathered} \text { RS422 } \\ \text { CHANNEL } 2 \end{gathered}$ |  |
| W5a | Rx- |  |  |
| W4a | Tx+ |  |  |
| W6b | Rx+ |  |  |
| W7b | Shld. |  |  |
| W7a | + | CLOCK |  |
| W8b | - |  |  |
| W2b | com |  |  |
| W8a | $\frac{1}{=}$ | SURGE |  |

Figure 3-32: RS422 INTERFACE CONFIGURATION
The following figure shows the typical pin interconnection between two RS422 interfaces. All pin interconnections are to be maintained for a connection to a multiplexer.


Figure 3-33: TYPICAL PIN INTERCONNECTION BETWEEN TWO RS422 INTERFACES

## b) TWO CHANNEL APPLICATIONS VIA MULTIPLEXERS

The RS422 Interface may be used for ' 1 channel' or ' 2 channel' applications over SONET/SDH and/or Multiplexed systems. When used in 1 channel applications, the RS422 interface links to higher order systems in a typical fashion observing Tx, Rx, and Send Timing connections. However, when used in 2 channel applications, certain criteria have to be followed due to the fact that there is 1 clock input for the two RS422 channels. The system will function correctly if the following connections are observed and your Data Module has a feature called Terminal Timing. Terminal Timing is a common feature to most Synchronous Data Units that allows the module to accept timing from an external source. Using the Terminal Timing feature, 2 channel applications can be achieved if these connections are followed: The Send Timing outputs from the Multiplexer - Data Module 1, will connect to the Clock inputs of the UR-RS422 interface in the usual fashion. In addition, the Send Timing outputs of Data Module 1 will also be paralleled to the Terminal Timing inputs of Data Module 2. By using this configuration the timing for both Data Modules and both UR-RS422 channels will be derived from a single clock source. As

## 3 HARDWARE

a result, data sampling for both of the UR-RS422 channels will be synchronized via the Send Timing leads on Data Module 1 as shown in the following figure. If the Terminal Timing feature is not available or this type of connection is not desired, the G. 703 interface is a viable option that does not impose timing restrictions.


831022A2.CDR
Figure 3-34: TIMING CONFIGURATION FOR RS422 TWO-CHANNEL, 3-TERMINAL APPLICATION
Data Module 1 provides timing to the T60 RS422 interface via the $\mathrm{ST}(\mathrm{A})$ and $\mathrm{ST}(\mathrm{B})$ outputs. Data Module 1 also provides timing to Data Module $2 \mathrm{TT}(\mathrm{A})$ and $\mathrm{TT}(\mathrm{B})$ inputs via the $\mathrm{ST}(\mathrm{A})$ and $\mathrm{AT}(\mathrm{B})$ outputs. The Data Module pin numbers have been omitted in the figure above since they may vary depending on the manufacturer.

## c) TRANSIT TIMING

The RS422 Interface accepts one clock input for Transmit Timing. It is important that the rising edge of the 64 kHz Transmit Timing clock of the Multiplexer Interface is sampling the data in the center of the Transmit Data window. Therefore, it is important to confirm Clock and Data Transitions to ensure Proper System Operation. For example, the following figure shows the positive edge of the Tx Clock in the center of the Tx Data bit.


Figure 3-35: CLOCK AND DATA TRANSITIONS

## d) RECEIVE TIMING

The RS422 Interface utilizes NRZI-MARK Modulation Code and; therefore, does not rely on an Rx Clock to recapture data. NRZI-MARK is an edge-type, invertible, self-clocking code.

To recover the Rx Clock from the data-stream, an integrated DPLL (Digital Phase Lock Loop) circuit is utilized. The DPLL is driven by an internal clock, which is over-sampled 16X, and uses this clock along with the data-stream to generate a data clock that can be used as the SCC (Serial Communication Controller) receive clock.
3.3.6 RS422 AND FIBER INTERFACE

The following figure shows the combined RS422 plus Fiber interface configuration at 64 K baud. The $7 \mathrm{~L}, 7 \mathrm{M}, 7 \mathrm{~N}, 7 \mathrm{P}$, and 74 modules are used in 2-terminal with a redundant channel or 3-terminal configurations where Channel 1 is employed via the RS422 interface (possibly with a multiplexer) and Channel 2 via direct fiber.
AWG 24 twisted shielded pair is recommended for external RS422 connections and the shield should be grounded only at one end. For the direct fiber channel, power budget issues should be addressed properly.

When using a LASER Interface, attenuators may be necessary to ensure that you do not exceed Maximum Optical Input Power to the receiver.


Figure 3-36: RS422 AND FIBER INTERFACE CONNECTION
Connections shown above are for multiplexers configured as DCE (Data Communications Equipment) units.
3.3.7 G.703 AND FIBER INTERFACE

The figure below shows the combined G. 703 plus Fiber interface configuration at 64 K baud. The $7 \mathrm{E}, 7 \mathrm{~F}, 7 \mathrm{G}, 7 \mathrm{Q}$, and 75 modules are used in configurations where Channel 1 is employed via the G. 703 interface (possibly with a multiplexer) and Channel 2 via direct fiber. AWG 24 twisted shielded pair is recommended for external G. 703 connections connecting the shield to Pin 1A at one end only. For the direct fiber channel, power budget issues should be addressed properly. See previous sections for more details on the G. 703 and Fiber interfaces.

When using a LASER Interface, attenuators may be necessary to ensure that you do not exceed Maximum Optical Input Power to the receiver.


Figure 3-37: G. 703 AND FIBER INTERFACE CONNECTION

The UR-series IEEE C37.94 communication modules (76 and 77) are designed to interface with IEEE C37.94 compliant digital multiplexers and/or an IEEE C37.94 compliant interface converter for use with direct input/output applications for firmware revisions 3.30 and higher. The IEEE C37.94 standard defines a point-to-point optical link for synchronous data between a multiplexer and a teleprotection device. This data is typically 64 kbps , but the standard provides for speeds up to $64 n \mathrm{kbps}$, where $n=1,2, \ldots, 12$. The UR-series C37.94 communication module is 64 kbps only with $n$ fixed at 1 . The frame is a valid International Telecommunications Union (ITU-T) recommended G. 704 pattern from the standpoint of framing and data rate. The frame is 256 bits and is repeated at a frame rate of 8000 Hz , with a resultant bit rate of 2048 kbps .
The specifications for the module are as follows:
IEEE standard: C37.94 for $1 \times 64 \mathrm{kbps}$ optical fiber interface
Fiber optic cable type: 50 mm or 62.5 mm core diameter optical fiber
Fiber optic mode: multi-mode
Fiber optic cable length: up to 2 km
Fiber optic connector: type ST
Wavelength: $830 \pm 40 \mathrm{~nm}$
Connection: as per all fiber optic connections, a Tx to Rx connection is required.
The UR-series C37.94 communication module can be connected directly to any compliant digital multiplexer that supports the IEEE C37.94 standard as shown below.


The UR-series C37.94 communication module can be connected to the electrical interface (G.703, RS422, or X.21) of a non-compliant digital multiplexer via an optical-to-electrical interface converter that supports the IEEE C37.94 standard, as shown below.


The UR-series C37.94 communication module has six (6) switches that are used to set the clock configuration. The functions of these control switches is shown below.


Loop Timing Mode
(Factory Default)


For the Internal Timing Mode, the system clock is generated internally. Therefore, the timing switch selection should be Internal Timing for Relay 1 and Loop Timed for Relay 2. There must be only one timing source configured.
For the Looped Timing Mode, the system clock is derived from the received line signal. Therefore, the timing selection should be in Loop Timing Mode for connections to higher order systems.
The C37.94 communications module cover removal procedure is as follows:

1. Remove the C 37.94 module ( 76 or 77 ):

The ejector/inserter clips located at the top and at the bottom of each module, must be pulled simultaneously in order to release the module for removal. Before performing this action, control power must be removed from the relay. The original location of the module should be recorded to help ensure that the same or replacement module is inserted into the correct slot.
2. Remove the module cover screw.
3. Remove the top cover by sliding it towards the rear and then lift it upwards.
4. Set the Timing Selection Switches (Channel 1, Channel 2) to the desired timing modes (see description above).
5. Replace the top cover and the cover screw.
6. Re-insert the C37.94 module Take care to ensure that the correct module type is inserted into the correct slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.


Figure 3-38: IEEE C37.94 TIMING SELECTION SWITCH SETTING

The UR-series C37.94SM communication modules (2A and 2 B ) are designed to interface with modified IEEE C37.94 compliant digital multiplexers and/or IEEE C37.94 compliant interface converters that have been converted from 820 nm multimode fiber optics to 1300 nm ELED single-mode fiber optics. The IEEE C37.94 standard defines a point-to-point optical link for synchronous data between a multiplexer and a teleprotection device. This data is typically 64 kbps , but the standard provides for speeds up to $64 n \mathrm{kbps}$, where $n=1,2, \ldots, 12$. The UR-series C37.94SM communication module is 64 kbps only with $n$ fixed at 1. The frame is a valid International Telecommunications Union (ITU-T) recommended G. 704 pattern from the standpoint of framing and data rate. The frame is 256 bits and is repeated at a frame rate of 8000 Hz , with a resultant bit rate of 2048 kbps .
The specifications for the module are as follows:
Emulated IEEE standard: emulates C37.94 for $1 \times 64 \mathrm{kbps}$ optical fiber interface (modules set to $n=1$ or 64 kbps )
Fiber optic cable type: $9 / 125 \mu \mathrm{~m}$ core diameter optical fiber
Fiber optic mode: single-mode, ELED compatible with HP HFBR-1315T transmitter and HP HFBR-2316T receiver
Fiber optic cable length: up to 10 km
Fiber optic connector: type ST
Wavelength: $1300 \pm 40 \mathrm{~nm}$
Connection: as per all fiber optic connections, a Tx to Rx connection is required.
The UR-series C37.94SM communication module can be connected directly to any compliant digital multiplexer that supports C37.94SM as shown below.


It can also can be connected directly to any other UR-series relay with a C37.94SM module as shown below.


The UR-series C37.94SM communication module has six (6) switches that are used to set the clock configuration. The functions of these control switches is shown below.


Loop Timing Mode
(Factory Default)


For the Internal Timing Mode, the system clock is generated internally. Therefore, the timing switch selection should be Internal Timing for Relay 1 and Loop Timed for Relay 2. There must be only one timing source configured.
For the Looped Timing Mode, the system clock is derived from the received line signal. Therefore, the timing selection should be in Loop Timing Mode for connections to higher order systems.
The C37.94SM communications module cover removal procedure is as follows:

1. Remove the C37.94SM module (modules 2 A or 2 B ):

The ejector/inserter clips located at the top and at the bottom of each module, must be pulled simultaneously in order to release the module for removal. Before performing this action, control power must be removed from the relay. The original location of the module should be recorded to help ensure that the same or replacement module is inserted into the correct slot.
2. Remove the module cover screw.
3. Remove the top cover by sliding it towards the rear and then lift it upwards.
4. Set the Timing Selection Switches (Channel 1, Channel 2) to the desired timing modes (see description above).
5. Replace the top cover and the cover screw.
6. Re-insert the C37.94SM module Take care to ensure that the correct module type is inserted into the correct slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.


Figure 3-39: C37.94SM TIMING SELECTION SWITCH SETTING

The EnerVista UR Setup software provides a graphical user interface (GUI) as one of two human interfaces to a UR device. The alternate human interface is implemented via the device's faceplate keypad and display (see Faceplate Interface section in this chapter).
The EnerVista UR Setup software provides a single facility to configure, monitor, maintain, and trouble-shoot the operation of relay functions, connected over local or wide area communication networks. It can be used while disconnected (i.e. offline) or connected (i.e. on-line) to a UR device. In off-line mode, settings files can be created for eventual downloading to the device. In on-line mode, you can communicate with the device in real-time.
The EnerVista UR Setup software, provided with every T60 relay, can be run from any computer supporting Microsoft Windows ${ }^{\circledR} 95,98, N T, 2000, M E$, and XP. This chapter provides a summary of the basic EnerVista UR Setup software interface features. The EnerVista UR Setup Help File provides details for getting started and using the EnerVista UR Setup software interface.
4.1.2 CREATING A SITE LIST

To start using the EnerVista UR Setup software, a site definition and device definition must first be created. See the EnerVista UR Setup Help File or refer to the Connecting EnerVista UR Setup with the T60 section in Chapter 1 for details.
4.1.3 SOFTWARE OVERVIEW

## a) ENGAGING A DEVICE

The EnerVista UR Setup software may be used in on-line mode (relay connected) to directly communicate with a UR relay. Communicating relays are organized and grouped by communication interfaces and into sites. Sites may contain any number of relays selected from the UR product series.

## b) USING SETTINGS FILES

The EnerVista UR Setup software interface supports three ways of handling changes to relay settings:

- In off-line mode (relay disconnected) to create or edit relay settings files for later download to communicating relays.
- While connected to a communicating relay to directly modify any relay settings via relay data view windows, and then save the settings to the relay.
- You can create/edit settings files and then write them to the relay while the interface is connected to the relay.

Settings files are organized on the basis of file names assigned by the user. A settings file contains data pertaining to the following types of relay settings:

- Device Definition
- Product Setup
- System Setup
- FlexLogic ${ }^{\text {TM }}$
- Grouped Elements
- Control Elements
- Inputs/Outputs
- Testing

Factory default values are supplied and can be restored after any changes.

## c) CREATING AND EDITING FLEXLOGIC ${ }^{\text {M }}$

You can create or edit a FlexLogic ${ }^{\text {TM }}$ equation in order to customize the relay. You can subsequently view the automatically generated logic diagram.

## d) VIEWING ACTUAL VALUES

You can view real-time relay data such as input/output status and measured parameters.

## e) VIEWING TRIGGERED EVENTS

While the interface is in either on-line or off-line mode, you can view and analyze data generated by triggered specified parameters, via one of the following:

- Event Recorder facility: The event recorder captures contextual data associated with the last 1024 events, listed in chronological order from most recent to oldest.
- Oscillography facility: The oscillography waveform traces and digital states are used to provide a visual display of power system and relay operation data captured during specific triggered events.


## f) FILE SUPPORT

- Execution: Any EnerVista UR Setup file which is double clicked or opened will launch the application, or provide focus to the already opened application. If the file was a settings file (has a URS extension) which had been removed from the Settings List tree menu, it will be added back to the Settings List tree menu.
- Drag and Drop: The Site List and Settings List control bar windows are each mutually a drag source and a drop target for device-order-code-compatible files or individual menu items. Also, the Settings List control bar window and any Windows Explorer directory folder are each mutually a file drag source and drop target.
New files which are dropped into the Settings List window are added to the tree which is automatically sorted alphabetically with respect to settings file names. Files or individual menu items which are dropped in the selected device menu in the Site List window will automatically be sent to the on-line communicating device.


## g) FIRMWARE UPGRADES

The firmware of a T60 device can be upgraded, locally or remotely, via the EnerVista UR Setup software. The corresponding instructions are provided by the EnerVista UR Setup Help file under the topic "Upgrading Firmware".

Modbus addresses assigned to firmware modules, features, settings, and corresponding data items (i.e. default values, minimum/maximum values, data type, and item size) may change slightly from version to version of firmware. The addresses are rearranged when new features are added or existing features are enhanced or modified. The EEPROM DATA ERROR message displayed after upgrading/downgrading the firmware is a resettable, self-test message intended to inform users that the Modbus addresses have changed with the upgraded firmware. This message does not signal any problems when appearing after firmware upgrades.

The EnerVista UR Setup software main window supports the following primary display components:
a. Title bar which shows the pathname of the active data view
b. Main window menu bar
c. Main window tool bar
d. Site List control bar window
e. Settings List control bar window
f. Device data view window(s), with common tool bar
g. Settings File data view window(s), with common tool bar
h. Workspace area with data view tabs
i. Status bar


Figure 4-1: ENERVISTA UR SETUP SOFTWARE MAIN WINDOW

The keypad/display/LED interface is one of two alternate human interfaces supported. The other alternate human interface is implemented via the EnerVista UR Setup software. The faceplate interface is available in two configurations: horizontal or vertical. The faceplate interface consists of several functional panels.
The faceplate is hinged to allow easy access to the removable modules. There is also a removable dust cover that fits over the faceplate which must be removed in order to access the keypad panel. The following two figures show the horizontal and vertical arrangement of faceplate panels.


Figure 4-2: UR-SERIES HORIZONTAL FACEPLATE PANELS


Figure 4-3: UR-SERIES VERTICAL FACEPLATE PANELS

## a) LED PANEL 1

This panel provides several LED indicators, several keys, and a communications port. The RESET key is used to reset any latched LED indicator or target message, once the condition has been cleared (these latched conditions can also be reset via the SETTINGS $\Rightarrow \sqrt{ }$ INPUT/OUTPUTS $\Rightarrow \sqrt{ }$ RESETTING menu). The USER keys are not used in this unit. The RS232 port is intended for connection to a portable PC.


Figure 4-4: LED PANEL 1

## STATUS INDICATORS:

- IN SERVICE: Indicates that control power is applied; all monitored inputs/outputs and internal systems are OK; the relay has been programmed.
- TROUBLE: Indicates that the relay has detected an internal problem.
- TEST MODE: Indicates that the relay is in test mode.
- TRIP: Indicates that the selected FlexLogic ${ }^{\text {TM }}$ operand serving as a Trip switch has operated. This indicator always latches; the RESET command must be initiated to allow the latch to be reset.
- ALARM: Indicates that the selected FlexLogic ${ }^{\top M}$ operand serving as an Alarm switch has operated. This indicator is never latched.
- PICKUP: Indicates that an element is picked up. This indicator is never latched.


## EVENT CAUSE INDICATORS:

These indicate the input type that was involved in a condition detected by an element that is operated or has a latched flag waiting to be reset.

- VOLTAGE: Indicates voltage was involved.
- CURRENT: Indicates current was involved.
- FREQUENCY: Indicates frequency was involved.
- OTHER: Indicates a composite function was involved.
- PHASE A: Indicates Phase A was involved.
- PHASE B: Indicates Phase B was involved.
- PHASE C: Indicates Phase C was involved.
- NEUTRAL/GROUND: Indicates neutral or ground was involved.


## b) LED PANELS 2 AND 3

These panels provide 48 amber LED indicators whose operation is controlled by the user. Support for applying a customized label beside every LED is provided.

User customization of LED operation is of maximum benefit in installations where languages other than English are used to communicate with operators. Refer to the User-Programmable LEDs section in Chapter 5 for the settings used to program the operation of the LEDs on these panels.

| USER-PROGRAMMABLE LEDS |  |  |
| :---: | :---: | :---: |
| ■ (1) | - (9) | ■ (17) |
| ■ (2) | - (10) | - (18) |
| ■ (3) | - (11) | - (19) |
| ■ (4) | - (12) | - (20) |
| - (5) | - (13) | ■ (21) |
| ■ (6) | - (14) | - (22) |
| - (7) | - (15) | - (23) |
| ■ (8) | ■ (16) | - (24) |


| USER-PROGRAMMABLE LEDS |  |  |
| :---: | :---: | :---: |
| - (25) | - (33) | ■ (41) |
| - (26) | ■ (34) | - (42) |
| - (27) | - (35) | ■ (43) |
| - (28) | - (36) | ■ (44) |
| - (29) | - (37) | - (45) |
| - (30) | - (38) | - (46) |
| ■ (31) | - (39) | - (47) |
| - (32) | - (40) | - (48) |

Figure 4-5: LED PANELS 2 AND 3 (INDEX TEMPLATE)

```
SETTINGS IN USE
GROUP 1
GGOUP 2
GROUP }
GROUP4
GROUP5
GROUP6
GROUP }
GROUP }
```

Figure 4-6: LED PANEL 2 (DEFAULT LABEL)
The default labels represent the following:

- GROUP 1...6: The illuminated GROUP is the active settings group.

Firmware revisions 2.9x and earlier support eight user setting groups; revisions 3.0x and higher support six setting groups. For convenience of users using earlier firmware revisions, the relay panel shows eight setting groups. Please note that the LEDs, despite their default labels, are fully user-programmable.

## d) CUSTOM LABELING OF LEDS

Custom labeling of an LED-only panel is facilitated through a Microsoft Word file available from the following URL:
http://www.GEindustrial.com/multilin/support/ur/
This file provides templates and instructions for creating appropriate labeling for the LED panel. The following procedures are contained in the downloadable file. The panel templates provide relative LED locations and located example text (x) edit boxes. The following procedure demonstrates how to install/uninstall the custom panel labeling.

1. Remove the clear Lexan Front Cover (GE Multilin Part Number: 1501-0014).

2. Pop out the LED Module and/or the Blank Module with a screwdriver as shown below. Be careful not to damage the plastic.

3. Place the left side of the customized module back to the front panel frame, then snap back the right side.
4. Put the clear Lexan Front Cover back into place.

## e) CUSTOMIZING THE DISPLAY MODULE

The following items are required to customize the T60 display module:

- Black and white or color printer (color preferred).
- Microsoft Word 97 or later software for editing the template.
- 1 each of: $8.5^{\prime \prime} \times 11$ " white paper, exacto knife, ruler, custom display module (GE Multilin Part Number: 1516-0069), and a custom module cover (GE Multilin Part Number: 1502-0015).

1. Open the LED panel customization template with Microsoft Word. Add text in places of the LED $\mathbf{x}$ text placeholders on the template(s). Delete unused place holders as required.
2. When complete, save the Word file to your local PC for future use.
3. Print the template(s) to a local printer.
4. From the printout, cut-out the Background Template from the three windows, using the cropmarks as a guide.
5. Put the Background Template on top of the custom display module (GE Multilin Part Number: 1513-0069) and snap the clear custom module cover (GE Multilin Part Number: 1502-0015) over it and the templates.

All messages are displayed on a $2 \times 20$ character vacuum fluorescent display to make them visible under poor lighting con－ ditions．An optional liquid crystal display（LCD）is also available．Messages are displayed in English and do not require the aid of an instruction manual for deciphering．While the keypad and display are not actively being used，the display will default to defined messages．Any high priority event driven message will automatically override the default message and appear on the display．

4．2．4 KEYPAD

Display messages are organized into＇pages＇under the following headings：Actual Values，Settings，Commands，and Tar－ gets．The MENU key navigates through these pages．Each heading page is broken down further into logical subgroups．
The $\triangle$ MESSAGE $\nabla$ keys navigate through the subgroups．The $\Theta$ VALUE $\odot$ keys scroll increment or decrement numerical setting values when in programming mode．These keys also scroll through alphanumeric values in the text edit mode．Alternatively，values may also be entered with the numeric keypad．
The $\cdot$ key initiates and advance to the next character in text edit mode or enters a decimal point．The HELP key may be pressed at any time for context sensitive help messages．The ENTER key stores altered setting values．

4．2．5 MENUS

## a）NAVIGATION

Press the MENU key to select the desired header display page（top－level menu）．The header title appears momentarily fol－ lowed by a header display page menu item．Each press of the MENU key advances through the main heading pages as illustrated below．

| MENU | MENU | MENU | MENU |
| :---: | :---: | :---: | :---: |
| ACTUAL VALUES | SETTINGS | COMMANDS | TARGETS |
| $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $\square \square$ $\square ⿴ 囗 十$ STATUS |  | $\square \square$ <br> $\square \square$ | No Active Targets |


| $\Rightarrow$MENU <br>  <br> USER DISPLAYS <br> （when in use） <br> User Display 1 |
| :--- |

## b）HIERARCHY

The setting and actual value messages are arranged hierarchically．The header display pages are indicated by double scroll bar characters（■■），while sub－header pages are indicated by single scroll bar characters（ $\square$ ）．The header display pages represent the highest level of the hierarchy and the sub－header display pages fall below this level．The MESSAGE $\Delta$ and $\nabla$ keys move within a group of headers，sub－headers，setting values，or actual values．Continually pressing the MESSAGE $D$ key from a header display displays specific information for the header category．Conversely，continually pressing the MESSAGE key from a setting value or actual value display returns to the header display．

HIGHEST LEVEL


LOWEST LEVEL（SETTING VALUE）

c）EXAMPLE NAVIGATION SCENARIO

| $\square$ ACTUAL VALUES $\square$ STATUS | Press the MENU key until the header for the first Actual Values page appears．This page contains system and relay status information．Repeatedly press the MESSAGE $\square$ keys to display the other actual value headers． |
| :---: | :---: |
| $\checkmark$ |  |
| ■■ SETTINGS ■ PRODUCT SETUP | Press the MENu key until the header for the first page of Settings appears．This page contains settings to configure the relay． |
| $\checkmark$ |  |
| ■■ SETTINGS $\square ⿴ 囗 十$ SYSTEM SETUP | Press the MESSAGE $\nabla$ key to move to the next Settings page．This page contains settings for System Setup．Repeatedly press the $\Delta$ MESSAGE $\nabla$ keys to display the other setting headers and then back to the first Settings page header． |
| $\sqrt{8}$ |  |
| $\square$ PASSWORD ■ SECURITY | From the Settings page one header（Product Setup），press the MESSAGE $\square$ key once to display the first sub－header（Password Security）． |
| $\checkmark$ |  |
| ACCESS LEVEL: Restricted | Press the MESSAGE key once more and this will display the first setting for Pass－ word Security．Pressing the MESSAGE setting messages for this sub－header． |
| $\checkmark$ |  |
| $\square$ PASSWORD ■ SECURITY | Press the MESSAGE＜key once to move back to the first sub－header message． |
| $\checkmark$ |  |
| ■ DISPLAY ■ PROPERTIES | Pressing the MESSAGE key will display the second setting sub－header associ－ ated with the Product Setup header． |
| $\checkmark$ |  |
| FLASH MESSAGE TIME： 1.0 s | Press the MESSAGE $\square$ key once more and this will display the first setting for Dis－ play Properties． |
| $\checkmark$ |  |
| DEFAULT MESSAGE INTENSITY：25\％ | To view the remaining settings associated with the Display Properties subheader， repeatedly press the MESSAGE $\nabla$ key．The last message appears as shown． |

## a) ENTERING NUMERICAL DATA

Each numerical setting has its own minimum, maximum, and increment value associated with it. These parameters define what values are acceptable for a setting.

| FLASH MESSAGE TIME: 1.0 s | For example, select the SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow 』$ DISPLAY PROPERTIES $\Rightarrow$ FLASH MESSAGE TIME setting. |
| :---: | :---: |
| $\checkmark$ |  |
| MINIMUM: 0.5 <br> MAXIMUM: 10.0 | Press the HELP key to view the minimum and maximum values. Press the HELP key again to view the next context sensitive help message. |

Two methods of editing and storing a numerical setting value are available.

- 0 to 9 and (decimal point): The relay numeric keypad works the same as that of any electronic calculator. A number is entered one digit at a time. The leftmost digit is entered first and the rightmost digit is entered last. Pressing the MESSAGE 《 key or pressing the ESCAPE key, returns the original value to the display.
- value $\nabla_{\text {: The value }}^{\rightarrow \text { key increments the displayed value by the step value, up to the maximum value }}$ allowed. While at the maximum value, pressing the VALUE $\boldsymbol{\rightarrow}$ key again will allow the setting selection to continue upward from the minimum value. The VALUE $\sigma$ key decrements the displayed value by the step value, down to the minimum value. While at the minimum value, pressing the VALUE key again will allow the setting selection to continue downward from the maximum value.


As an example, set the flash message time setting to 2.5 seconds. Press the appropriate numeric keys in the sequence " 2.5 ". The display message will change as the digits are being entered.

Until ENTER is pressed, editing changes are not registered by the relay. Therefore, press ENTER to store the new value in memory. This flash message will momentarily appear as confirmation of the storing process. Numerical values which contain decimal places will be rounded-off if more decimal place digits are entered than specified by the step value.

## b) ENTERING ENUMERATION DATA

Enumeration settings have data values which are part of a set, whose members are explicitly defined by a name. A set is comprised of two or more members.

| ACCESS LEVEL: | For example, the selections available for ACCESS LEVEL are "Restricted", "Command", |
| :--- | :--- |
| Restricted | "Setting", and "Factory Service". |

Enumeration type values are changed using the VALUE keys. The VALUE key displays the next selection while the VALUE $\oslash$ key displays the previous selection.

| ACCESS LEVEL: Setting | If the ACCESS LEVEL needs to be "Setting", press the VALUE keys until the proper selection is displayed. Press $\square$ at any time for the context sensitive help messages. |
| :---: | :---: |
| $\sqrt{3}$ |  |
| $\begin{aligned} & \text { NEW SETTING } \\ & \text { HAS BEEN STORED } \end{aligned}$ | Changes are not registered by the relay until the $\square$ key is pressed. Pressing $\square$ stores the new value in memory. This flash message momentarily appears as confirmation of the storing process. |

## c) ENTERING ALPHANUMERIC TEXT

Text settings have data values which are fixed in length, but user-defined in character. They may be comprised of upper case letters, lower case letters, numerals, and a selection of special characters.

## 4 HUMAN INTERFACES

There are several places where text messages may be programmed to allow the relay to be customized for specific applications. One example is the Message Scratchpad. Use the following procedure to enter alphanumeric text messages.
For example: to enter the text, "Breaker \#1"

1. Press $\square$ to enter text edit mode.
2. Press the VALUE keys until the character 'B' appears; press $\square$ to advance the cursor to the next position.
3. Repeat step 2 for the remaining characters: r,e,a,k,e,r, ,\#,1.
4. Press enter to store the text.
5. If you have any problem, press HELP to view context sensitive help. Flash messages will sequentially appear for several seconds each. For the case of a text setting message, pressing HELP displays how to edit and store new values.
d) ACTIVATING THE RELAY

$$
\begin{array}{|l|l}
\hline \begin{array}{l}
\text { RELAY SETTINGS: } \\
\text { Not Programmed }
\end{array} & \begin{array}{l}
\text { When the relay is powered up, the Trouble LED will be on, the In Service LED off, and } \\
\text { this message displayed, indicating the relay is in the "Not Programmed" state and is } \\
\text { safeguarding (output relays blocked) against the installation of a relay whose settings } \\
\\
\text { have not been entered. This message remains until the relay is explicitly put in the } \\
\text { "Programmed" state. }
\end{array}
\end{array}
$$

To change the ReLAY SETtings: "Not Programmed" mode to "Programmed", proceed as follows:

1. Press the menu key until the settings header flashes momentarily and the settings product setup message appears on the display.
2. Press the MESSAGE $\square$ key until the PASSWORD SECURITY message appears on the display.
3. Press the MESSAGE $\nabla$ key until the installation message appears on the display.
4. Press the MESSAGE key until the reLay settings: Not Programmed message is displayed.

5. After the relay settings: Not Programmed message appears on the display, press the VALUE keys change the selection to "Programmed".
6. Press the ENTER key.

| RELAY SETTINGS: |
| :--- | :--- | :--- |
| Not Programmed |$\quad \otimes \ominus$| RELAY SETTINGS: |
| :--- |
| Programmed |$\quad$| ENTER |
| :--- | :--- | | NEW SETTING |
| :--- |
| HAS BEEN STORED |

7. When the "NEW SETTING HAS BEEN STORED" message appears, the relay will be in "Programmed" state and the In Service LED will turn on.

## e) ENTERING INITIAL PASSWORDS

To enter the initial Setting (or Command) Password, proceed as follows:

1. Press the MENu key until the SETtings header flashes momentarily and the SETtINGS PRODUCT SETUP message appears on the display.
2. Press the MESSAGE $\quad$ key until the ACCESS LEVEL message appears on the display.
3. Press the MESSAGE $\nabla$ key until the CHANGE SETting (or COMMAND) PASSWORD message appears on the display.


CHANGE COMMAND
PASSWORD: No
CHANGE SETTING
PASSWORD: No

4. After the ChANGE...PASSWORD message appears on the display, press the VALUE $\geqslant$ key or the VALUE key to change the selection to "Yes".
5. Press the ENTER key and the display will prompt you to ENTER NEW PASSWORD.
6. Type in a numerical password (up to 10 characters) and press the ENTER key.
7. When the VERIFY NEW PASSWORD is displayed, re-type in the same password and press Enter.

8. When the new password has been stored message appears, your new Setting (or Command) Password will be active.

## f) CHANGING EXISTING PASSWORDS

To change an existing password, follow the instructions in the previous section with the following exception. A message will prompt you to type in the existing password (for each security level) before a new password can be entered.
In the event that a password has been lost (forgotten), submit the corresponding Encrypted Password from the PASSWORD sECURITY menu to the Factory for decoding.

## 4 HUMAN INTERFACES

## g) INVALID PASSWORD ENTRY

In the event that an incorrect Command or Setting password has been entered via the faceplate interface three times within a three minute time span, the LOCAL ACCESS DENIED FlexLogic ${ }^{\text {TM }}$ operand will be set to "On" and the T60 will not allow Settings or Command access via the faceplate interface for the next ten minutes. The too many attempts - blocked FOR 10 MIN! flash message will appear upon activation of the ten minute timeout or any other time a user attempts any change to the defined tier during the ten minute timeout. The LOCAL ACCESS DENIED FlexLogic ${ }^{\text {TM }}$ operand will be set to "Off" after the expiration of the ten minute timeout.



5.1.2 INTRODUCTION TO ELEMENTS

In the design of UR relays, the term "element" is used to describe a feature that is based around a comparator. The comparator is provided with an input (or set of inputs) that is tested against a programmed setting (or group of settings) to determine if the input is within the defined range that will set the output to logic 1, also referred to as "setting the flag". A single comparator may make multiple tests and provide multiple outputs; for example, the time overcurrent comparator sets a Pickup flag when the current input is above the setting and sets an Operate flag when the input current has been at a level above the pickup setting for the time specified by the time-current curve settings. All comparators, except the Digital Element which uses a logic state as the input, use analog parameter actual values as the input.
Elements are arranged into two classes, GROUPED and CONTROL. Each element classed as a GROUPED element is provided with six alternate sets of settings, in setting groups numbered 1 through 6 . The performance of a GROUPED element is defined by the setting group that is active at a given time. The performance of a CONTROL element is independent of the selected active setting group.

The main characteristics of an element are shown on the element logic diagram. This includes the input(s), settings, fixed logic, and the output operands generated (abbreviations used on scheme logic diagrams are defined in Appendix F).
Some settings for current and voltage elements are specified in per-unit (pu) calculated quantities:

## pu quantity = (actual quantity) / (base quantity)

- For current elements, the 'base quantity' is the nominal secondary or primary current of the CT. Where the current source is the sum of two CTs with different ratios, the 'base quantity' will be the common secondary or primary current to which the sum is scaled (i.e. normalized to the larger of the 2 rated CT inputs). For example, if CT1 = 300 / 5 A and $C T 2=100 / 5 \mathrm{~A}$, then in order to sum these, CT2 is scaled to the CT1 ratio. In this case, the 'base quantity' will be 5 A secondary or 300 A primary.
- For voltage elements the 'base quantity' is the nominal primary voltage of the protected system which corresponds (based on VT ratio and connection) to secondary VT voltage applied to the relay. For example, on a system with a 13.8 kV nominal primary voltage and with $14400: 120 \mathrm{~V}$ Delta-connected VTs, the secondary nominal voltage (1 pu) would be:

$$
\begin{equation*}
\frac{13800}{14400} \times 120=115 \mathrm{~V} \tag{EQ5.1}
\end{equation*}
$$

For Wye-connected VTs, the secondary nominal voltage (1 pu) would be:

$$
\begin{equation*}
\frac{13800}{14400} \times \frac{120}{\sqrt{3}}=66.4 \mathrm{~V} \tag{EQ5.2}
\end{equation*}
$$

Many settings are common to most elements and are discussed below:

- FUNCTION setting: This setting programs the element to be operational when selected as "Enabled". The factory default is "Disabled". Once programmed to "Enabled", any element associated with the Function becomes active and all options become available.
- NAME setting: This setting is used to uniquely identify the element.
- SOURCE setting: This setting is used to select the parameter or set of parameters to be monitored.
- PICKUP setting: For simple elements, this setting is used to program the level of the measured parameter above or below which the pickup state is established. In more complex elements, a set of settings may be provided to define the range of the measured parameters which will cause the element to pickup.
- PICKUP DELAY setting: This setting sets a time-delay-on-pickup, or on-delay, for the duration between the Pickup and Operate output states.
- RESET DELAY setting: This setting is used to set a time-delay-on-dropout, or off-delay, for the duration between the Operate output state and the return to logic 0 after the input transits outside the defined pickup range.
- BLOCK setting: The default output operand state of all comparators is a logic 0 or "flag not set". The comparator remains in this default state until a logic 1 is asserted at the RUN input, allowing the test to be performed. If the RUN input changes to logic 0 at any time, the comparator returns to the default state. The RUN input is used to supervise the comparator. The BLOCK input is used as one of the inputs to RUN control.
- TARGET setting: This setting is used to define the operation of an element target message. When set to Disabled, no target message or illumination of a faceplate LED indicator is issued upon operation of the element. When set to SelfReset, the target message and LED indication follow the Operate state of the element, and self-resets once the operate element condition clears. When set to Latched, the target message and LED indication will remain visible after the element output returns to logic 0 - until a RESET command is received by the relay.
- EVENTS setting: This setting is used to control whether the Pickup, Dropout or Operate states are recorded by the event recorder. When set to Disabled, element pickup, dropout or operate are not recorded as events. When set to Enabled, events are created for:

```
(Element) PKP (pickup)
(Element) DPO (dropout)
(Element) OP (operate)
```

The DPO event is created when the measure and decide comparator output transits from the pickup state (logic 1) to the dropout state (logic 0 ). This could happen when the element is in the operate state if the reset delay time is not ' 0 '.

## a) BACKGROUND

The T60 may be used on systems with breaker-and-a-half or ring bus configurations. In these applications, each of the two three-phase sets of individual phase currents (one associated with each breaker) can be used as an input to a breaker failure element. The sum of both breaker phase currents and 31_0 residual currents may be required for the circuit relaying and metering functions. For a three-winding transformer application, it may be required to calculate watts and vars for each of three windings, using voltage from different sets of VTs. These requirements can be satisfied with a single UR, equipped with sufficient CT and VT input channels, by selecting the parameter to measure. A mechanism is provided to specify the $A C$ parameter (or group of parameters) used as the input to protection/control comparators and some metering elements.
Selection of the parameter(s) to measure is partially performed by the design of a measuring element or protection/control comparator by identifying the type of parameter (fundamental frequency phasor, harmonic phasor, symmetrical component, total waveform RMS magnitude, phase-phase or phase-ground voltage, etc.) to measure. The user completes the process by selecting the instrument transformer input channels to use and some of the parameters calculated from these channels. The input parameters available include the summation of currents from multiple input channels. For the summed currents of phase, 31_0, and ground current, current from CTs with different ratios are adjusted to a single ratio before summation.
A mechanism called a "Source" configures the routing of CT and VT input channels to measurement sub-systems. Sources, in the context of UR series relays, refer to the logical grouping of current and voltage signals such that one source contains all the signals required to measure the load or fault in a particular power apparatus. A given source may contain all or some of the following signals: three-phase currents, single-phase ground current, three-phase voltages and an auxiliary voltage from a single VT for checking for synchronism.
To illustrate the concept of Sources, as applied to current inputs only, consider the breaker-and-a-half scheme below. In this application, the current flows as shown by the arrows. Some current flows through the upper bus bar to some other location or power equipment, and some current flows into transformer Winding 1. The current into Winding 1 is the phasor sum (or difference) of the currents in CT1 and CT2 (whether the sum or difference is used depends on the relative polarity of the CT connections). The same considerations apply to transformer Winding 2. The protection elements require access to the net current for transformer protection, but some elements may need access to the individual currents from CT1 and CT2.


Figure 5-1: BREAKER-AND-A-HALF SCHEME
In conventional analog or electronic relays, the sum of the currents is obtained from an appropriate external connection of all CTs through which any portion of the current for the element being protected could flow. Auxiliary CTs are required to perform ratio matching if the ratios of the primary CTs to be summed are not identical. In the UR series of relays, provisions have been included for all the current signals to be brought to the UR device where grouping, ratio correction and summation are applied internally via configuration settings.

A major advantage of using internal summation is that the individual currents are available to the protection device; for example, as additional information to calculate a restraint current, or to allow the provision of additional protection features that operate on the individual currents such as breaker failure.
Given the flexibility of this approach, it becomes necessary to add configuration settings to the platform to allow the user to select which sets of CT inputs will be added to form the net current into the protected device.

The internal grouping of current and voltage signals forms an internal source. This source can be given a specific name through the settings, and becomes available to protection and metering elements in the UR platform. Individual names can be given to each source to help identify them more clearly for later use. For example, in the scheme shown in the above diagram, the configures one Source to be the sum of CT1 and CT2 and can name this Source as "Wdg 1 Current".

Once the sources have been configured, the user has them available as selections for the choice of input signal for the protection elements and as metered quantities.

## b) CTIVT MODULE CONFIGURATION

CT and VT input channels are contained in CT/VT modules. The type of input channel can be phase/neutral/other voltage, phase/ground current, or sensitive ground current. The CT/VT modules calculate total waveform RMS levels, fundamental frequency phasors, symmetrical components and harmonics for voltage or current, as allowed by the hardware in each channel. These modules may calculate other parameters as directed by the CPU module.

A CT/VT module contains up to eight input channels, numbered 1 through 8 . The channel numbering corresponds to the module terminal numbering 1 through 8 and is arranged as follows: Channels $1,2,3$ and 4 are always provided as a group, hereafter called a "bank," and all four are either current or voltage, as are Channels 5, 6, 7 and 8 . Channels 1, 2, 3 and 5, 6, 7 are arranged as phase A, B and C respectively. Channels 4 and 8 are either another current or voltage.
Banks are ordered sequentially from the block of lower-numbered channels to the block of higher-numbered channels, and from the CT/VT module with the lowest slot position letter to the module with the highest slot position letter, as follows:

| INCREASING SLOT POSITION LETTER --> |  |  |
| :--- | :--- | :--- |
| CT/VT MODULE 1 | CTIVT MODULE 2 | CT/VT MODULE 3 |
| < bank 1 > | < bank 3 > | < bank 5 > |
| <bank 2 > | < bank 4 > | < bank 6 > |

The UR platform allows for a maximum of three sets of three-phase voltages and six sets of three-phase currents. The result of these restrictions leads to the maximum number of CT/VT modules in a chassis to three. The maximum number of sources is six. A summary of CT/VT module configurations is shown below.

| ITEM | MAXIMUM NUMBER |
| :--- | :---: |
| CT/VT Module | 2 |
| CT Bank (3 phase channels, 1 ground channel) | 8 |
| VT Bank (3 phase channels, 1 auxiliary channel) | 4 |

## c) CTIVT INPUT CHANNEL CONFIGURATION

Upon relay startup, configuration settings for every bank of current or voltage input channels in the relay are automatically generated from the order code. Within each bank, a channel identification label is automatically assigned to each bank of channels in a given product. The 'bank' naming convention is based on the physical location of the channels, required by the user to know how to connect the relay to external circuits. Bank identification consists of the letter designation of the slot in which the CT/VT module is mounted as the first character, followed by numbers indicating the channel, either 1 or 5.

For three-phase channel sets, the number of the lowest numbered channel identifies the set. For example, F1 represents the three-phase channel set of F1/F2/F3, where F is the slot letter and 1 is the first channel of the set of three channels.
Upon startup, the CPU configures the settings required to characterize the current and voltage inputs, and will display them in the appropriate section in the sequence of the banks (as described above) as follows for a maximum configuration: F1, F5, M1, M5, U1, and U5.
The above section explains how the input channels are identified and configured to the specific application instrument transformers and the connections of these transformers. The specific parameters to be used by each measuring element and comparator, and some actual values are controlled by selecting a specific source. The source is a group of current and voltage input channels selected by the user to facilitate this selection. With this mechanism, a user does not have to make multiple selections of voltage and current for those elements that need both parameters, such as a distance element or a watt calculation. It also gathers associated parameters for display purposes.

The basic idea of arranging a source is to select a point on the power system where information is of interest. An application example of the grouping of parameters in a Source is a transformer winding, on which a three phase voltage is measured, and the sum of the currents from CTs on each of two breakers is required to measure the winding current flow.

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow$ PASSWORD SECURITY

| $\square$PASSWORD <br> $\square$ <br> SECURITY |  | (1) | ACCESS LEVEL: Restricted | Range: <br> Range: | Restricted, Command, Setting, Factory Service (for factory use only) <br> No, Yes |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE |  | CHANGE COMMAND PASSWORD: No |  |  |
|  | MESSAGE | - | CHANGE SETTING PASSWORD: No | Range: | No, Yes |
|  | MESSAGE | 囪 | ENCRYPTED COMMAND PASSWORD: | Range: | 0 to 9999999999 <br> Note: $\qquad$ indicates no password |
|  | MESSAGE | (2) | ENCRYPTED SETTING PASSWORD: | Range: | 0 to 9999999999 <br> Note: $\qquad$ indicates no password |

Two levels of password security are provided: Command and Setting. Operations under password supervision are:

- COMMAND: changing the state of virtual inputs, clearing the event records, clearing the oscillography records, changing the date and time, clearing energy records, clearing the data logger, user-programmable pushbuttons
- SETTING: changing any setting, test mode operation

The Command and Setting passwords are defaulted to "Null" when the relay is shipped from the factory. When a password is set to "Null", the password security feature is disabled.
Programming a password code is required to enable each access level. A password consists of 1 to 10 numerical characters. When a CHANGE ... PASSWORD setting is set to "Yes", the following message sequence is invoked:

1. ENTER NEW PASSWORD: $\qquad$
2. VERIFY NEW PASSWORD: $\qquad$

## 3. NEW PASSWORD HAS BEEN STORED

To gain write access to a "Restricted" setting, set ACcess level to "Setting" and then change the setting, or attempt to change the setting and follow the prompt to enter the programmed password. If the password is correctly entered, access will be allowed. If no keys are pressed for longer than 30 minutes or control power is cycled, accessibility will automatically revert to the "Restricted" level.

If an entered password is lost (or forgotten), consult the factory with the corresponding ENCRYPTED PASSWORD.
The T60 provides a means to raise an alarm upon failed password entry. Should password verification fail while accessing a password-protected level of the relay (either settings or commands), the UNAUTHORIZED ACCESS FlexLogic ${ }^{\text {TM }}$ operand is asserted. The operand can be programmed to raise an alarm via contact outputs or communications. This feature can be used to protect against both unauthorized and accidental access attempts.
The UNAUTHORIZED ACCESS operand is reset with the COMMANDS $\Rightarrow \sqrt{ }$ CLEAR RECORDS $\Rightarrow \sqrt{ }$ RESET UNAUTHORIZED ALARMS command. Therefore, to apply this feature with security, the command level should be password-protected.

The operand does not generate events or targets. If these are required, the operand can be assigned to a digital element programmed with event logs and/or targets enabled.

If the SETting and COMMAND passwords are identical, this one password allows access to both commands and settings.
When EnerVista UR Setup is used to access a particular level, the user will continue to have access to that level as long as there are open windows in the EnerVista UR Setup software. To re-establish the Password Security feature, all windows must be closed for at least 30 minutes.

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ DISPLAY PROPERTIES

| $\square$ DISPLAY <br> $\square$ PROPERTIES |  | (1) | LANGUAGE: English | Range: | English; English, French; English, Russian; English, Chinese <br> (range dependent on order code) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | FLASH MESSAGE TIME: 1.0 s | Range: | 0.5 to 10.0 s in steps of 0.1 |
|  | MESSAGE | - | DEFAULT MESSAGE TIMEOUT: 300 s | Range: | 10 to 900 s in steps of 1 |
|  | MESSAGE | - | DEFAULT MESSAGE INTENSITY: $25 \%$ | Range: | $\begin{aligned} & 25 \%, 50 \%, 75 \%, 100 \% \\ & \text { Visible only if a VFD is installed } \end{aligned}$ |
|  | MESSAGE | - | SCREEN SAVER <br> FEATURE: Disabled | Range: | Disabled, Enabled <br> Visible only if an LCD is installed |
|  | MESSAGE | - | SCREEN SAVER <br> WAIT TIME: 30 min | Range: | 1 to 65535 min. in steps of 1 Visible only if an LCD is installed |
|  | MESSAGE | - | CURRENT CUT-OFF LEVEL: 0.020 pu | Range: | 0.002 to 0.020 pu in steps of 0.001 |
|  | MESSAGE | (4) | VOLTAGE CUT-OFF LEVEL: 1.0 V | Range: | 0.1 to 1.0 V secondary in steps of 0.1 |

Some relay messaging characteristics can be modified to suit different situations using the display properties settings.

- LANGUAGE: This setting selects the language used to display settings, actual values, and targets. The range is dependent on the order code of the relay.
- FLASH MESSAGE TIME: Flash messages are status, warning, error, or information messages displayed for several seconds in response to certain key presses during setting programming. These messages override any normal messages. The duration of a flash message on the display can be changed to accommodate different reading rates.
- DEFAULT MESSAGE TIMEOUT: If the keypad is inactive for a period of time, the relay automatically reverts to a default message. The inactivity time is modified via this setting to ensure messages remain on the screen long enough during programming or reading of actual values.
- DEFAULT MESSAGE INTENSITY: To extend phosphor life in the vacuum fluorescent display, the brightness can be attenuated during default message display. During keypad interrogation, the display always operates at full brightness.
- SCREEN SAVER FEATURE and SCREEN SAVER WAIT TIME: These settings are only visible if the T60 has a liquid crystal display (LCD) and control its backlighting. When the SCREen SAVER FEATURE is "Enabled", the LCD backlighting is turned off after the default message timeout followed by the sCreen saver wait time, providing that no keys have been pressed and no target messages are active. When a keypress occurs or a target becomes active, the LCD backlighting is turned on.
- CURRENT CUT-OFF LEVEL: This setting modifies the current cut-off threshold. Very low currents (1 to $2 \%$ of the rated value) are very susceptible to noise. Some customers prefer very low currents to display as zero, while others prefer the current be displayed even when the value reflects noise rather than the actual signal. The T60 applies a cutoff value to the magnitudes and angles of the measured currents. If the magnitude is below the cut-off level, it is substituted with zero. This applies to phase and ground current phasors as well as true RMS values and symmetrical components. The cut-off operation applies to quantities used for metering, protection, and control, as well as those used by communications protocols. Note that the cut-off level for the sensitive ground input is 10 times lower that the CURRENT CUT-OFF LEVEL setting value. Raw current samples available via oscillography are not subject to cut-off.
- VOLTAGE CUT-OFF LEVEL: This setting modifies the voltage cut-off threshold. Very low secondary voltage measurements (at the fractional volt level) can be affected by noise. Some customers prefer these low voltages to be displayed as zero, while others prefer the voltage to be displayed even when the value reflects noise rather than the actual signal. The T60 applies a cut-off value to the magnitudes and angles of the measured voltages. If the magnitude is below the cut-off level, it is substituted with zero. This operation applies to phase and auxiliary voltages, and symmetrical
components. The cut-off operation applies to quantities used for metering, protection, and control, as well as those used by communications protocols. Raw samples of the voltages available via oscillography are not subject cut-off.
The current cut-off level and the voltage cut-off level are used to determine the metered power cut-off levels. The power cut-off level is calculated as shown below. For Delta connections:

$$
\begin{equation*}
\text { 3-phase power cut-off }=\frac{\sqrt{3} \times \text { CURRENT CUT-OFF LEVEL } \times \text { VOLTAGE CUT-OFF LEVEL } \times \text { VT primary } \times \text { CT primary }}{\text { VT secondary }} \tag{EQ5.3}
\end{equation*}
$$

For Wye connections:

$$
\begin{aligned}
& \text { 3-phase power cut-off }=\frac{3 \times \text { CURRENT CUT-OFF LEVEL } \times \text { VOLTAGE CUT-OFF LEVEL } \times \text { VT primary } \times \text { CT primary }}{\text { VT secondary }} \quad \text { (EQ 5.4) } \\
& \text { per-phase power cut-off }=\frac{\text { CURRENT CUT-OFF LEVEL } \times \text { VOLTAGE CUT-OFF LEVEL } \times \text { VT primary } \times \text { CT primary }}{\text { VT secondary }} \quad \text { (EQ 5.5) }
\end{aligned}
$$

where VT primary $=\mathrm{VT}$ secondary $\times \mathrm{VT}$ ratio and CT primary $=\mathrm{CT}$ secondary $\times \mathrm{CT}$ ratio.
For example, given the following settings:
CURRENT CUT-OFF LEVEL: "0.02 pu"
voltage cut-off level: "1.0 V"
PHASE CT PRIMARY: "100 A"
PHASE VT SECONDARY: " 66.4 V "
PHASE VT RATIO: "208.00: 1"
PHASE VT CONNECTION: "Delta".
We have:
CT primary = "100 A", and
VT primary $=$ PHASE VT SECONDARY $\times$ PHASE VT RATIO $=66.4 \mathrm{~V} \times 208=13811.2 \mathrm{~V}$
The power cut-off is therefore:

$$
\begin{aligned}
\text { power cut-off } & =(\text { CURRENT CUT-OFF LEVEL } \times \text { VOLTAGE CUT-OFF LEVEL } \times \text { CT primary } \times \mathrm{VT} \text { primary }) / \mathrm{VT} \text { secondary } \\
& =(\sqrt{3} \times 0.02 \mathrm{pu} \times 1.0 \mathrm{~V} \times 100 \mathrm{~A} \times 13811.2 \mathrm{~V}) / 66.4 \mathrm{~V} \\
& =720.5 \text { watts }
\end{aligned}
$$

Any calculated power value below this cut-off will not be displayed. As well, the three-phase energy data will not accumulate if the total power from all three phases does not exceed the power cut-off.

Lower the voltage cut-off Level and current cut-off Level with care as the relay accepts lower signals as valid measurements. Unless dictated otherwise by a specific application, the default settings of " 0.02 pu" for CURRENT CUT-OFF LEVEL and "1.0 V" for VOLTAGE CUT-OFF LEVEL are recommended.

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{2}$ CLEAR RELAY RECORDS

| $\square$ CLEAR RELAYRECORDS |  | (1) | CLEAR USER REPORTS: Off | Range: FlexLogic ${ }^{\text {TM }}$ operand <br> Range: FlexLogic ${ }^{\text {™ }}$ operand |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE |  | CLEAR EVENT RECORDS: Off |  |  |
|  | MESSAGE | - | CLEAR OSCILLOGRAPHY? No | Range: | FlexLogic ${ }^{\text {TM }}$ operand |
|  | MESSAGE | Q | CLEAR DATA LOGGER: Off | Range: | FlexLogic ${ }^{\text {TM }}$ operand |
|  | MESSAGE | - | CLEAR ARC AMPS 1: Off | Range: | FlexLogic ${ }^{\text {TM }}$ operand |
|  | MESSAGE | - | CLEAR ARC AMPS 2: Off | Range: | FlexLogic ${ }^{\text {™ }}$ operand |
|  | MESSAGE | - | CLEAR DEMAND: Off | Range: | FlexLogic ${ }^{\text {TM }}$ operand |
|  | MESSAGE | - | CLEAR ENERGY: Off | Range: | FlexLogic ${ }^{\text {TM }}$ operand |
|  | MESSAGE | - | RESET UNAUTH ACCESS: Off | Range: | FlexLogic ${ }^{\text {TM }}$ operand |
|  | MESSAGE | (4) | CLEAR DIR I/O STATS: Off | Range: | FlexLogic™ operand. Valid only for units with Direct I/O module. |

Selected records can be cleared from user-programmable conditions with FlexLogic ${ }^{\text {TM }}$ operands. Assigning user-programmable pushbuttons to clear specific records are typical applications for these commands. Since the T60 responds to rising edges of the configured FlexLogic ${ }^{\text {TM }}$ operands, they must be asserted for at least 50 ms to take effect.
Clearing records with user-programmable operands is not protected by the command password. However, user-programmable pushbuttons are protected by the command password. Thus, if they are used to clear records, the user-programmable pushbuttons can provide extra security if required.

For example, to assign User-Programmable Pushbutton 1 to clear demand records, the following settings should be applied.

1. Assign the clear demand function to Pushbutton 1 by making the following change in the SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{ }$ CLEAR RELAY RECORDS menu:

CLEAR DEMAND: "PUSHBUTTON 1 ON"
2. Set the properties for User-Programmable Pushbutton 1 by making the following changes in the SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{ }$ USER-PROGRAMMABLE PUSHBUTTONS $\Rightarrow$ USER PUSHBUTTON 1 menu:

PUSHBUTTON 1 FUNCTION: "Self-reset"
PUSHBTN 1 DROP-OUT TIME: " 0.20 s"
a) MAIN MENU

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS

| $\square$ COMMUNICATIONS | (1) | $\square$ SERIAL PORTS | See below. |
| :---: | :---: | :---: | :---: |
| MESSAG | $\square$ | $\square$ NETWORK | See page 5-12. |
| MESSAG | - | $\square$ MODBUS PROTOCOL | See page 5-12. |
| MESSAG | (2) | $\square$ DNP PROTOCOL | See page 5-13. |
| MESSAG | - | $\square$ DNP / IEC104 $\square$ POINT LISTS | See page 5-15. |
| MESSAG | - | $\square$ IEC 61850 PROTOCOL | See page 5-16. |
| MESSAG | - | $\square$ WEB SERVER $\square$ HTTP PROTOCOL | See page 5-18. |
| MESSAG | - | $\square$ TFTP PROTOCOL | See page 5-19. |
| MESSAG | - | IEC 60870-5-104 PROTOCOL | See page 5-19. |
| MESSAG | - | $\square$ SNTP PROTOCOL | See page 5-20. |
| MESSAG | - | $\square$ EGD PROTOCOL | See page 5-20. |

b) SERIAL PORTS

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow$ SERIAL PORTS

| $\square$ SERIAL PORTS |  | (1) | RS485 COM1 BAUD RATE: 19200 | Range: 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600, 115200. Only active if CPU 9E is ordered. |
| :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | RS485 COM1 PARITY: None | Range: None, Odd, Even <br> Only active if CPU Type 9E is ordered |
|  | MESSAGE | $\otimes$ | RS485 COM1 RESPONSE MIN TIME: <br> 0 ms | Range: 0 to 1000 ms in steps of 10 <br> Only active if CPU Type 9E is ordered |
|  | MESSAGE | - | RS485 COM2 BAUD <br> RATE: 19200 | Range: 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600, 115200 |
|  | MESSAGE | Q | RS485 COM2 PARITY: None | Range: None, Odd, Even |
|  | MESSAGE | (2) | RS485 COM2 RESPONSE MIN TIME: 0 ms | Range: 0 to 1000 ms in steps of 10 |

The T60 is equipped with up to 3 independent serial communication ports. The faceplate RS232 port is intended for local use and is fixed at 19200 baud and no parity. The rear COM1 port type is selected when ordering: either an Ethernet or RS485 port. The rear COM2 port is RS485. The RS485 ports have settings for baud rate and parity. It is important that these parameters agree with the settings used on the computer or other equipment that is connected to these ports. Any of
these ports may be connected to a computer running EnerVista UR Setup. This software can download and upload setting files, view measured parameters, and upgrade the relay firmware. A maximum of 32 relays can be daisy-chained and connected to a DCS, PLC or PC using the RS485 ports.

For each RS485 port, the minimum time before the port will transmit after receiving data from a host can be set. This feature allows operation with hosts which hold the RS485 transmitter active for some time after each transmission.
c) NETWORK

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \Omega$ COMMUNICATIONS $\Rightarrow 』$ NETWORK


These messages appear only if the T60 is ordered with an Ethernet card.
The IP addresses are used with the DNP, Modbus/TCP, IEC 61580, IEC 60870-5-104, TFTP, and HTTP protocols. The NSAP address is used with the IEC 61850 protocol over the OSI (CLNP/TP4) stack only. Each network protocol has a setting for the TCP/UDP PORT NUMBER. These settings are used only in advanced network configurations and should normally be left at their default values, but may be changed if required (for example, to allow access to multiple UR-series relays behind a router). By setting a different TCPIUDP PORT NUMBER for a given protocol on each UR-series relay, the router can map the relays to the same external IP address. The client software (EnerVista UR Setup, for example) must be configured to use the correct port number if these settings are used.


When the NSAP address, any TCP/UDP Port Number, or any User Map setting (when used with DNP) is changed, it will not become active until power to the relay has been cycled (OFF/ON).
Do not set more than one protocol to use the same TCPIUDP PORT NUMBER, as this will result in unreliable operation of those protocols.
d) MODBUS PROTOCOL

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ MODBUS PROTOCOL


The serial communication ports utilize the Modbus protocol, unless configured for DNP or IEC 60870-5-104 operation (see descriptions below). This allows the EnerVista UR Setup software to be used. The UR operates as a Modbus slave device only. When using Modbus protocol on the RS232 port, the T60 will respond regardless of the MODBUS SLAVE ADDRESS programmed. For the RS485 ports each T60 must have a unique address from 1 to 254 . Address 0 is the broadcast address which all Modbus slave devices listen to. Addresses do not have to be sequential, but no two devices can have the same address or conflicts resulting in errors will occur. Generally, each device added to the link should use the next higher address starting at 1. Refer to Appendix B for more information on the Modbus protocol.

Changes to the MODBUS TCP PORT NUMBER setting will not take effect until the T60 is restarted.
e) DNP PROTOCOL

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ } \sqrt{ }$ DNP PROTOCOL



The T60 supports the Distributed Network Protocol (DNP) version 3.0. The T60 can be used as a DNP slave device connected to multiple DNP masters (usually an RTU or a SCADA master station). Since the T60 maintains two sets of DNP data change buffers and connection information, two DNP masters can actively communicate with the T60 at one time.

The DNP Channels sub-menu is shown below.
PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ DNP PROTOCOL $\Rightarrow$ DNP CHANNELS

| $\square$ DNP CHANNELS |  | (1) | DNP CHANNEL 1 PORT: NETWORK | Range: | NONE, COM1-RS485, COM2-RS485, FRONT PANEL - RS232, NETWORK |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | DNP CHANNEL 2 PORT: COM2 - RS485 | Range: | NONE, COM1-RS485, COM2-RS485, FRONT PANEL - RS232, NETWORK |

The DNP CHANNEL 1(2) PORT settings select the communications port assigned to the DNP protocol for each channel. Once DNP is assigned to a serial port, the Modbus protocol is disabled on that port. Note that COM1 can be used only in nonEthernet UR relays. When this setting is set to "Network", the DNP protocol can be used over either TCP/IP or UDP/IP. Refer to Appendix E for additional information on the DNP protocol.

The DNP NETWORK CLIENT ADDRESS settings can force the T60 to respond to a maximum of five specific DNP masters. The settings in this sub-menu are shown below.

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ DNP PROTOCOL $\Rightarrow$ DNP NETWORK CLIENT ADDRESSES


The DNP UNSOL RESPONSE FUNCTION should be "Disabled" for RS485 applications since there is no collision avoidance mechanism. The DNP UNSOL RESPONSE TIMEOUT sets the time the T60 waits for a DNP master to confirm an unsolicited response. The DNP UNSOL RESPONSE MAX RETRIES setting determines the number of times the T60 retransmits an unsolic-
ited response without receiving confirmation from the master; a value of " 255 " allows infinite re-tries. The DNP UNSOL RESPONSE DEST ADDRESS is the DNP address to which all unsolicited responses are sent. The IP address to which unsolicited responses are sent is determined by the T60 from the current TCP connection or the most recent UDP message.
The dNP SCALE FACTOR settings are numbers used to scale Analog Input point values. These settings group the T60 Analog Input data into types: current, voltage, power, energy, and other. Each setting represents the scale factor for all Analog Input points of that type. For example, if the DNP voltage scale factor setting is set to a value of 1000, all DNP Analog Input points that are voltages will be returned with values 1000 times smaller (e.g. a value of 72000 V on the T 60 will be returned as 72 ). These settings are useful when analog input values must be adjusted to fit within certain ranges in DNP masters. Note that a scale factor of 0.1 is equivalent to a multiplier of 10 (i.e. the value will be 10 times larger).
The DNP DEFAULT DEADBAND settings determine when to trigger unsolicited responses containing Analog Input data. These settings group the T60 Analog Input data into types: current, voltage, power, energy, and other. Each setting represents the default deadband value for all Analog Input points of that type. For example, to trigger unsolicited responses from the T60 when any current values change by 15 A, the DNP CURRENT DEFAULT DEADBAND setting should be set to " 15 ". Note that these settings are the deadband default values. DNP Object 34 points can be used to change deadband values, from the default, for each individual DNP Analog Input point. Whenever power is removed and re-applied to the T60, the default deadbands will be in effect.

The dNP time sync in period setting determines how often the Need Time Internal Indication (IIN) bit is set by the T60. Changing this time allows the DNP master to send time synchronization commands more or less often, as required.

The dNP message fragment size setting determines the size, in bytes, at which message fragmentation occurs. Large fragment sizes allow for more efficient throughput; smaller fragment sizes cause more application layer confirmations to be necessary which can provide for more robust data transfer over noisy communication channels.

When the DNP data points (analog inputs and/or binary inputs) are configured for Ethernet-enabled relays, check the "DNP Points Lists" T60 web page to view the points lists. This page can be viewed with a web browser by entering the T60 IP address to access the T60 "Main Menu", then by selecting the "Device Information Menu" > "DNP Points Lists" menu item.

The DNP OBJECT N DEFAULT VARIATION settings allow the user to select the DNP default variation number for object types 1 , $2,20,21,22,23,30$, and 32 . The default variation refers to the variation response when variation 0 is requested and/or in class 0,1 , 2, or 3 scans. Refer to the DNP Implementation section in Appendix E for additional details.
The DNP binary outputs typically map one-to-one to IED data points. That is, each DNP binary output controls a single physical or virtual control point in an IED. In the T60 relay, DNP binary outputs are mapped to virtual inputs. However, some legacy DNP implementations use a mapping of one DNP binary output to two physical or virtual control points to support the concept of trip/close (for circuit breakers) or raise/lower (for tap changers) using a single control point. That is, the DNP master can operate a single point for both trip and close, or raise and lower, operations. The T60 can be configured to support paired control points, with each paired control point operating two virtual inputs. The DNP NUMBER OF PAIRED CONTROL POINTS setting allows configuration of from 0 to 32 binary output paired controls. Points not configured as paired operate on a one-to-one basis.

The DNP ADDRESS setting is the DNP slave address. This number identifies the T60 on a DNP communications link. Each DNP slave should be assigned a unique address.
f) DNP / IEC 60870-5-104 POINT LISTS

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ DNP / IEC104 POINT LISTS


The binary and analog inputs points for the DNP protocol, or the MSP and MME points for IEC 60870-5-104 protocol, can configured to a maximum of 256 points. The value for each point is user-programmable and can be configured by assigning FlexLogic ${ }^{T M}$ operands for binary inputs / MSP points or FlexAnalog parameters for analog inputs / MME points.

The menu for the binary input points (DNP) or MSP points (IEC 60870-5-104) is shown below.
PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ DNP / IEC104 POINT LISTS $\Rightarrow$ BINARY INPUT / MSP POINTS


Up to 256 binary input points can be configured for the DNP or IEC 60870-5-104 protocols. The points are configured by assigning an appropriate FlexLogic ${ }^{\text {TM }}$ operand. Refer to the Introduction to FlexLogic ${ }^{\text {TM }}$ section in this chapter for the full range of assignable operands.
The menu for the analog input points (DNP) or MME points (IEC 60870-5-104) is shown below.
PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ DNP / IEC104 POINT LISTS $\Rightarrow \sqrt{ }$ ANALOG INPUT / MME POINTS


Up to 256 analog input points can be configured for the DNP or IEC 60870-5-104 protocols. The analog point list is configured by assigning an appropriate FlexAnalog parameter to each point. Refer to Appendix A: FlexAnalog Parameters for the full range of assignable parameters.


The DNP / IEC 60870-5-104 point lists always begin with point 0 and end at the first "Off" value. Since DNP / IEC 60870-5-104 point lists must be in one continuous block, any points assigned after the first "Off" point are ignored.

Changes to the DNP / IEC 60870-5-104 point lists will not take effect until the T60 is restarted.
g) IEC 61850 PROTOCOL

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ IEC 61850 PROTOCOL $\Rightarrow$ GSSE / GOOSE CONFIGURATION



The IEC 61850 protocol settings are not available if CPU Type 9E is ordered.

The T60 supports the Manufacturing Message Specification (MMS) protocol as specified by IEC 61850. MMS is supported over two protocol stacks: TCP/IP over ethernet and TP4/CLNP (OSI) over ethernet. The T60 operates as an IEC 61850 server. The Remote Inputs/Outputs section in this chapter describe the peer-to-peer GSSE/GOOSE message scheme.
The REMOTE I/O TRANSFER METHOD selects the method used to transfer remote input/output data. This can be either IEC 61850 GSSE, IEC 61850 GOOSE, or none (remote inputs/outputs disabled). GOOSE messages are more efficient and can make use of Ethernet priority tagging and virtual LAN functionality. All relays exchanging remote input/output data must be set to the same transfer method.

The default gsse/goose update time sets the time between GSSE or GOOSE messages when there are no remote output state changes to be sent. When remote output data changes, GSSE or GOOSE messages are sent immediately. This setting controls the steady-state 'heartbeat' time interval.

The GOOSE TRANSMIT VLAN PRIORITY setting indicates the Ethernet priority of GOOSE messages. This allows GOOSE messages to have higher priority than other Ethernet data. The GOOSE TRANSMIT ETYPE APPID setting allows the selection of a specific application ID for each GOOSE sending device. This value can be left at its default if the feature is not required. Both the GOOSE TRANSMIT VLAN PRIORITY and GOOSE TRANSMIT ETYPE APPID settings are required by IEC 61850.
The LD NAME setting represents the MMS domain name (IEC 61850 logical device) where all IEC/MMS logical nodes are located. The IECIMMS TCP PORT NUMBER setting allows the user to change the TCP port number for MMS connections. The INCLUDE NON-IEC DATA setting determines whether or not the "UR" MMS domain will be available. This domain contains a large number of UR-series specific data items that are not available in the IEC 61850 logical nodes. This data does not follow the IEC 61850 naming conventions. For communications schemes that strictly follow the IEC 61850 standard, this setting should be "Disabled".
The NUMBER OF STATUS POINTS IN GGIO1 setting determines the number of "Ind" (single point status indications) that are instantiated in the GGIO1 logical node. The indication points in GGIO1 are mapped to FlexStates in the T60. These FlexStates allow user-customized access to the FlexLogic ${ }^{\text {TM }}$ operand states in the relay.
The SERVER SCANNING feature should be set to "Disabled" when IEC 61850 client/server functionality is not required. IEC 61850 has two modes of functionality: GOOSE/GSSE inter-device communication and client/server communication. If the GOOSE/GSSE functionality is required without the IEC 61850 client server feature, then server scanning can be disabled to increase CPU resources. When server scanning is disabled, there will be not updated to the IEC 61850 logical node status values in the T60. Clients will still be able to connect to the server (T60 relay), but most data values will not be updated. This setting does not affect GOOSE/GSSE operation.


Changes to the LD NAME, NUMBER OF STATUS POINTS IN GGIO1, and SERVER SCANNING settings will not take effect until the T60 is restarted.

The IEC 61850 logical node name prefix settings are used to create name prefixes to uniquely identify each logical node. For example, the logical node "PTOC1" may have the name prefix "abc". The full logical node name will then be "abcMMXU1". Valid characters for the logical node name prefixes are upper and lowercase letters, numbers, and the underscore ( $\_$) character, and the first character in the prefix must be a letter. This conforms to the IEC 61850 standard.

The MMXU deadband settings represent the deadband values used to determine when the update the MMXU "mag" and "cVal" values from the associated "instmag" and "instcVal" values. The "mag" and "cVal" values are used for the IEC 61850 buffered and unbuffered reports. These settings correspond to the associated "db" data items in the CF functional constraint of the MMXU logical node, as per the IEC 61850 standard. According to IEC 61850-7-3, the db value "shall represent the percentage of difference between the max and min in units of $0.00 \%$ ". Thus, it is important to know the maximum value for each MMXU measured quantity, since this represents the $100.00 \%$ value for the deadband. The minimum value for all quantities is 0 ; the maximum values are as follows:

```
phase current: 46 \times phase CT primary setting
neutral current: 46 × ground CT primary setting
voltage: 275 × VT ratio setting
power (real, reactive, and apparent): 46 < phase CT primary setting }\times275\times\textrm{VT}\mathrm{ ratio setting
frequency: 90 Hz
power factor: 2
```

The GGIO2 control configuration settings are used to set the control model for each input. The available choices are "0" (status only), "1" (direct control), and "2" (SBO with normal security). The GGIO2 control points are used to control the T60 virtual inputs.

Since GSSE/GOOSE messages are multicast ethernet by specification, they will not usually be forwarded by network routers. However, GOOSE messages may be fowarded by routers if the router has been configured for VLAN functionality.

## h) WEB SERVER HTTP PROTOCOL

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ WEB SERVER HTTP PROTOCOL


The T60 contains an embedded web server and is capable of transferring web pages to a web browser such as Microsoft Internet Explorer or Netscape Navigator. This feature is available only if the T60 has the ethernet option installed. The web pages are organized as a series of menus that can be accessed starting at the T60 "Main Menu". Web pages are available
showing DNP and IEC 60870-5-104 points lists, Modbus registers, Event Records, Fault Reports, etc. The web pages can be accessed by connecting the UR and a computer to an ethernet network. The Main Menu will be displayed in the web browser on the computer simply by entering the IP address of the T60 into the "Address" box on the web browser.

## i) TFTP PROTOCOL

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ TFTP PROTOCOL


The Trivial File Transfer Protocol (TFTP) can be used to transfer files from the T60 over a network. The T60 operates as a TFTP server. TFTP client software is available from various sources, including Microsoft Windows NT. The dir . txt file obtained from the T60 contains a list and description of all available files (event records, oscillography, etc.).
j) IEC 60870-5-104 PROTOCOL

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ IEC 60870-5-104 PROTOCOL


The T60 supports the IEC 60870-5-104 protocol. The T60 can be used as an IEC 60870-5-104 slave device connected to a maximum of two masters (usually either an RTU or a SCADA master station). Since the T60 maintains two sets of IEC 60870-5-104 data change buffers, no more than two masters should actively communicate with the T60 at one time.

The IEC ------- DEFAULT THRESHOLD settings are used to determine when to trigger spontaneous responses containing M_ME_NC_1 analog data. These settings group the T60 analog data into types: current, voltage, power, energy, and other. Each setting represents the default threshold value for all M_ME_NC_1 analog points of that type. For example, to trigger spontaneous responses from the T60 when any current values change by 15 A , the IEC CURRENT DEFAULT THRESHOLD setting should be set to 15 . Note that these settings are the default values of the deadbands. P_ME_NC_1 (parameter of measured value, short floating point value) points can be used to change threshold values, from the default, for each individual M_ME_NC_1 analog point. Whenever power is removed and re-applied to the T60, the default thresholds will be in effect.

The IEC 60870-5-104 and DNP protocols can not be used at the same time. When the IEC 60870-5-104 FUNCTION setting is set to "Enabled", the DNP protocol will not be operational. When this setting is changed it will not become active until power to the relay has been cycled (Off/On).

## k) SNTP PROTOCOL

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ SNTP PROTOCOL

| $\square$ SNTP PROTOCOL |  | (1) | SNTP FUNCTION: Disabled | Range: Enabled, Disabled |
| :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | SNTP SERVER IP ADDR: 0.0.0.0 | Range: Standard IP address format |
|  | MESSAGE | (4) | SNTP UDP PORT NUMBER: 123 | Range: 0 to 65535 in steps of 1 |

The T60 supports the Simple Network Time Protocol specified in RFC-2030. With SNTP, the T60 can obtain clock time over an Ethernet network. The T60 acts as an SNTP client to receive time values from an SNTP/NTP server, usually a dedicated product using a GPS receiver to provide an accurate time. Both unicast and broadcast SNTP are supported.
If SNTP functionality is enabled at the same time as IRIG-B, the IRIG-B signal provides the time value to the T60 clock for as long as a valid signal is present. If the IRIG-B signal is removed, the time obtained from the SNTP server is used. If either SNTP or IRIG-B is enabled, the T60 clock value cannot be changed using the front panel keypad.

To use SNTP in unicast mode, SNTP SERVER IP ADDR must be set to the SNTP/NTP server IP address. Once this address is set and SNTP FUNCTION is "Enabled", the T60 attempts to obtain time values from the SNTP/NTP server. Since many time values are obtained and averaged, it generally takes three to four minutes until the T60 clock is closely synchronized with the SNTP/NTP server. It may take up to two minutes for the T60 to signal an SNTP self-test error if the server is offline.

To use SNTP in broadcast mode, set the SNTP SERVER IP ADDR setting to "0.0.0.0" and SNTP FUNCTION to "Enabled". The T60 then listens to SNTP messages sent to the "all ones" broadcast address for the subnet. The T60 waits up to eighteen minutes (>1024 seconds) without receiving an SNTP broadcast message before signaling an SNTP self-test error.

The UR-series relays do not support the multicast or anycast SNTP functionality.
I) EGD PROTOCOL

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \Omega$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ EGD PROTOCOL



The Ethernet Global Data (EGD) protocol settings are not available if CPU Type 9E is ordered.

The relay supports one fast Ethernet Global Data (EGD) exchange and two slow EGD exchanges. There are 20 data items in the fast-produced EGD exchange and 50 data items in each slow-produced exchange.

Ethernet Global Data (EGD) is a suite of protocols used for the real-time transfer of data for display and control purposes. The relay can be configured to 'produce' EGD data exchanges, and other devices can be configured to 'consume' EGD data exchanges. The number of produced exchanges (up to three), the data items in each exchange (up to 50), and the exchange production rate can be configured.
EGD cannot be used to transfer data between UR-series relays. The relay supports EGD production only. An EGD exchange will not be transmitted unless the destination address is non-zero, and at least the first data item address is set to a valid Modbus register address. Note that the default setting value of " 0 " is considered invalid.

The settings menu for the fast EGD exchange is shown below:
PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ EGD PROTOCOL $\Rightarrow$ FAST PROD EXCH 1 CONFIGURATION


Fast exchanges ( 50 to 1000 ms ) are generally used in control schemes. The T60 has one fast exchange (Exchange 1) and two slow exchanges (Exchanges 2 and 3 ).
The settings menu for the slow EGD exchanges is shown below:
PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ EGD PROTOCOL $\Rightarrow$ SLOW PROD EXCH 1(2) CONFIGURATION

| SLOW PROD EXCH 1 CONFIGURATION | (1) | EXCH 1 FUNCTION: Disable | Range: | Disable, Enable |
| :---: | :---: | :---: | :---: | :---: |
| MESSAGE | - | $\begin{aligned} & \text { EXCH 1 DESTINATION: } \\ & \text { 0.0.0.0 } \end{aligned}$ | Range: | standard IP address |
| MESSAGE | - | EXCH 1 DATA RATE: 1000 ms | Range: | 500 to 1000 ms in steps of 1 |
| MESSAGE | - | EXCH 1 DATA ITEM 1: 0 | Range: | 0 to 65535 in steps of 1 <br> (Modbus register address range in decimal) |
|  |  | $\downarrow$ |  |  |
| MESSAGE | (4) | $\begin{aligned} & \text { EXCH } 1 \text { DATA ITEM } 50 \text { : } \\ & 0 \end{aligned}$ | Range: | 0 to 65535 in steps of 1 <br> (Modbus register address range in decimal) |

Slow EGD exchanges ( 500 to 1000 ms ) are generally used for the transfer and display of data items. The settings for the fast and slow exchanges are described below:

- EXCH 1 DESTINATION: This setting specifies the destination IP address of the produced EGD exchange. This is usually unicast or broadcast.
- EXCH 1 DATA RATE: This setting specifies the rate at which this EGD exchange is transmitted. If the setting is 50 ms , the exchange data will be updated and sent once every 50 ms . If the setting is 1000 ms , the exchange data will be updated and sent once per second. EGD exchange 1 has a setting range of 50 to 1000 ms . Exchanges 2 and 3 have a setting range of 500 to 1000 ms .
- EXCH 1 DATA ITEM 1 to 20/50: These settings specify the data items that are part of this EGD exchange. Almost any data from the T60 memory map can be configured to be included in an EGD exchange. The settings are the starting Modbus register address for the data item in decimal format. Refer to Appendix B for the complete Modbus memory map. Note that the Modbus memory map displays shows addresses in hexadecimal format; as such, it will be necessary to convert these values to decimal format before entering them as values for these setpoints.

To select a data item to be part of an exchange, it is only necessary to choose the starting Modbus address of the item. That is, for items occupying more than one Modbus register (e.g. 32 bit integers and floating point values), only the first Modbus address is required. The EGD exchange configured with these settings contains the data items up to the first setting that contains a Modbus address with no data, or 0 . That is, if the first three settings contain valid Modbus addresses and the fourth is 0 , the produced EGD exchange will contain three data items.

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \Omega$ MODBUS USER MAP


The Modbus User Map provides read-only access for up to 256 registers. To obtain a memory map value, enter the desired address in the ADDRESS line (this value must be converted from hex to decimal format). The corresponding value is displayed in the VALUE line. A value of " 0 " in subsequent register ADDRESS lines automatically returns values for the previous ADDRESS lines incremented by " 1 ". An address value of " 0 " in the initial register means "none" and values of " 0 " will be displayed for all registers. Different ADDRESS values can be entered as required in any of the register positions.
5.2.6 REAL TIME CLOCK

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ REAL TIME CLOCK

| $\square$ REAL TIME$\square$ CLOCK |  | (1) | IRIG-B SIGNAL TYPE: None | Range: None, DC Shift, Amplitude Modulated |
| :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | (2) | REAL TIME CLOCK EVENTS: Disabled | Range: Disabled, Enabled |

The date and time can be synchronized a known time base and to other relays using an IRIG-B signal. It has the same accuracy as an electronic watch, approximately $\pm 1$ minute per month. If an IRIG-B signal is connected to the relay, only the current year needs to be entered. See the COMMANDS $\Rightarrow \sqrt{ }$ SET DATE AND TIME menu to manually set the relay clock.

The real time clock events setting allows changes to the date and/or time to be captured in the event record.

### 5.2.7 USER-PROGRAMMABLE FAULT REPORT

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \|$ USER-PROGRAMMABLE FAULT REPORT $\Rightarrow$ USER-PROGRAMMABLE FAULT REPORT 1(2)

| $\square$ USER-PROGRAMMABLE $\square$ FAULT REPORT 1 | (1) | FAULT REPORT 1 FUNCTION: Disabled | Range: Disabled, Enabled |
| :---: | :---: | :---: | :---: |
| MESSAGE | - | PRE-FAULT 1 TRIGGER: Off | Range: FlexLogic ${ }^{\text {TM }}$ operand |
| MESSAGE | Q | FAULT 1 TRIGGER: Off | Range: FlexLogic ${ }^{\text {TM }}$ operand |
| MESSAGE | - | FAULT REPORT 1 \#1: Off | Range: Off, any actual value analog parameter |
| MESSAGE | - | FAULT REPORT 1 \#2: Off | Range: Off, any actual value analog parameter |
|  |  | $\downarrow$ |  |
| MESSAGE | Q | FAULT REPORT 1 \#32: Off | Range: Off, any actual value analog parameter |

When enabled, this function monitors the pre-fault trigger. The pre-fault data are stored in the memory for prospective creation of the fault report on the rising edge of the pre-fault trigger. The element waits for the fault trigger as long as the prefault trigger is asserted, but not shorter than 1 second. When the fault trigger occurs, the fault data is stored and the complete report is created. If the fault trigger does not occur within 1 second after the pre-fault trigger drops out, the element resets and no record is created.

The user programmable record contains the following information: the user-programmed relay name, detailed firmware revision (4.8x, for example) and relay model (T60), the date and time of trigger, the name of pre-fault trigger (specific FlexLogic $^{\text {TM }}$ operand), the name of fault trigger (specific FlexLogic ${ }^{T M}$ operand), the active setting group at pre-fault trigger, the active setting group at fault trigger, pre-fault values of all programmed analog channels (one cycle before pre-fault trigger), and fault values of all programmed analog channels (at the fault trigger).

The report includes fault duration times for each of the breakers (created by the Breaker Arcing Current feature). To include fault duration times in the fault report, the user must enable and configure Breaker Arcing Current feature for each of the breakers. Fault duration is reported on a per-phase basis.

Each fault report is stored as a file to a maximum capacity of ten files. An eleventh trigger overwrites the oldest file. The EnerVista UR Setup software is required to view all captured data. A FAULT RPT TRIG event is automatically created when the report is triggered.

The relay includes two user-programmable fault reports to enable capture of two types of trips (for example, trip from thermal protection with the report configured to include temperatures, and short-circuit trip with the report configured to include voltages and currents). Both reports feed the same report file queue.

The last record is available as individual data items via communications protocols.

- PRE-FAULT 1 TRIGGER: Specifies the FlexLogic ${ }^{\text {TM }}$ operand to capture the pre-fault data. The rising edge of this operand stores one cycle-old data for subsequent reporting. The element waits for the fault trigger to actually create a record as long as the operand selected as PRE-FAULT TRIGGER is "On". If the operand remains "Off" for 1 second, the element resets and no record is created.
- FAULT 1 TRIGGER: Specifies the FlexLogic ${ }^{\text {TM }}$ operand to capture the fault data. The rising edge of this operand stores the data as fault data and results in a new report. The trigger (not the pre-fault trigger) controls the date and time of the report.
- FAULT REPORT 1 \#1 to \#32: These settings specify an actual value such as voltage or current magnitude, true RMS, phase angle, frequency, temperature, etc., to be stored should the report be created. Up to 32 channels can be configured. Two reports are configurable to cope with variety of trip conditions and items of interest.
a) MAIN MENU

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ OSCILLOGRAPHY


Oscillography records contain waveforms captured at the sampling rate as well as other relay data at the point of trigger. Oscillography records are triggered by a programmable FlexLogic ${ }^{\text {TM }}$ operand. Multiple oscillography records may be captured simultaneously.

The NUMBER OF RECORDS is selectable, but the number of cycles captured in a single record varies considerably based on other factors such as sample rate and the number of operational CT/VT modules. There is a fixed amount of data storage for oscillography; the more data captured, the less the number of cycles captured per record. See the ACTUAL VALUES $\Rightarrow \sqrt{ } \Rightarrow$ RECORDS $\Rightarrow \sqrt{ }$ OSCILLOGRAPHY menu to view the number of cycles captured per record. The following table provides sample configurations with corresponding cycles/record.

Table 5-1: OSCILLOGRAPHY CYCLESIRECORD EXAMPLE

| \# RECORDS | \# CT/VTS | SAMPLE <br> RATE | \# DIGITALS | \# ANALOGS | CYCLESI <br> RECORD |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 8 | 0 | 0 | 1872.0 |
| 1 | 1 | 16 | 16 | 0 | 1685.0 |
| 8 | 1 | 16 | 16 | 0 | 276.0 |
| 8 | 1 | 16 | 16 | 4 | 219.5 |
| 8 | 2 | 16 | 16 | 4 | 93.5 |
| 8 | 2 | 16 | 64 | 16 | 93.5 |
| 8 | 2 | 32 | 64 | 16 | 57.6 |
| 8 | 2 | 64 | 64 | 16 | 32.3 |
| 32 | 2 | 64 | 64 | 16 | 9.5 |

A new record may automatically overwrite an older record if TRIGGER MODE is set to "Automatic Overwrite".
Set the TRIGGER POSITION to a percentage of the total buffer size (e.g. 10\%, 50\%, 75\%, etc.). A trigger position of 25\% consists of $25 \%$ pre- and $75 \%$ post-trigger data. The TRIGGER SOURCE is always captured in oscillography and may be any FlexLogic ${ }^{\text {TM }}$ parameter (element state, contact input, virtual output, etc.). The relay sampling rate is 64 samples per cycle.

The AC INPUT WAVEFORMS setting determines the sampling rate at which AC input signals (i.e. current and voltage) are stored. Reducing the sampling rate allows longer records to be stored. This setting has no effect on the internal sampling rate of the relay which is always 64 samples per cycle, i.e. it has no effect on the fundamental calculations of the device.

When changes are made to the oscillography settings, all existing oscillography records will be CLEARED.

## b) DIGITAL CHANNELS

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ OSCILLOGRAPHY $\Rightarrow \sqrt{ }$ DIGITAL CHANNELS


A digital channel setting selects the FlexLogic ${ }^{\text {TM }}$ operand state recorded in an oscillography trace. The length of each oscillography trace depends in part on the number of parameters selected here. Parameters set to "Off" are ignored. Upon startup, the relay will automatically prepare the parameter list.

## c) ANALOG CHANNELS

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ OSCILLOGRAPHY $\Rightarrow \sqrt{ }$ ANALOG CHANNELS

| ANALOG CHANNELS | (1) | ANALOG CHANNEL 1: Off | Range: Off, any FlexAnalog parameter See Appendix A for complete list. |
| :---: | :---: | :---: | :---: |
|  |  | $\downarrow$ |  |
| MESSAGE | (4) | ANALOG CHANNEL 16: Off | Range: Off, any FlexAnalog parameter <br> See Appendix A for complete list. |

An ANALOG CHANNEL setting selects the metering actual value recorded in an oscillography trace. The length of each oscillography trace depends in part on the number of parameters selected here. Parameters set to "Off" are ignored. The parameters available in a given relay are dependent on: (a) the type of relay, (b) the type and number of CT/VT hardware modules installed, and (c) the type and number of Analog Input hardware modules installed. Upon startup, the relay will automatically prepare the parameter list. A list of all possible analog metering actual value parameters is presented in Appendix A: FlexAnalog Parameters. The parameter index number shown in any of the tables is used to expedite the selection of the parameter on the relay display. It can be quite time-consuming to scan through the list of parameters via the relay keypad/display - entering this number via the relay keypad will cause the corresponding parameter to be displayed.
All eight CT/VT module channels are stored in the oscillography file. The CT/VT module channels are named as follows:
<slot_letter><terminal_number>—<l or V><phase $A, B$, or $C$, or 4th input>
The fourth current input in a bank is called IG, and the fourth voltage input in a bank is called VX. For example, F2-IB designates the IB signal on Terminal 2 of the CT/VT module in slot F. If there are no CT/VT modules and Analog Input modules, no analog traces will appear in the file; only the digital traces will appear.

The source harmonic indices appear as oscillography analog channels numbered from 0 to 23 . These correspond directly to the to the 2 nd to 25th harmonics in the relay as follows:
Analog channel $0 \leftrightarrow 2$ nd harmonic
Analog channel $1 \leftrightarrow 3$ 3rd harmonic
Analog channel $23 \leftrightarrow 25$ th harmonic

PATH: SETTINGS $\Rightarrow \sqrt{ }$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ DATA LOGGER


The data logger samples and records up to 16 analog parameters at a user-defined sampling rate. This recorded data may be downloaded to EnerVista UR Setup and displayed with parameters on the vertical axis and time on the horizontal axis. All data is stored in non-volatile memory, meaning that the information is retained when power to the relay is lost.

For a fixed sampling rate, the data logger can be configured with a few channels over a long period or a larger number of channels for a shorter period. The relay automatically partitions the available memory between the channels in use. Example storage capacities for a system frequency of 60 Hz are shown in the following table.

Table 5-2: DATA LOGGER STORAGE CAPACITY EXAMPLE

| SAMPLING RATE | CHANNELS | DAYS | STORAGE CAPACITY |
| :---: | :---: | :---: | :---: |
| 15 ms | 1 | 0.1 | 1119 s |
|  | 8 | 0.1 | 140 s |
|  | 9 | 0.1 | 124 s |
|  | 1000 ms | 1 | 0.1 |
|  | 16 | 0.7 | 65658 s |
|  | 8 | 0.1 | 8207 s |
|  | 9 | 0.1 | 7295 s |
|  | 16 | 0.1 | 4104 s |
| 6000 ms | 1 | 45.4 | 3931397 s |
|  | 8 | 5.6 | 491425 s |
|  | 9 | 5 | 436822 s |
|  | 3600000 ms | 16 | 2.8 |

## $y$

Changing any setting affecting Data Logger operation will clear any data that is currently in the log.

- DATA LOGGER MODE: This setting configures the mode in which the data logger will operate. When set to "Continuous", the data logger will actively record any configured channels at the rate as defined by the data logger rate. The
data logger will be idle in this mode if no channels are configured. When set to "Trigger", the data logger will begin to record any configured channels at the instance of the rising edge of the DATA LOGGER TRIGGER source FlexLogic ${ }^{\text {TM }}$ operand. The Data Logger will ignore all subsequent triggers and will continue to record data until the active record is full. Once the data logger is full a CLEAR DATA LOGGER command is required to clear the data logger record before a new record can be started. Performing the CLEAR DATA LOGGER command will also stop the current record and reset the data logger to be ready for the next trigger.
- DATA LOGGER TRIGGER: This setting selects the signal used to trigger the start of a new data logger record. Any FlexLogic ${ }^{\text {TM }}$ operand can be used as the trigger source. The DATA LOGGER TRIGGER setting only applies when the mode is set to "Trigger".
- DATA LOGGER RATE: This setting selects the time interval at which the actual value data will be recorded.
- DATA LOGGER CHNL 1(16): This setting selects the metering actual value that is to be recorded in Channel 1(16) of the data log. The parameters available in a given relay are dependent on: the type of relay, the type and number of CT/ VT hardware modules installed, and the type and number of Analog Input hardware modules installed. Upon startup, the relay will automatically prepare the parameter list. A list of all possible analog metering actual value parameters is shown in Appendix A: FlexAnalog Parameters. The parameter index number shown in any of the tables is used to expedite the selection of the parameter on the relay display. It can be quite time-consuming to scan through the list of parameters via the relay keypad/display - entering this number via the relay keypad will cause the corresponding parameter to be displayed.
- DATA LOGGER CONFIG: This display presents the total amount of time the Data Logger can record the channels not selected to "Off" without over-writing old data.

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ DEMAND

| $\square$ DEMAND |  | (1) | CRNT DEMAND METHOD: Thermal Exponential | Range: | Thermal Exponential, Block Interval, Rolling Demand |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | POWER DEMAND METHOD: Thermal Exponential | Range: | Thermal Exponential, Block Interval, Rolling Demand |
|  | MESSAGE | - | DEMAND INTERVAL: <br> 15 MIN | Range: | 5, 10, 15, 20, 30, 60 minutes |
|  | MESSAGE | - | DEMAND TRIGGER: Off | Range: | FlexLogic ${ }^{\text {TM }}$ operand Note: for calculation using Method 2a |

The relay measures current demand on each phase, and three-phase demand for real, reactive, and apparent power. Current and Power methods can be chosen separately for the convenience of the user. Settings are provided to allow the user to emulate some common electrical utility demand measuring techniques, for statistical or control purposes. If the CRNT demand method is set to "Block Interval" and the demand trigger is set to "Off", Method 2 is used (see below). If DEMAND TRIGGER is assigned to any other FlexLogic ${ }^{\text {TM }}$ operand, Method 2 a is used (see below).

The relay can be set to calculate demand by any of three methods as described below:

## CALCULATION METHOD 1: THERMAL EXPONENTIAL

This method emulates the action of an analog peak recording thermal demand meter. The relay measures the quantity (RMS current, real power, reactive power, or apparent power) on each phase every second, and assumes the circuit quantity remains at this value until updated by the next measurement. It calculates the 'thermal demand equivalent' based on the following equation:

$$
\begin{equation*}
d(t)=D\left(1-e^{-k t}\right) \tag{EQ5.6}
\end{equation*}
$$

where: $d=$ demand value after applying input quantity for time $t$ (in minutes) $D=$ input quantity (constant), and $k=2.3 /$ thermal $90 \%$ response time.

The $90 \%$ thermal response time characteristic of 15 minutes is illustrated below. A setpoint establishes the time to reach $90 \%$ of a steady-state value, just as the response time of an analog instrument. A steady state value applied for twice the response time will indicate $99 \%$ of the value.


Figure 5-2: THERMAL DEMAND CHARACTERISTIC

## CALCULATION METHOD 2: BLOCK INTERVAL

This method calculates a linear average of the quantity (RMS current, real power, reactive power, or apparent power) over the programmed demand time interval, starting daily at 00:00:00 (i.e. 12:00 am). The 1440 minutes per day is divided into the number of blocks as set by the programmed time interval. Each new value of demand becomes available at the end of each time interval.

## CALCULATION METHOD 2a: BLOCK INTERVAL (with Start Demand Interval Logic Trigger)

This method calculates a linear average of the quantity (RMS current, real power, reactive power, or apparent power) over the interval between successive Start Demand Interval logic input pulses. Each new value of demand becomes available at the end of each pulse. Assign a FlexLogic ${ }^{\text {TM }}$ operand to the DEMAND TRIGGER setting to program the input for the new demand interval pulses.

If no trigger is assigned in the DEMAND TRIGGER setting and the CRNT DEMAND METHOD is "Block Interval", use calculating method \#2. If a trigger is assigned, the maximum allowed time between 2 trigger signals is 60 minutes. If no trigger signal appears within 60 minutes, demand calculations are performed and available and the algorithm resets and starts the new cycle of calculations. The minimum required time for trigger contact closure is $20 \mu \mathrm{~s}$.

## CALCULATION METHOD 3: ROLLING DEMAND

This method calculates a linear average of the quantity (RMS current, real power, reactive power, or apparent power) over the programmed demand time interval, in the same way as Block Interval. The value is updated every minute and indicates the demand over the time interval just preceding the time of update.
5.2.11 USER-PROGRAMMABLE LEDS

## a) MAIN MENU

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \|$ USER-PROGRAMMABLE LEDS


See below

See page 5-31.

See page 5-31.

## b) LED TEST

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \Downarrow$ USER-PROGRAMMABLE LEDS $\Rightarrow$ LED TEST

| $\square$ LED TEST |  | (1) | LED TEST FUNCTION: Disabled | Range: Disabled, Enabled. |
| :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | (2) |  | Range: FlexLogic ${ }^{\text {TM }}$ operand |

When enabled, the LED Test can be initiated from any digital input or user-programmable condition such as user-programmable pushbutton. The control operand is configured under the LED TEST CONTROL setting. The test covers all LEDs, including the LEDs of the optional user-programmable pushbuttons.
The test consists of three stages.
Stage 1: All 62 LEDs on the relay are illuminated. This is a quick test to verify if any of the LEDs is "burned". This stage lasts as long as the control input is on, up to a maximum of 1 minute. After 1 minute, the test will end.
Stage 2: All the LEDs are turned off, and then one LED at a time turns on for 1 second, then back off. The test routine starts at the top left panel, moving from the top to bottom of each LED column. This test checks for hardware failures that lead to more than one LED being turned on from a single logic point. This stage can be interrupted at any time.
Stage 3: All the LEDs are turned on. One LED at a time turns off for 1 second, then back on. The test routine starts at the top left panel moving from top to bottom of each column of the LEDs. This test checks for hardware failures that lead to more than one LED being turned off from a single logic point. This stage can be interrupted at any time.
When testing is in progress, the LEDs are controlled by the test sequence, rather than the protection, control, and monitoring features. However, the LED control mechanism accepts all the changes to LED states generated by the relay and stores the actual LED states (On or Off) in memory. When the test completes, the LEDs reflect the actual state resulting from relay response during testing. The Reset pushbutton will not clear any targets when the LED Test is in progress.
A dedicated FlexLogic ${ }^{\text {TM }}$ operand, LED TEST IN PROGRESS, is set for the duration of the test. When the test sequence is initiated, the LED Test Initiated event is stored in the Event Recorder.
The entire test procedure is user-controlled. In particular, Stage 1 can last as long as necessary, and Stages 2 and 3 can be interrupted. The test responds to the position and rising edges of the control input defined by the LED TEST CONTROL setting. The control pulses must last at least 250 ms to take effect. The following diagram explains how the test is executed.


Figure 5-3: LED TEST SEQUENCE

## APPLICATION EXAMPLE 1:

Assume one needs to check if any of the LEDs is "burned" through User-Programmable Pushbutton 1. The following settings should be applied. Configure User-Programmable Pushbutton 1 by making the following entries in the SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-PROGRAMMABLE PUSHBUTTONS $\Rightarrow$ USER PUSHBUTTON 1 menu:

## PUSHBUTTON 1 FUNCTION: "Self-reset" <br> PUSHBTN 1 DROP-OUT TIME: " 0.10 s"

Configure the LED test to recognize User-Programmable Pushbutton 1 by making the following entries in the SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-PROGRAMMABLE LEDS $\Rightarrow$ LED TEST menu:

```
LED TEST FUNCTION: "Enabled"
LED TEST CONTROL: "PUSHBUTTON 1 ON"
```

The test will be initiated when the User-Programmable Pushbutton 1 is pressed. The pushbutton should remain pressed for as long as the LEDs are being visually inspected. When finished, the pushbutton should be released. The relay will then automatically start Stage 2. At this point forward, test may be aborted by pressing the pushbutton.

## APPLICATION EXAMPLE 2:

Assume one needs to check if any LEDs are "burned" as well as exercise one LED at a time to check for other failures. This is to be performed via User-Programmable Pushbutton 1.

After applying the settings in Application Example 1, hold down the pushbutton as long as necessary to test all LEDs. Next, release the pushbutton to automatically start Stage 2. Once Stage 2 has started, the pushbutton can be released. When Stage 2 is completed, Stage 3 will automatically start. The test may be aborted at any time by pressing the pushbutton.

## c) TRIP AND ALARM LEDS

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-PROGRAMMABLE LEDS $\Rightarrow \sqrt{ }$ TRIP \& ALARM LEDS


The Trip and Alarm LEDs are on LED Panel 1. Each indicator can be programmed to become illuminated when the selected FlexLogic ${ }^{\text {TM }}$ operand is in the Logic 1 state.
d) USER-PROGRAMMABLE LED 1(48)

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USER-PROGRAMMABLE LEDS $\Rightarrow 』$ USER-PROGRAMMABLE LED 1(48)


There are 48 amber LEDs across the relay faceplate LED panels. Each of these indicators can be programmed to illuminate when the selected FlexLogic ${ }^{\text {TM }}$ operand is in the Logic 1 state.

- LEDs 1 through 24 inclusive are on LED Panel 2; LEDs 25 through 48 inclusive are on LED Panel 3.

Refer to the LED Indicators section in Chapter 4 for the locations of these indexed LEDs. This menu selects the operands to control these LEDs. Support for applying user-customized labels to these LEDs is provided. If the LED X TYPE setting is "Self-Reset" (default setting), the LED illumination will track the state of the selected LED operand. If the LED X TYPE setting is 'Latched', the LED, once lit, remains so until reset by the faceplate RESET button, from a remote device via a communications channel, or from any programmed operand, even if the LED operand state de-asserts.

Table 5-3: RECOMMENDED SETTINGS FOR LED PANEL 2 LABELS

| SETTING | PARAMETER |
| :--- | :--- |
| LED 1 Operand | SETTING GROUP ACT 1 |
| LED 2 Operand | SETTING GROUP ACT 2 |
| LED 3 Operand | SETTING GROUP ACT 3 |
| LED 4 Operand | SETTING GROUP ACT 4 |
| LED 5 Operand | SETTING GROUP ACT 5 |
| LED 6 Operand | SETTING GROUP ACT 6 |
| LED 7 Operand | Off |
| LED 8 Operand | Off |
| LED 9 Operand | Off |
| LED 10 Operand | Off |
| LED 11 Operand | Off |
| LED 12 Operand | Off |


| SETTING | PARAMETER |
| :--- | :--- |
| LED 13 Operand | Off |
| LED 14 Operand | Off |
| LED 15 Operand | Off |
| LED 16 Operand | Off |
| LED 17 Operand | Off |
| LED 18 Operand | Off |
| LED 19 Operand | Off |
| LED 20 Operand | Off |
| LED 21 Operand | Off |
| LED 22 Operand | Off |
| LED 23 Operand | Off |
| LED 24 Operand | Off |

Refer to the Control of Setting Groups example in the Control Elements section of this chapter for group activation.

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \Downarrow$ USER-PROGRAMMABLE SELF TESTS

| $\square$ USER-PROGRAMMABLE SELF TESTS | (1) | DIRECT RING BREAK FUNCTION: Enabled | Range: Disabled, Enabled. Valid for units equipped with Direct Input/Output module. |
| :---: | :---: | :---: | :---: |
| MESSAGE | - | DIRECT DEVICE OFF FUNCTION: Enabled | Range: Disabled, Enabled. Valid for units equipped with Direct Input/Output module. |
| MESSAGE | $\nabla$ | REMOTE DEVICE OFF FUNCTION: Enabled | Range: Disabled, Enabled. Valid for units that contain a CPU with Ethernet capability. |
| MESSAGE | - | PRI. ETHERNET FAIL FUNCTION: Disabled | Range: Disabled, Enabled. Valid for units that contain a CPU with a primary fiber port. |
| MESSAGE | - | SEC. ETHERNET FAIL FUNCTION: Disabled | Range: Disabled, Enabled. Valid for units that contain a CPU with a redundant fiber port. |
| MESSAGE | - | BATTERY FAIL FUNCTION: Enabled | Range: Disabled, Enabled. |
| MESSAGE | - | SNTP FAIL FUNCTION: Enabled | Range: Disabled, Enabled. Valid for units that contain a CPU with Ethernet capability. |
| MESSAGE | (4) | IRIG-B FAIL FUNCTION: Enabled | Range: Disabled, Enabled. |

All major self-test alarms are reported automatically with their corresponding FlexLogic ${ }^{\top M}$ operands, events, and targets. Most of the Minor Alarms can be disabled if desired.

When in the "Disabled" mode, minor alarms will not assert a FlexLogic ${ }^{\text {TM }}$ operand, write to the event recorder, display target messages. Moreover, they will not trigger the ANY minor ALARM or ANY SELF-TESt messages. When in the "Enabled" mode, minor alarms continue to function along with other major and minor alarms. Refer to the Relay Self-Tests section in Chapter 7 for additional information on major and minor self-test alarms.

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ CONTROL PUSHBUTTONS $\Rightarrow$ CONTROL PUSHBUTTON $1(7)$


The three standard pushbuttons located on the top left panel of the faceplate are user-programmable and can be used for various applications such as performing an LED test, switching setting groups, and invoking and scrolling though user-programmable displays, etc. The location of the control pushbuttons in the following figure.

An additonal four control pushbuttons are included when the T60 is ordered with twelve user programmable pushbuttons.


Figure 5-4: CONTROL PUSHBUTTONS
Control pushbuttons are not typically used for critical operations and are not protected by the control password. However, by supervising their output operands, the user can dynamically enable or disable control pushbuttons for security reasons.
Each control pushbutton asserts its own FlexLogic ${ }^{\text {TM }}$ operand, CONTROL PUSHBTN 1(7) ON. These operands should be configured appropriately to perform the desired function. The operand remains asserted as long as the pushbutton is pressed and resets when the pushbutton is released. A dropout delay of 100 ms is incorporated to ensure fast pushbutton manipulation will be recognized by various features that may use control pushbuttons as inputs.
An event is logged in the Event Record (as per user setting) when a control pushbutton is pressed; no event is logged when the pushbutton is released. The faceplate keys (including control keys) cannot be operated simultaneously - a given key must be released before the next one can be pressed.


Figure 5-5: CONTROL PUSHBUTTON LOGIC

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{2}$ USER-PROGRAMMABLE PUSHBUTTONS $\Rightarrow$ USER PUSHBUTTON 1(12)


The T60 has 12 optional user-programmable pushbuttons available, each configured via 12 identical menus. The pushbuttons provide an easy and error-free method of manually entering digital information (On, Off) into FlexLogic ${ }^{\text {TM }}$ equations as well as protection and control elements. Typical applications include breaker control, autorecloser blocking, ground protection blocking, and setting groups changes.
The user-configurable pushbuttons are shown below. They can be custom labeled with a factory-provided template, available online at http://www.GEmultilin.com.


Figure 5-6: USER-PROGRAMMABLE PUSHBUTTONS
Each pushbutton asserts its own On and Off FlexLogic ${ }^{\text {TM }}$ operands, respectively. FlexLogic ${ }^{\text {TM }}$ operands should be used to program desired pushbutton actions. The operand names are PUSHBUTTON 1 ON and PUSHBUTTON 1 OFF.

A pushbutton may be programmed to latch or self-reset. An indicating LED next to each pushbutton signals the present status of the corresponding "On" FlexLogic ${ }^{\text {TM }}$ operand. When set to "Latched", the state of each pushbutton is stored in nonvolatile memory which is maintained during any supply power loss.

Pushbuttons states can be logged by the Event Recorder and displayed as target messages. User-defined messages can also be associated with each pushbutton and displayed when the pushbutton is ON.

- PUSHBUTTON 1 FUNCTION: This setting selects the characteristic of the pushbutton. If set to "Disabled", the pushbutton is deactivated and the corresponding FlexLogic ${ }^{\text {TM }}$ operands (both "On" and "Off") are de-asserted. If set to "Self-reset", the control logic of the pushbutton asserts the "On" corresponding FlexLogic ${ }^{\text {TM }}$ operand as long as the pushbutton is being pressed. As soon as the pushbutton is released, the FlexLogic ${ }^{\top M}$ operand is de-asserted. The "Off" operand is asserted/de-asserted accordingly.

If set to "Latched", the control logic alternates the state of the corresponding FlexLogic ${ }^{\text {TM }}$ operand between "On" and "Off" on each push of the button. When operating in "Latched" mode, FlexLogic ${ }^{\text {TM }}$ operand states are stored in non-volatile memory. Should power be lost, the correct pushbutton state is retained upon subsequent power up of the relay.

- PUSHBTN 1 ID TEXT: This setting specifies the top 20-character line of the user-programmable message and is intended to provide ID information of the pushbutton. Refer to the User-Definable Displays section for instructions on how to enter alphanumeric characters from the keypad.
- PUSHBTN 1 ON TEXT: This setting specifies the bottom 20-character line of the user-programmable message and is displayed when the pushbutton is in the "on" position. Refer to the User-Definable Displays section for instructions on entering alphanumeric characters from the keypad.
- PUSHBTN 1 OFF TEXT: This setting specifies the bottom 20-character line of the user-programmable message and is displayed when the pushbutton is activated from the On to the Off position and the PUSHBUTTON 1 function is "Latched". This message is not displayed when the PUSHBUTTON 1 FUNCTION is "Self-reset" as the pushbutton operand status is implied to be "Off" upon its release. All user text messaging durations for the pushbuttons are configured with the PRODUCT SETUP $\Rightarrow \sqrt{ }$ DISPLAY PROPERTIES $\Rightarrow$ FLASH MESSAGE TIME setting.
- PUSHBTN 1 DROP-OUT TIME: This setting specifies a drop-out time delay for a pushbutton in the self-reset mode. A typical applications for this setting is providing a select-before-operate functionality. The selecting pushbutton should have the drop-out time set to a desired value. The operating pushbutton should be logically ANDed with the selecting pushbutton in FlexLogic ${ }^{\text {TM }}$. The selecting pushbutton LED remains on for the duration of the drop-out time, signaling the time window for the intended operation.

For example, consider a relay with the following settings: PUSHBTN 1 ID TEXT. "AUTORECLOSER", PUSHBTN 1 ON TEXT. "DISABLED - CALL 2199", and PuShbTn 1 OFF TEXT. "ENABLED". When Pushbutton 1 changes its state to the "On" position, the following AUTOCLOSER DISABLED - Call 2199 message is displayed: When Pushbutton 1 changes its state to the "Off" position, the message will change to AUTORECLOSER ENABLED.


User-programmable pushbuttons require a type HP relay faceplate. If an HP-type faceplate was ordered separately, the relay order code must be changed to indicate the HP faceplate option. This can be done via EnerVista UR Setup with the Maintenance > Enable Pushbutton command.

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ FLEX STATE PARAMETERS


This feature provides a mechanism where any of 256 selected FlexLogic ${ }^{\text {TM }}$ operand states can be used for efficient monitoring. The feature allows user-customized access to the FlexLogic ${ }^{\text {TM }}$ operand states in the relay. The state bits are packed so that 16 states may be read out in a single Modbus register. The state bits can be configured so that all of the states which are of interest to the user are available in a minimum number of Modbus registers.
The state bits may be read out in the "Flex States" register array beginning at Modbus address 900 hex. 16 states are packed into each register, with the lowest-numbered state in the lowest-order bit. There are 16 registers in total to accommodate the 256 state bits.
a) MAIN MENU

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USER-DEFINABLE DISPLAYS


This menu provides a mechanism for manually creating up to 16 user-defined information displays in a convenient viewing sequence in the USER DISPLAYS menu (between the TARGETS and ACTUAL vALUES top-level menus). The sub-menus facilitate text entry and Modbus Register data pointer options for defining the User Display content.

Once programmed, the user-definable displays can be viewed in two ways.

- KEYPAD: Use the Menu key to select the USER DISPLAYS menu item to access the first user-definable display (note that only the programmed screens are displayed). The screens can be scrolled using the Up and Down keys. The display disappears after the default message time-out period specified by the PRODUCT SETUP $\Rightarrow \sqrt{ }$ DISPLAY PROPERTIES $\Rightarrow \Omega$ DEFAULT MESSAGE TIMEOUT setting.
- USER-PROGRAMMABLE CONTROL INPUT: The user-definable displays also respond to the INVOKE AND SCROLL setting. Any FlexLogic ${ }^{\text {TM }}$ operand (in particular, the user-programmable pushbutton operands), can be used to navigate the programmed displays.
On the rising edge of the configured operand (such as when the pushbutton is pressed), the displays are invoked by showing the last user-definable display shown during the previous activity. From this moment onward, the operand acts exactly as the Down key and allows scrolling through the configured displays. The last display wraps up to the first one. The INVOKE AND SCROLL input and the Down keypad key operate concurrently.
When the default timer expires (set by the default message timeout setting), the relay will start to cycle through the user displays. The next activity of the invoke and scroll input stops the cycling at the currently displayed user display, not at the first user-defined display. The INVOKE AND SCROLL pulses must last for at least 250 ms to take effect.
b) USER DISPLAY 1(16)

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-DEFINABLE DISPLAYS $\Rightarrow$ USER DISPLAY 1(16)


Any existing system display can be automatically copied into an available user display by selecting the existing display and pressing the ENTER key. The display will then prompt ADD TO USER DISPLAY LIST?. After selecting "Yes", a message indicates that the selected display has been added to the user display list. When this type of entry occurs, the sub-menus are automatically configured with the proper content - this content may subsequently be edited.

This menu is used to enter user-defined text and/or user-selected Modbus-registered data fields into the particular user display. Each user display consists of two 20-character lines (top and bottom). The tilde ( $\sim$ ) character is used to mark the start of a data field - the length of the data field needs to be accounted for. Up to 5 separate data fields (ITEM 1(5)) can be entered in a user display - the $n$th tilde ( $\sim$ ) refers to the $n$th item.

A User Display may be entered from the faceplate keypad or the EnerVista UR Setup interface (preferred for convenience). The following procedure shows how to enter text characters in the top and bottom lines from the faceplate keypad:

1. Select the line to be edited.
2. Press the $\quad \cdot \quad$ key to enter text edit mode.
3. Use either Value key to scroll through the characters. A space is selected like a character.
4. Press the key to advance the cursor to the next position.
5. Repeat step 3 and continue entering characters until the desired text is displayed.
6. The HELP key may be pressed at any time for context sensitive help information.
7. Press the ENTER key to store the new settings.

To enter a numerical value for any of the 5 items (the decimal form of the selected Modbus address) from the faceplate keypad, use the number keypad. Use the value of ' 0 ' for any items not being used. Use the help key at any selected system display (setting, actual value, or command) which has a Modbus address, to view the hexadecimal form of the Modbus address, then manually convert it to decimal form before entering it (EnerVista UR Setup usage conveniently facilitates this conversion).

Use the MENU key to go to the user displays menu to view the user-defined content. The current user displays will show in sequence, changing every 4 seconds. While viewing a user display, press the ENTER key and then select the 'Yes" option to remove the display from the user display list. Use the MENU key again to exit the user displays menu.

An example User Display setup and result is shown below:

| $\square$ USER DISPLAY 1 |  | (1) | DISP 1 TOP LINE: Current $\mathrm{X} \sim \quad \mathrm{A}$ | Shows user-defined text with first Tilde marker. |
| :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | Q | DISP 1 BOTTOM LINE: <br> Current $Y \sim \sim A$ | Shows user-defined text with second Tilde marker. |
|  | MESSAGE | - | $\begin{gathered} \hline \text { DISP } 1 \text { ITEM 1: } \\ 6016 \end{gathered}$ | Shows decimal form of user-selected Modbus Register Address, corresponding to first Tilde marker. |
|  | MESSAGE | - | $\begin{gathered} \hline \text { DISP 1 ITEM 2: } \\ 6357 \end{gathered}$ | Shows decimal form of user-selected Modbus Register Address, corresponding to 2nd Tilde marker. |
|  | MESSAGE | - | $\begin{gathered} \text { DISP } 1 \text { ITEM } 3: \\ 0 \end{gathered}$ | This item is not being used - there is no corresponding Tilde marker in Top or Bottom lines. |
|  | MESSAGE | - | $\begin{gathered} \hline \text { DISP } 1 \text { ITEM 4: } \\ 0 \end{gathered}$ | This item is not being used - there is no corresponding Tilde marker in Top or Bottom lines. |
|  | MESSAGE | (2) | $\begin{gathered} \text { DISP } 1 \text { ITEM 5: } \\ 0 \end{gathered}$ | This item is not being used - there is no corresponding Tilde marker in Top or Bottom lines. |
| USER DISPLAYS |  | $\rightarrow$ | Current $X$ 0.850 A <br> Current Y 0.327 A | Shows the resultant display content. |

a) MAIN MENU

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ DIRECT I/O


Direct inputs/outputs are intended for exchange of status information (inputs and outputs) between UR-series relays connected directly via Type-7 digital communications cards. The mechanism is very similar to IEC 61850 GSSE, except that communications takes place over a non-switchable isolated network and is optimized for speed. On Type 7 cards that support two channels, direct output messages are sent from both channels simultaneously. This effectively sends direct output messages both ways around a ring configuration. On Type 7 cards that support one channel, direct output messages are sent only in one direction. Messages will be resent (forwarded) when it is determined that the message did not originate at the receiver.

Direct output message timing is similar to GSSE message timing. Integrity messages (with no state changes) are sent at least every 1000 ms . Messages with state changes are sent within the main pass scanning the inputs and asserting the outputs unless the communication channel bandwidth has been exceeded. Two Self-Tests are performed and signaled by the following FlexLogic ${ }^{\text {TM }}$ operands:

1. DIRECT RING BREAK (direct input/output ring break). This FlexLogic ${ }^{T M}$ operand indicates that direct output messages sent from a UR-series relay are not being received back by the relay.
2. DIRECT DEVICE 1(16) OFF (direct device offline). This FlexLogic ${ }^{\text {TM }}$ operand indicates that direct output messages from at least one direct device are not being received.
Direct input/output settings are similar to remote input/output settings. The equivalent of the remote device name strings for direct inputs/outputs is the direct output device id. The direct output device id identifies the relay in all direct output messages. All UR-series IEDs in a ring should have unique numbers assigned. The IED ID is used to identify the sender of the direct input/output message.

If the direct input/output scheme is configured to operate in a ring (DIRECT I/O RING CONFIGURATION: "Yes"), all direct output messages should be received back. If not, the Direct Input/Output Ring Break self-test is triggered. The self-test error is signaled by the DIRECT RING BREAK FlexLogic ${ }^{\text {TM }}$ operand.
Select the DIRECT I/O DATA RATE to match the data capabilities of the communications channel. Back-to-back connections of the local relays configured with the 7A, 7B, 7C, 7D, 7H, 7I, 7J, $7 \mathrm{~K}, 72$ and 73 fiber optic communication cards may be set to 128 kbps. For local relays configured with all other communication cards (i.e. 7E, 7F, 7G, 7L, 7M, 7N, 7P, 7R, 7S, 7T, 7W, $74,75,76$ and 77), the baud rate will be set to 64 kbps . All IEDs communicating over direct inputs/outputs must be set to
the same data rate. UR-series IEDs equipped with dual-channel communications cards apply the same data rate to both channels. Delivery time for direct input/output messages is approximately 0.2 of a power system cycle at 128 kbps and 0.4 of a power system cycle at 64 kbps , per each 'bridge'.

The G. 703 and RS422 modules are fixed at 64 kbps only. The SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{ }$ DIRECT I/O $\Rightarrow \sqrt{ }$ DIRECT I/O DATA RATE setting is not applicable to these modules.

The DIRECT I/O CHANNEL CROSSOVER setting applies to T60s with dual-channel communication cards and allows crossing over messages from Channel 1 to Channel 2. This places all UR-series IEDs into one direct input/output network regardless of the physical media of the two communication channels.
The following application examples illustrate the basic concepts for direct input/output configuration. Please refer to the Inputs/Outputs section in this chapter for information on configuring FlexLogic ${ }^{\text {TM }}$ operands (flags, bits) to be exchanged.

## EXAMPLE 1: EXTENDING THE INPUT/OUTPUT CAPABILITIES OF A UR-SERIES RELAY

Consider an application that requires additional quantities of digital inputs and/or output contacts and/or lines of programmable logic that exceed the capabilities of a single UR-series chassis. The problem is solved by adding an extra UR-series IED, such as the C30, to satisfy the additional input/output and programmable logic requirements. The two IEDs are connected via single-channel digital communication cards as shown in the figure below.


Figure 5-7: INPUT/OUTPUT EXTENSION VIA DIRECT INPUTS/OUTPUTS
In the above application, the following settings should be applied:
UR IED 1: DIRECT OUTPUT DEVICE ID: "1"
DIRECT I/O RING CONFIGURATION: "Yes"
DIRECT I/O DATA RATE: "128 kbps"
UR IED 2: DIRECT OUTPUT DEVICE ID: "2"
DIRECT I/O RING CONFIGURATION: "Yes"
DIRECT I/O DATA RATE: " 128 kbps"
The message delivery time is about 0.2 of power cycle in both ways (at 128 kbps ); i.e., from Device 1 to Device 2, and from Device 2 to Device 1. Different communications cards can be selected by the user for this back-to-back connection (fiber, G.703, or RS422).

## EXAMPLE 2: INTERLOCKING BUSBAR PROTECTION

A simple interlocking busbar protection scheme could be accomplished by sending a blocking signal from downstream devices, say 2,3 , and 4 , to the upstream device that monitors a single incomer of the busbar, as shown below.


Figure 5-8: SAMPLE INTERLOCKING BUSBAR PROTECTION SCHEME

For increased reliability, a dual-ring configuration (shown below) is recommended for this application.


Figure 5-9: INTERLOCKING BUS PROTECTION SCHEME VIA DIRECT INPUTS/OUTPUTS
In the above application, the following settings should be applied:

```
UR IED 1: DIRECT OUTPUT DEVICE ID: "1"
    DIRECT I/O RING CONFIGURATION: "Yes"
UR IED 3: DIRECT OUTPUT DEVICE ID: "3" DIRECT I/O RING CONFIGURATION: "Yes"
```

UR IED 2:
DIRECT OUTPUT DEVICE ID: "2" DIRECT I/O RING CONFIGURATION: "Yes"
$\begin{array}{ll}\text { UR IED 4: } & \text { DIRECT OUTPUT DEVICE ID: "4" } \\ & \text { DIRECT I/O RING CONFIGURATION: "Yes" }\end{array}$

Message delivery time is approximately 0.2 of power system cycle (at 128 kbps ) times number of 'bridges' between the origin and destination. Dual-ring configuration effectively reduces the maximum 'communications distance' by a factor of two.
In this configuration the following delivery times are expected (at 128 kbps ) if both rings are healthy:
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.4 of power system cycle;
IED 1 to IED 4: 0.2 of power system cycle; IED 2 to IED 3: 0.2 of power system cycle;
IED 2 to IED 4: 0.4 of power system cycle; IED 3 to IED 4: 0.2 of power system cycle
If one ring is broken (say TX2/RX2) the delivery times are as follows:
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.4 of power system cycle;
IED 1 to IED 4: 0.6 of power system cycle; IED 2 to IED 3: 0.2 of power system cycle;
IED 2 to IED 4: 0.4 of power system cycle; IED 3 to IED 4: 0.2 of power system cycle
A coordinating timer for this bus protection scheme could be selected to cover the worst case scenario ( 0.4 of power system cycle). Upon detecting a broken ring, the coordination time should be adaptively increased to 0.6 of power system cycle. The complete application requires addressing a number of issues such as failure of both the communications rings, failure or out-of-service conditions of one of the relays, etc. Self-monitoring flags of the direct inputs/outputs feature would be primarily used to address these concerns.

## EXAMPLE 3: PILOT-AIDED SCHEMES

Consider the three-terminal line protection application shown below:


Figure 5-10: THREE-TERMINAL LINE APPLICATION
A permissive pilot-aided scheme could be implemented in a two-ring configuration as shown below (IEDs 1 and 2 constitute a first ring, while IEDs 2 and 3 constitute a second ring):


Figure 5-11: SINGLE-CHANNEL OPEN LOOP CONFIGURATION
In the above application, the following settings should be applied:

| UR IED 1: | DIRECT OUTPUT DEVICE ID: " 1 " |
| :--- | :--- |
|  | DIRECT I/O RING CONFIGURATION: "Yes" |

UR IED 2: DIRECT OUTPUT DEVICE ID: "2" direct i/o ring configuration: "Yes"

UR IED 3: DIRECT OUTPUT DEVICE ID: "3"
DIRECT I/O RING CONFIGURATION: "Yes"
In this configuration the following delivery times are expected (at 128 kbps ):
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.5 of power system cycle;
IED 2 to IED 3: 0.2 of power system cycle
In the above scheme, IEDs 1 and 3 do not communicate directly. IED 2 must be configured to forward the messages as explained in the Inputs/Outputs section. A blocking pilot-aided scheme should be implemented with more security and, ideally, faster message delivery time. This could be accomplished using a dual-ring configuration as shown below.


Figure 5-12: DUAL-CHANNEL CLOSED LOOP (DUAL-RING) CONFIGURATION
In the above application, the following settings should be applied:
$\begin{array}{llll}\text { UR IED 1: } & \text { DIRECT OUTPUT DEVICE ID: " } 1 \text { " } & \text { UR IED 2: } & \text { DIRECT OUTPUT DEVICE ID: " } 2 \text { " } \\ & \text { DIRECT I/O RING CONFIGURATION: "Yes" } & & \text { DIRECT I/O RING CONFIGURATION: "Yes" }\end{array}$
UR IED 3: DIRECT OUTPUT DEVICE ID: "3"
direct I/O RING CONFIGURATION: "Yes"
In this configuration the following delivery times are expected (at 128 kbps ) if both the rings are healthy:
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.2 of power system cycle;
IED 2 to IED 3: 0.2 of power system cycle
The two communications configurations could be applied to both permissive and blocking schemes. Speed, reliability and cost should be taken into account when selecting the required architecture.
b) CRC ALARM 1(2)

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{ }$ DIRECT I/O $\Rightarrow \sqrt{ }$ CRC ALARM CH1(2)


The T60 checks integrity of the incoming direct input/output messages using a 32-bit CRC. The CRC Alarm function is available for monitoring the communication medium noise by tracking the rate of messages failing the CRC check. The monitoring function counts all incoming messages, including messages that failed the CRC check. A separate counter adds up messages that failed the CRC check. When the failed CRC counter reaches the user-defined level specified by the CRC ALARM CH1 THRESHOLD setting within the user-defined message count CRC ALARM 1 CH1 COUNT, the DIR IO CH1 CRC ALARM FlexLogic ${ }^{\text {TM }}$ operand is set.

When the total message counter reaches the user-defined maximum specified by the CRC ALARM CH1 MESSAGE COUNT setting, both the counters reset and the monitoring process is restarted.
The operand shall be configured to drive an output contact, user-programmable LED, or selected communication-based output. Latching and acknowledging conditions - if required - should be programmed accordingly.
The CRC Alarm function is available on a per-channel basis. The total number of direct input/output messages that failed the CRC check is available as the ACTUAL vALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt[\Omega]{ }$ DIRECT INPUTS $\Rightarrow \sqrt{ }$ CRC FAIL COUNT CH1(2) actual value.

## Message Count and Length of the Monitoring Window:

To monitor communications integrity, the relay sends 1 message per second (at 64 kbps ) or 2 messages per second (128 kbps) even if there is no change in the direct outputs. For example, setting the CRC ALARM CH1 MESSAGE COUNT to "10000", corresponds a time window of about 160 minutes at 64 kbps and 80 minutes at 128 kbps . If the messages are sent faster as a result of direct outputs activity, the monitoring time interval will shorten. This should be taken into account when determining the CRC ALARM CH1 MESSAGE COUNT setting. For example, if the requirement is a maximum monitoring time interval of 10 minutes at 64 kbps , then the CRC ALARM CH1 MESSAGE COUNT should be set to $10 \times 60 \times 1=600$.

## Correlation of Failed CRC and Bit Error Rate (BER):

The CRC check may fail if one or more bits in a packet are corrupted. Therefore, an exact correlation between the CRC fail rate and the BER is not possible. Under certain assumptions an approximation can be made as follows. A direct input/output packet containing 20 bytes results in 160 bits of data being sent and therefore, a transmission of 63 packets is equivalent to 10,000 bits. A BER of $10^{-4}$ implies 1 bit error for every 10,000 bits sent/received. Assuming the best case of only 1 bit error in a failed packet, having 1 failed packet for every 63 received is about equal to a BER of $10^{-4}$.
c) UNRETURNED MESSAGES ALARM 1(2)

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ DIRECT I/O $\Rightarrow \sqrt{ }$ UNRETURNED MESSAGES ALARM CH1(2)


The T60 checks integrity of the direct input/output communication ring by counting unreturned messages. In the ring configuration, all messages originating at a given device should return within a pre-defined period of time. The Unreturned Messages Alarm function is available for monitoring the integrity of the communication ring by tracking the rate of unreturned messages. This function counts all the outgoing messages and a separate counter adds the messages have failed to return. When the unreturned messages counter reaches the user-definable level specified by the UNRET MSGS ALARM CH1 THRESHOLD setting and within the user-defined message count UNRET MSGS ALARM CH1 COUNT, the DIR IO CH1 UNRET ALM FlexLogic ${ }^{\text {TM }}$ operand is set.
When the total message counter reaches the user-defined maximum specified by the UNRET MSGS ALARM Ch1 MESSAGE count setting, both the counters reset and the monitoring process is restarted.
The operand shall be configured to drive an output contact, user-programmable LED, or selected communication-based output. Latching and acknowledging conditions, if required, should be programmed accordingly.
The Unreturned Messages Alarm function is available on a per-channel basis and is active only in the ring configuration. The total number of unreturned input/output messages is available as the ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt{ }$ DIRECT INPUTS $\Rightarrow \sqrt{ } \quad$ UNRETURNED MSG COUNT CH1(2) actual value.

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ TELEPROTECTION

| $\square$ TELEPROTECTION | (1) | TELEPROTECTION FUNCTION: Disabled | Range: Disabled, Enabled |
| :---: | :---: | :---: | :---: |
| MESSAGE | - | NUMBER OF TERMINALS: 2 | Range: 2, 3 |
| MESSAGE | - | $\begin{aligned} & \text { NUMBER OF COMM } \\ & \text { CHANNELS: } 1 \end{aligned}$ | Range: 1, 2 |
| MESSAGE | - | LOCAL RELAY ID NUMBER: 0 | Range: 0 to 255 in steps of 1 |
| MESSAGE | - | TERMINAL 1 RELAY ID NUMBER: 0 | Range: 0 to 255 in steps of 1 |
| MESSAGE | (4) | TERMINAL 2 RELAY ID NUMBER: 0 | Range: 0 to 255 in steps of 1 |

Digital teleprotection functionality is designed to transfer protection commands between 2 or 3 relays in a secure, fast, dependable, and deterministic fashion. Possible applications are permissive or blocking pilot schemes and direct transfer trip (DTT). Teleprotection can be applied over any analog or digital channels and any communications media, such as direct fiber, copper wires, optical networks, or microwave radio links. A mixture of communication media is possible.
Once teleprotection is enabled and the teleprotection input/outputs are configured, data packets are transmitted continuously every $1 / 4$ cycle ( $3 / 8$ cycle if using C37.94 modules) from peer-to-peer. Security of communication channel data is achieved by using CRC-32 on the data packet.

Teleprotection inputs/outputs and direct inputs/outputs are mutually exclusive - as such, they cannot be used simulatneously. Once teleprotection inputs/outputs are enabled, direct inputs/outputs are blocked, and vice versa.

- NUMBER OF TERMINALS: Specifies whether the teleprotection system operates between 2 peers or 3 peers.
- NUMBER OF CHANNELS: Specifies how many channels are used. If the NUMBER OF TERMINALS is " 3 " (three-terminal system), set the NUMBER OF CHANNELS to " 2 ". For a two-terminal system, the NUMBER OF CHANNELS can set to " 1 " or " 2 " (redundant channels).
- LOCAL RELAY ID NUMBER, TERMINAL 1 RELAY ID NUMBER, and TERMINAL 2 RELAY ID NUMBER: In installations that use multiplexers or modems, it is desirable to ensure that the data used by the relays protecting a given line is from the correct relays. The teleprotection function performs this check by reading the message ID sent by transmitting relays and comparing it to the programmed ID in the receiving relay. This check is also used to block inputs if inadvertently set to loopback mode or data is being received from a wrong relay by checking the ID on a received channel. If an incorrect ID is found on a channel during normal operation, the TELEPROT CH1(2) ID FAIL FlexLogic ${ }^{\text {TM }}$ operand is set, driving the event with the same name and blocking the teleprotection inputs. For commissioning purposes, the result of channel identification is also shown in the STATUS $\Rightarrow \sqrt{ }$ CHANNEL TESTS $\Rightarrow \sqrt{ }$ VALIDITY OF CHANNEL CONFIGURATION actual value. The default value of " 0 " for the LOCAL RELAY ID NUMBER indicates that relay ID is not to be checked. On two- terminals two-channel systems, the same LOCAL RELAY ID NUMBER is transmitted over both channels; as such, only the TERMINAL 1 ID NUMBER has to be programmed on the receiving end.
5.2.19 INSTALLATION

PATH: SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ INSTALLATION


To safeguard against the installation of a relay without any entered settings, the unit will not allow signaling of any output relay until relay settings is set to "Programmed". This setting is defaulted to "Not Programmed" when at the factory. The UNIT NOT PROGRAMMED self-test error message is displayed until the relay is put into the "Programmed" state.

The reLay name setting allows the user to uniquely identify a relay. This name will appear on generated reports. This name is also used to identify specific devices which are engaged in automatically sending/receiving data over the Ethernet communications channel using the IEC 61850 protocol.

## a) CURRENT BANKS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow$ AC INPUTS $\Rightarrow$ CURRENT BANK F1(M5)
 prior to changing CT characteristics.

Four banks of phase/ground CTs can be set, where the current banks are denoted in the following format ( $X$ represents the module slot position letter):
$\boldsymbol{X a}$, where $\boldsymbol{X}=\{\mathbf{F}, \mathbf{M}\}$ and $\mathbf{a}=\{\mathbf{1}, \mathbf{5}\}$.
See the Introduction to AC Sources section at the beginning of this chapter for additional details.
These settings are critical for all features that have settings dependent on current measurements. When the relay is ordered, the CT module must be specified to include a standard or sensitive ground input. As the phase CTs are connected in Wye (star), the calculated phasor sum of the three phase currents ( $I A+I B+I C=$ Neutral Current $=310$ ) is used as the input for the neutral overcurrent elements. In addition, a zero-sequence (core balance) CT which senses current in all of the circuit primary conductors, or a CT in a neutral grounding conductor may also be used. For this configuration, the ground CT primary rating must be entered. To detect low level ground fault currents, the sensitive ground input may be used. In this case, the sensitive ground CT primary rating must be entered. Refer to Chapter 3 for more details on CT connections.
Enter the rated CT primary current values. For both $1000: 5$ and 1000:1 CTs, the entry would be 1000. For correct operation, the CT secondary rating must match the setting (which must also correspond to the specific CT connections used).

The following example illustrates how multiple CT inputs (current banks) are summed as one source current. Given If the following current banks:

F1: CT bank with 500:1 ratio; F5: CT bank with 1000: ratio; M1: CT bank with 800:1 ratio
The following rule applies:

$$
\begin{equation*}
\text { SRC } 1=\mathrm{F} 1+\mathrm{F} 5+\mathrm{M} 1 \tag{EQ5.7}
\end{equation*}
$$

1 pu is the highest primary current. In this case, 1000 is entered and the secondary current from the 500:1 ratio CT will be adjusted to that created by a 1000:1 CT before summation. If a protection element is set up to act on SRC 1 currents, then a pickup level of 1 pu will operate on 1000 A primary.
The same rule applies for current sums from CTs with different secondary taps (5 A and 1 A).

## b) VOLTAGE BANKS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow$ AC INPUTS $\Rightarrow \sqrt{ }$ VOLTAGE BANK F5(M5)

| $\square$ VOLTAGE BANK F5 | (1) | PHASE VT F5 CONNECTION: Wye | Range: | Wye, Delta |
| :---: | :---: | :---: | :---: | :---: |
| MESSAG | - | $\begin{aligned} & \text { PHASE VT F5 } \\ & \text { SECONDARY: } 66.4 \mathrm{v} \end{aligned}$ | Range: | 50.0 to 240.0 V in steps of 0.1 |
| MESSAG | Q | PHASE VT F5 <br> RATIO: $1.00: 1$ | Range: | 1.00 to 24000.00 in steps of 0.01 |
| MESSAG | $\stackrel{\square}{\square}$ | AUXILIARY VT F5 CONNECTION: Vag | Range: | Vn, Vag, Vbg, Vcg, Vab, Vbc, Vca |
| MESSAG | $\square$ | AUXILIARY VT F5 <br> SECONDARY: 66.4 V | Range | 50.0 to 240.0 V in steps of 0.1 |
| MESSAG | (4) | AUXILIARY VT F5 RATIO: $1.00: 1$ | Range | 1.00 to 24000.00 in steps of 0.01 |

## A

Because energy parameters are accumulated, these values should be recorded and then reset immediately prior to changing VT characteristics.

Two banks of phase/auxiliary VTs can be set, where voltage banks are denoted in the following format ( $X$ represents the module slot position letter):
$\boldsymbol{X a}$, where $\boldsymbol{X}=\{\mathbf{F}, \mathbf{M}\}$ and $\mathbf{a}=\{\mathbf{5}\}$.
See the Introduction to AC Sources section at the beginning of this chapter for additional details.
With VTs installed, the relay can perform voltage measurements as well as power calculations. Enter the PHASE VT F5 CONnection made to the system as "Wye" or "Delta". An open-delta source VT connection would be entered as "Delta". See the Typical Wiring Diagram in Chapter 3 for details.

The nominal PHASE VT F5 SECONDARY voltage setting is the voltage across the relay input terminals when nominal voltage is applied to the VT primary.
For example, on a system with a 13.8 kV nominal primary voltage and with a 14400:120 volt VT in a Delta connection, the secondary voltage would be 115 , i.e. $(13800 / 14400) \times 120$. For a Wye connection, the voltage value entered must be the phase to neutral voltage which would be $115 / \sqrt{3}=66.4$.

On a 14.4 kV system with a Delta connection and a VT primary to secondary turns ratio of 14400:120, the voltage value entered would be 120, i.e. 14400 / 120.

PATH: SETTINGS $\Rightarrow \sqrt{2}$ SYSTEM SETUP $\Rightarrow \sqrt{ } \Rightarrow$ POWER SYSTEM

| $\square$ POWER SYSTEM |  | (1) | NOMINAL FREQUENCY: 60 Hz | Range: 25 to 60 Hz in steps of 1 |
| :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | PHASE ROTATION: ABC | Range: $A B C, A C B$ |
|  | MESSAGE | - | FREQUENCY AND PHASE REFERENCE: SRC 1 | Range: SRC 1, SRC 2, SRC 3, SRC 4 |
|  | MESSAGE | (4) | FREQUENCY TRACKING: Enabled | Range: Disabled, Enabled |

The power system nominal frequency value is used as a default to set the digital sampling rate if the system frequency cannot be measured from available signals. This may happen if the signals are not present or are heavily distorted. Before reverting to the nominal frequency, the frequency tracking algorithm holds the last valid frequency measurement for a safe period of time while waiting for the signals to reappear or for the distortions to decay.

The phase sequence of the power system is required to properly calculate sequence components and power parameters. The PhASE ROTATION setting matches the power system phase sequence. Note that this setting informs the relay of the actual system phase sequence, either $A B C$ or $A C B$. $C T$ and $V T$ inputs on the relay, labeled as $A, B$, and $C$, must be connected to system phases $A, B$, and $C$ for correct operation.

The FREQUENCY AND PHASE REFERENCE setting determines which signal source is used (and hence which AC signal) for phase angle reference. The AC signal used is prioritized based on the AC inputs that are configured for the signal source: phase voltages takes precedence, followed by auxiliary voltage, then phase currents, and finally ground current.
For three phase selection, phase $A$ is used for angle referencing ( $V_{\text {ANGLE REF }}=V_{A}$ ), while Clarke transformation of the phase signals is used for frequency metering and tracking ( $V_{\text {FREQUENCY }}=\left(2 V_{A}-V_{B}-V_{C}\right) / 3$ ) for better performance during fault, open pole, and VT and CT fail conditions.

The phase reference and frequency tracking AC signals are selected based upon the Source configuration, regardless of whether or not a particular signal is actually applied to the relay.
Phase angle of the reference signal will always display zero degrees and all other phase angles will be relative to this signal. If the pre-selected reference signal is not measurable at a given time, the phase angles are not referenced.
The phase angle referencing is done via a phase locked loop, which can synchronize independent UR-series relays if they have the same AC signal reference. These results in very precise correlation of time tagging in the event recorder between different UR-series relays provided the relays have an IRIG-B connection.


FREQUENCY TRACKING should only be set to "Disabled" in very unusual circumstances; consult the factory for special variable-frequency applications.

Systems with a phase sequence of ACB require special consideration as described in the Phase Relationships of Three-phase Transformers sub-section of Chapter 5.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ SIGNAL SOURCES $\Rightarrow$ SOURCE 1(4)

| $\square$ SOURCE 1 |  | (1) | SOURCE 1 NAME: SRC 1 | Range: | up to 6 alphanumeric characters |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | SOURCE 1 PHASE CT: None | Range: | None, F1, F5, F1+F5,... up to a combination of any 6 CTs. Only Phase CT inputs are displayed. |
|  | MESSAGE | - | SOURCE 1 GROUND CT: None | Range: | None, F1, F5, F1+F5,... up to a combination of any 6 CTs. Only Ground CT inputs are displayed. |
|  | MESSAGE | - | SOURCE 1 PHASE VT: None | Range: | None, F1, F5, M1, M5 Only phase voltage inputs will be displayed. |
|  | MESSAGE | (2) | SOURCE 1 AUX VT: None | Range: | None, F1, F5, M1, M5 <br> Only auxiliary voltage inputs will be displayed. |

Four identical source menus are available. The "SRC 1" text can be replaced by with a user-defined name appropriate for the associated source.
" $F$ " and " $M$ " represent the module slot position. The number directly following these letters represents either the first bank of four channels $(1,2,3,4)$ called " 1 " or the second bank of four channels $(5,6,7,8)$ called " 5 " in a particular CT/VT module. Refer to the Introduction to AC Sources section at the beginning of this chapter for additional details on this concept.
It is possible to select the sum of up to six (6) CTs. The first channel displayed is the CT to which all others will be referred. For example, the selection "F1+F5" indicates the sum of each phase from channels "F1" and "F5", scaled to whichever CT has the higher ratio. Selecting "None" hides the associated actual values.

The approach used to configure the AC sources consists of several steps; first step is to specify the information about each CT and VT input. For CT inputs, this is the nominal primary and secondary current. For VTs, this is the connection type, ratio and nominal secondary voltage. Once the inputs have been specified, the configuration for each source is entered, including specifying which CTs will be summed together.

## User Selection of AC Parameters for Comparator Elements:

CT/VT modules automatically calculate all current and voltage parameters from the available inputs. Users must select the specific input parameters to be measured by every element in the relevant settings menu. The internal design of the element specifies which type of parameter to use and provides a setting for source selection. In elements where the parameter may be either fundamental or RMS magnitude, such as phase time overcurrent, two settings are provided. One setting specifies the source, the second setting selects between fundamental phasor and RMS.

## AC Input Actual Values:

The calculated parameters associated with the configured voltage and current inputs are displayed in the current and voltage sections of actual values. Only the phasor quantities associated with the actual AC physical input channels will be displayed here. All parameters contained within a configured source are displayed in the sources section of the actual values.

## Disturbance Detectors (Internal):

The 50DD element is a sensitive current disturbance detector that detects any disturbance on the protected system. 50DD is intended for use in conjunction with measuring elements, blocking of current based elements (to prevent maloperation as a result of the wrong settings), and starting oscillography data capture. A disturbance detector is provided for each Source.
The 50DD function responds to the changes in magnitude of the sequence currents. The disturbance detector scheme logic is as follows:


Figure 5-13: DISTURBANCE DETECTOR LOGIC DIAGRAM
The disturbance detector responds to the change in currents of twice the current cut-off level. The default cut-off threshold is 0.02 pu ; thus by default the disturbance detector responds to a change of 0.04 pu . The metering sensitivity setting (PRODUCT SETUP $\Rightarrow \sqrt{ }$ DISPLAY PROPERTIES $\Rightarrow \sqrt{ }$ CURRENT CUT-OFF LEVEL) controls the sensitivity of the disturbance detector accordingly.

## Example Use of Sources:

An example of the use of sources, with a relay with two CT/VT modules, is shown in the diagram below. A relay could have the following hardware configuration:

| INCREASING SLOT POSITION LETTER --> |  |  |
| :--- | :--- | :--- |
| CT/VT MODULE 1 | CT/VT MODULE 2 | CT/VT MODULE 3 |
| CTs | VTs | not applicable |

This configuration could be used on a two winding transformer, with one winding connected into a breaker-and-a-half system. The following figure shows the arrangement of sources used to provide the functions required in this application, and the CT/VT inputs that are used to provide the data.


Figure 5-14: EXAMPLE USE OF SOURCES
a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ TRANSFORMER

| $\square$ TRANSFORMER |  | (1) | $\square$ GENERAL | See page 5-50. |
| :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | $\square$ WINDING 1 | See page 5-52. |
|  | MESSAGE | - | $\square$ WINDING 2 | See page 5-52. |
|  | MESSAGE | - | $\square$ WINDING 3 | See page 5-52. |
|  | MESSAGE | - | $\square$ WINDING 4 | See page 5-52. |
|  | MESSAGE | (4) | $\square$ THERMAL INPUTS | See page 5-61. |

The T60 Transformer Management Relay has been designed to provide primary protection for medium to high voltage power transformers. It is able to perform this function on 2 to 4 winding transformers in a variety of system configurations.

## b) GENERAL TRANSFORMER SETTINGS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ TRANSFORMER $\Rightarrow$ GENERAL


The general transformer settings apply to all windings. Settings specific to each winding are shown in the following section.

- NUMBER OF WINDINGS: Selects the number of windings for transformer setup.
- PHASE COMPENSATION: Selects the type of phase compensation to be performed by the relay. If set to "Internal (software)", the transformer phase shift is compensated internally by the relay algorithm. If set to "External (with CTs)", the transformer phase shift is externally compensated by the CT connections.
- LOAD LOSS AT RATED LOAD: This setting should be taken from the transformer nameplate. If not available from the nameplate, the setting value can be computed as $P_{R}=I_{n(W)}^{2} \times R$, where $I_{n(W)}$ is the winding rated current and $R$ is the three-phase series resistance. The setting is used as an input for the calculation of the hottest-spot winding temperature.
- RATED WINDING TEMP RISE: This setting defines the winding temperature rise over $30^{\circ} \mathrm{C}$ ambient temperature. The setting is automatically selected for the transformer type as shown in the table below.
The loss of life function calculates the insulation aging acceleration factor using the settings entered in this section, by following equation:

$$
\begin{equation*}
F_{A A}(t)=e^{\left(\frac{15000}{\Theta_{H_{-} R}+273}-\frac{15000}{\Theta_{H(t)}+273}\right)} \tag{EQ5.8}
\end{equation*}
$$

where $\Theta_{H_{-} R}$ is the rated hottest-spot temperature as per the table below, and $\Theta_{H(t)}$ is the actual computed winding hottest-spot temperature.
The aging acceleration factor is computed every minute. It has a value of 1.0 when the actual winding hottest spot temperature is equal to the rated temperature, is greater than 1 if the actual temperature is above the rated temperature, and less than 1 if the actual temperature is below the rated temperature.

| RATED WINDING TEMPERATURE |  | POWER CAPACITY | NORMAL LIFE EXPECTANCY | AT $\Theta_{\mathbf{H} \_}$ |
| :---: | :---: | :---: | :---: | :---: |
| Oil | $55^{\circ} \mathrm{C}$ | $\leq 500 \mathrm{kVA}$ | 180000 hrs | $95^{\circ} \mathrm{C}$ |
|  |  | $\leq 100 \mathrm{MVA}$ | $6.5 \times 10^{4} \mathrm{hrs}$ | $95^{\circ} \mathrm{C}$ |
|  | $65^{\circ} \mathrm{C}$ | $\leq 500 \mathrm{kVA}$ | 20 years | $110^{\circ} \mathrm{C}$ |
|  |  | $\leq 100 \mathrm{MVA}$ | $6.5 \times 10^{4} \mathrm{hrs}$ | $110^{\circ} \mathrm{C}$ |
|  |  | > 100 MVA | $6.5 \times 10^{4} \mathrm{hrs}$ | $110^{\circ} \mathrm{C}$ |
| Dry | $80^{\circ} \mathrm{C}$ | Any | 20 years | $140^{\circ} \mathrm{C}$ |
|  | $115^{\circ} \mathrm{C}$ | Any | 20 years | $175^{\circ} \mathrm{C}$ |
|  | $150^{\circ} \mathrm{C}$ | Any | 20 years | $210^{\circ} \mathrm{C}$ |

- NO LOAD LOSS: This setting is obtained from the transformer data and is used to calculate the aging acceleration factor.
- TYPE OF COOLING: The setting defines the type of transformer cooling and is used to calculate the aging acceleration factor. The values and their description for this setting are as follows:
"OA": oil-air
"FA": forced air
"Non-directed FOA/FOW": non-directed forced-oil-air/forced-oil-water
"Directed FOA/FOW": directed forced-oil-air/forced-oil-water
"Sealed Self Cooled", "Vented Self Cooled", "Forced Cooled": as named
- TOP OIL RISE OVER AMBIENT: This setting should be available from the transformer nameplate data
- THERMAL CAPACITY: The setting should be available from the transformer nameplate data. If not, refer to the following calculations. For the "OA" and "FA" cooling types:
$\mathrm{C}=0.06$ (core and coil assembly in lbs.) +0.04 (tank and fittings in lbs.) +1.33 (gallons of oil), $\mathrm{Wh} /{ }^{\circ} \mathrm{C}$; or $\mathrm{C}=0.0272$ (core and coil assembly in kg ) +0.01814 (tank and fittings in kg ) +5.034 ( L of oil), $\mathrm{Wh} /{ }^{\circ} \mathrm{C}$
For the "Non-directed FOA/FOW" (non-directed forced-oil-air/forced-oil-water) or "Directed FOA/FOW" (directed forced-oil-air/forced-oil-water) cooling types, the thermal capacity is given by:
$\mathrm{C}=0.06$ (core and coil assembly in lbs.) +0.06 (tank and fittings in lbs.) +1.93 (gallons of oil), $\mathrm{Wh} /{ }^{\circ} \mathrm{C}$; or
$\mathrm{C}=0.0272$ (weight of core and coil assembly in kg ) +0.0272 (weight of tank and fittings in kg ) +7.305 ( L of oil), Wh/ ${ }^{\circ} \mathrm{C}$
For dry-type power transformers:
$C=0.048 \times$ (weight of copper winding); or
$\mathrm{C}=0.015 \times$ (weight of core and copper windings from the nameplate); or
$\mathrm{C}=0.12 \times$ (weight of aluminum windings); or
C $=0.02 \times$ (weight of core and aluminum coils from the nameplate)
- WINDING THERMAL TIME CONSTANT: Required for insulation aging calculation. If this value is not available from the transformer data, select " 2 min.".
c) WINDINGS 1 TO 4

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ TRANSFORMER $\Rightarrow \sqrt{ }$ WINDING 1(4)


The settings specific to each winding are shown above.
Transformer differential protection uses the following calculated quantities (per phase): fundamental, 2nd harmonic, and 5th harmonic differential current phasors, and restraint current phasors. This information is extracted from the current transformers (CTs) connected to the relay by correcting the magnitude and phase relationships of the currents for each winding, so as to obtain zero (or near zero) differential currents under normal operating conditions. Traditionally, these corrections were accomplished by interposing CTs and tapped relay windings with some combination of CT connections.
The T60 simplifies these configuration issues. All CTs at the transformer are connected Wye (polarity markings pointing away from the transformer). User-entered settings in the relay characterizing the transformer being protected and allow the relay to automatically perform all necessary magnitude, phase angle, and zero sequence compensation.

This section describes the algorithms in the relay that perform this compensation and produce the required calculated quantities for transformer differential protection, by means of the following example of a $\Delta-Y$ connected power transformer with the following data:

Table 5-4: EXAMPLE: $\Delta$-Y CONNECTED POWER TRANSFORMER DATA

| DATA | WINDING 1 <br> (DELTA) CONNECTION | WINDING 2 <br> Y (WYE) CONNECTION |
| :--- | :---: | :---: |
| Voltage Phasor Diagram |  |  |
| Phase Shift |  |  |
| Grounding | $0^{\circ}$ | $30^{\circ}$ lag (i.e. phases of wye winding lag <br> corresponding phases of delta winding by $\left.30^{\circ}\right)$ |
| Rated MVA | in-zone grounding bank | ungrounded |
| Nominal $\phi-\phi$ Voltage | $100 / 133 / 166 \mathrm{MVA}$ | $100 / 133 / 166 \mathrm{MVA}$ |
| CT Connection | 220 kV | 69 kV |
| CT Ratio | Wye | Wye |
| Auxiliary Cooling | $500 / 5$ | $1500 / 5$ |

The abbreviated nomenclature for applicable relay settings is as follows:

| Rotation | SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ POWER SYSTEM $\Rightarrow \sqrt{ }$ PHASE ROTATION |
| :---: | :---: |
| $w_{\text {total }}$ | = SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ TRANSFORMER $\Rightarrow \sqrt{ }$ GENERAL $\Rightarrow$ NUMBER OF WINDINGS |
| Compensation | = SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ TRANSFORMER $\Rightarrow \sqrt{ }$ GENERAL $\Rightarrow \sqrt{ }$ P PHASE COMPENSATION |
| Source [ $w$ ] | $=$ SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ TRANSFORMER $\Rightarrow \sqrt{ }$ W WINDING $\mathbf{w} \Rightarrow$ WINDING $\mathbf{w}$ SOURCE |
| $\mathrm{P}_{\text {rated }}$ [ $w$ ] | $=$ SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ TRANSFORMER $\Rightarrow \sqrt{ }$ WINDING $w \Rightarrow \sqrt{ }$ WINDING $w$ RATED MVA |
| $V_{\text {nominal }}$ [ $w$ ] |  |
| Connection [w] | $=$ SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ TRANSFORMER $\Rightarrow \sqrt{ }$ WINDING $\mathbf{w} \Rightarrow \sqrt{ }$ W WINDING $\mathbf{w}$ CONNECTION |
| Grounding [ $w$ ] | $=$ SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ TRANSFORMER $\Rightarrow \sqrt{ }$ WINDING $w \Rightarrow \sqrt{ }$ WINDING $\mathbf{w}$ GROUNDING |
| $\Phi[w]$ | ETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ TRANSFORMER $\Rightarrow \sqrt{ }$ W WINDING $w \Rightarrow \sqrt{\text { w }}$ WINDING w ANGLE WRT WINDING 1 |
| CT primary [ $w$ ] | $=$ the phase CT primary associated with Source [w] |

Note that $\boldsymbol{w}=$ winding number, 1 to $\boldsymbol{w}_{\text {total }}$
The following transformer setup rules must be observed:

1. The angle for the first winding from the transformer setup must be $0^{\circ}$ and the angles for the following windings must be entered as negative (lagging) with respect to (WRT) the Winding 1 angle.
2. The "Within zone" and "Not within zone" setting values refer to whether the winding is grounded. Select "Within zone" if a neutral of a Wye type winding, or a corner of a Delta winding, is grounded within the zone, or whenever a grounding transformer falls into the zone of protection.

## d) PHASE RELATIONSHIPS OF THREE-PHASE TRANSFORMERS

Power transformers that are built in accordance with ANSI and IEC standards are required to identify winding terminals and phase relationships among the windings of the transformer.
ANSI standard C.37.12.70 requires that the terminal labels include the characters 1, 2,3 to represent the names of the individual phases. The phase relationship among the windings must be shown as a phasor diagram on the nameplate, with the winding terminals clearly labeled. This standard specifically states that the phase relationships are established for a condition where the source phase sequence of 1-2-3 is connected to transformer windings labeled 1,2 and 3 respectively.

IEC standard 60076-1 (1993) states that the terminal markings of the three phases follow national practice. The phase relationship among the windings is shown as a specified notation on the nameplate, and there may be a phasor diagram. In this standard the arbitrary labeling of the windings is shown as I, II and III. This standard specifically states that the phase relationships are established for a condition where a source phase sequence of $I-I I-I I I$ is connected to transformer windings labeled I, II and III respectively.

The reason the source phase sequence must be stated when describing the winding phase relationships is that these relationships change when the phase sequence changes. The example shown below shows why this happens, using a transformer described in IEC nomenclature as a type "Yd1" or in GE Multilin nomenclature as a "Y/d30."


Figure 5-15: EXAMPLE TRANSFORMER
The above diagram shows the physical connections within the transformer that produce a phase angle in the delta winding that lag the respective wye winding by $30^{\circ}$. The currents in the windings are also identified. Note that the total current out of the delta winding is described by an equation. Now assume that a source, with a sequence of $A B C$, is connected to transformer terminals ABC respectively. The currents that would be present for a balanced load are shown the diagram below.


Figure 5-16: PHASORS FOR ABC SEQUENCE
Note that the delta winding currents lag the wye winding currents by $30^{\circ}$ (in agreement with the transformer nameplate).
Now assume that a source, with a sequence of ACB is connected to transformer terminals A, C, and B, respectively. The currents present for a balanced load are shown in the Phasors for ACB Phase Sequence diagram.


Figure 5-17: PHASORS FOR ACB SEQUENCE
Note that the delta winding currents leads the wye winding currents by $30^{\circ}$, (which is a type Yd11 in IEC nomenclature and a type Y/d330 in GE Multilin nomenclature) which is in disagreement with the transformer nameplate. This is because the physical connections and hence the equations used to calculate current for the delta winding have not changed. The transformer nameplate phase relationship information is only correct for a stated phase sequence.

It may be suggested that phase relationship for the $A C B$ sequence can be returned the transformer nameplate values by connecting source phases $A, B$ and $C$ to transformer terminals $A, C$, and $B$ respectively. Although this restores the nameplate phase shifts, it causes incorrect identification of phases $B$ and $C$ within the relay, and is therefore not recommended.
All information presented in this manual is based on connecting the relay phase $A, B$ and $C$ terminals to the power system phases $A, B$, and $C$ respectively. The transformer types and phase relationships presented are for a system phase sequence of $A B C$, in accordance with the standards for power transformers. Users with a system phase sequence of ACB must determine the transformer type for this sequence.
If a power system with ACB rotation is connected to the Wye winding terminals 1, 2, and 3, respectively, from a Y/d30 transformer, select a Power Rotation setting of ACB into the relay and enter data for the Y/d330 transformer type.

## e) MAGNITUDE COMPENSATION

Transformer protection presents problems in the application of current transformers. CTs should be matched to the current rating of each transformer winding, so that normal current through the power transformer is equal on the secondary side of the CT on different windings. However, because only standard CT ratios are available, this matching may not be exact.
In our example, the transformer has a voltage ratio of $220 \mathrm{kV} / 69 \mathrm{kV}$ (i.e. about 3.188 to 1) and a compensating CT ratio is 500 A to 1500 A (i.e. 1 to 3). Historically, this would have resulted in a steady state current at the differential relay. Interposing CTs or tapped relay windings were used to minimize this error.
The T60 automatically corrects for CT mismatch errors. All currents are magnitude compensated to be in units of the CTs of one winding before the calculation of differential and restraint quantities.
The reference winding $\left(w_{r e f}\right)$ is the winding to which all currents are referred. This means that the differential and restraint currents will be in per unit of nominal of the CTs on the reference winding. This is important to know, because the settings of the operate characteristic of the percent differential element (pickup, breakpoints 1 and 2 ) are entered in terms of the same per unit of nominal.
The reference winding is chosen by the relay to be the winding which has the smallest margin of CT primary current with respect to winding rated current, meaning that the CTs on the reference winding will most likely begin to saturate before those on other windings with heavy through currents. The characteristics of the reference winding CTs determine how the percent differential element operate characteristic should be set.
The T60 determines the reference winding as follows:

1. Calculate the rated current $\left(I_{\text {rated }}\right)$ for each winding:

$$
\begin{equation*}
I_{\text {rated }}[w]=\frac{P_{\text {rated }}[w]}{\sqrt{3} \times V_{\text {nom }}[w]}, \text { where } w=1,2, \ldots w_{\text {total }} \tag{EQ5.9}
\end{equation*}
$$

## Note: enter the self-cooled MVA rating for the $\boldsymbol{P}_{\text {rated }}$ setting.

2. Calculate the CT margin ( $I_{\text {margin }}$ ) for each winding:

$$
\begin{equation*}
I_{\text {margin }}=\frac{\text { CT primary }[w]}{I_{\text {rated }}[w]} \text {, where } w=1,2, \ldots w_{\text {total }} \tag{EQ5.10}
\end{equation*}
$$

3. Choose the winding with the lowest CT margin:

In our example, the reference winding is chosen as follows.

1. Calculate the rated current for windings 1 and 2 :

$$
\begin{equation*}
I_{\text {rated }}[1]=\frac{P_{\text {rated }}[1]}{\sqrt{3} \times V_{\text {nom }}[1]}=\frac{100 \mathrm{MVA}}{\sqrt{3} \times 220 \mathrm{kV}}=226.4 \mathrm{~A}, \quad I_{\text {rated }}[2]=\frac{P_{\text {rated }}[2]}{\sqrt{3} \times V_{\text {nom }}[2]}=\frac{100 \mathrm{MVA}}{\sqrt{3} \times 69 \mathrm{kV}}=836.7 \mathrm{~A} \tag{EQ5.11}
\end{equation*}
$$

2. With these rated currents, calculate the CT margin for windings 1 and 2 :

$$
\begin{equation*}
I_{\text {margin }}[1]=\frac{\mathrm{CT} \text { primary[1] }}{I_{\text {rated }}[1]}=\frac{500 \mathrm{~A}}{262.4 \mathrm{~A}}=1.91, \quad I_{\text {margin }}[2]=\frac{\mathrm{CT} \text { primary }[2]}{I_{\text {rated }}[2]}=\frac{1500 \mathrm{~A}}{836.7 \mathrm{~A}}=1.79 \tag{EQ5.12}
\end{equation*}
$$

3. Since $I_{\text {margin }}[2]<I_{\text {margin }}[1]$, the reference winding $w_{r e f}$ is winding 2 .

The reference winding is shown in ACTUAL VALUES $\Rightarrow \sqrt{ }$ METERING $\Rightarrow$ TRANSFORMER $\Rightarrow \sqrt{ }$ DIFFERENTIAL AND RESTRAINT $\Rightarrow \sqrt{ }$ REFERENCE WINDING.

The unit for calculation of the differential and restraint currents and base for the differential restraint settings is the CT primary associated with the reference winding. In this example, the unit CT is 1500:5 on winding 2.
Magnitude compensation factors $(M)$ are the scaling values by which each winding current is multiplied to refer it to the reference winding. The T60 calculates magnitude compensation factors for each winding as follows:

$$
\begin{equation*}
M[w]=\frac{I_{\text {primary }}[w] \times V_{\text {nom }}[w]}{I_{\text {primary }}\left[w_{\text {ref }}\right] \times V_{\text {nom }}\left[w_{\text {ref }}\right]}, \text { where } w=1,2, \ldots w_{\text {total }} \tag{EQ5.13}
\end{equation*}
$$

In our example, the magnitude compensation factors are calculated as follows:

$$
\begin{align*}
& M[1]=\frac{I_{\text {primary }}[1] \times V_{\text {nom }}[1]}{I_{\text {primary }}[2] \times V_{\text {nom }}[2]}=\frac{500 \mathrm{~A} \times 220 \mathrm{kV}}{1500 \mathrm{~A} \times 69 \mathrm{kV}}=1.0628  \tag{EQ5.14}\\
& M[2]=\frac{I_{\text {primary }}[2] \times V_{\text {nom }}[2]}{I_{\text {primary }}[2] \times V_{\text {nom }}[2]}=\frac{1500 \mathrm{~A} \times 69 \mathrm{kV}}{1500 \mathrm{~A} \times 69 \mathrm{kV}}=1.0000 \tag{EQ5.15}
\end{align*}
$$

The maximum allowed magnitude compensation factor (and hence the maximum allowed CT ratio mismatch) is 32 .

## f) PHASE AND ZERO SEQUENCE COMPENSATION

Power transformers may be connected to provide phase shift, such as the common $\Delta-Y$ connection with its $30^{\circ}$ phase shift. Historically, CT connections were arranged to compensate for this phase error so that the relaying could operate correctly.

In our example, the transformer has the $\Delta-Y$ connection. Traditionally, CTs on the Wye connected transformer winding (winding 2) would be connected in a delta arrangement, which compensates for the phase angle lag introduced in the Delta connected winding (winding 1), so that line currents from both windings can be compared at the relay. The Delta connection of CTs, however, inherently has the effect of removing the zero sequence components of the phase currents. If there were a grounding bank on the Delta winding of the power transformer within the zone of protection, a ground fault would result in differential (zero sequence) current and false trips. In such a case, it would be necessary to insert a zero sequence current trap with the Wye connected CTs on the Delta winding of the transformer.
In general, zero sequence removal is necessary if zero sequence can flow into and out of one transformer winding but not the other winding. Transformer windings that are grounded inside the zone of protection allow zero sequence current flow in that winding, and therefore it is from these windings that zero sequence removal is necessary.
The T60 performs this phase angle compensation and zero sequence removal automatically, based on the settings entered for the transformer. All CTs are connected Wye (polarity markings pointing away from the transformer). All currents are phase and zero sequence compensated internally before the calculation of differential and restraint quantities.
The phase reference winding $\left(w_{f}\right)$ is the winding which will have a phase shift of $0^{\circ}$ applied to it. The phase reference winding is chosen to be the delta or zigzag (non-wye) winding with the lowest winding index, if one exists. For a transformer that has no delta or zigzag windings, the first winding is chosen.
The phase compensation angle ( $\Phi_{\text {comp }}$ ), the angle by which a winding current is shifted to refer it to the phase reference winding, is calculated by the $T 60$ for each winding as follows:

$$
\begin{aligned}
& \Phi_{\text {comp }}[w]=\left|\Phi\left[w_{f}\right]-\Phi[w]\right| \text { where Rotation }=\text { "ABC" } \\
& \Phi_{\text {comp }}[w]=\left|\Phi[w]-\Phi\left[w_{f}\right]\right| \text { where Rotation }=\text { "ACB" }
\end{aligned}
$$

In our example, the phase reference winding would be winding 1, the first delta winding (i.e. $w_{f}=1$ ). The phase compensation angle for each winding would then be calculated as follows (assuming Rotation = "ABC"):

$$
\begin{aligned}
& \Phi_{\text {comp }}[1]=0^{\circ}-0^{\circ}=0^{\circ} \\
& \Phi_{\text {comp }}[2]=0^{\circ}-\left(-30^{\circ}\right)=30^{\circ}=330^{\circ} \mathrm{lag}
\end{aligned}
$$

The following table shows the linear combination of phases of a transformer winding that achieves the phase shift and zero sequence removal for typical values of $\Phi_{\text {comp }}$ :
where: $I_{A}[W]=$ uncompensated winding ' $w$ ' phase A current
$I_{A}{ }^{p}[w]=$ phase and zero sequence compensated winding ' $w$ ' phase A current

Table 5-5: PHASE AND ZERO SEQUENCE COMPENSATION FOR TYPICAL VALUES OF $\Phi_{\text {comp }}$

| $\Phi_{\text {comp }}[\mathbf{W}]$ | Grounding[W] = "Not within zone" | Grounding[W] = "Within zone" |
| :---: | :---: | :---: |
| $0^{\circ}$ | $\begin{aligned} I_{A}^{p}[w] & =I_{A}[w] \\ I_{B}^{p}[w] & =I_{B}[w] \\ I_{C}^{p}[w] & =I_{C}[w] \end{aligned}$ | $\begin{aligned} & I_{A}^{p}[w]=\frac{2}{3} I_{A}[w]-\frac{1}{3} I_{B}[w]-\frac{1}{3} I_{C}[w] \\ & I_{B}^{p}[w]=\frac{2}{3} I_{B}[w]-\frac{1}{3} I_{A}[w]-\frac{1}{3} I_{C}[w] \\ & I_{C}^{p}[w]=\frac{2}{3} I_{C}[w]-\frac{1}{3} I_{A}[w]-\frac{1}{3} I_{B}[w] \end{aligned}$ |
| $30^{\circ} \mathrm{lag}$ | $\begin{aligned} & I_{A}^{p}[w]=\frac{1}{\sqrt{3}} I_{A}[w]-\frac{1}{\sqrt{3}} I_{C}[w] \\ & I_{B}^{p}[w]=\frac{1}{\sqrt{3}} I_{B}[w]-\frac{1}{\sqrt{3}} I_{A}[w] \\ & I_{C}^{p}[w]=\frac{1}{\sqrt{3}} I_{C}[w]-\frac{1}{\sqrt{3}} I_{B}[w] \end{aligned}$ | $\begin{aligned} & I_{A}^{p}[w]=\frac{1}{\sqrt{3}} I_{A}[w]-\frac{1}{\sqrt{3}} I_{C}[w] \\ & I_{B}^{p}[w]=\frac{1}{\sqrt{3}} I_{B}[w]-\frac{1}{\sqrt{3}} I_{A}[w] \\ & I_{C}^{p}[w]=\frac{1}{\sqrt{3}} I_{C}[w]-\frac{1}{\sqrt{3}} I_{B}[w] \end{aligned}$ |
| $60^{\circ} \mathrm{lag}$ | $\begin{aligned} I_{A}^{p}[w] & =-I_{C}[w], \\ I_{B}^{p}[w] & =-I_{A}[w], \\ I_{C}^{p}[w] & =-I_{B}[w] \end{aligned}$ | $\begin{aligned} & I_{A}^{p}[w]=-\frac{2}{3} I_{C}[w]+\frac{1}{3} I_{A}[w]+\frac{1}{3} I_{B}[w] \\ & I_{B}^{p}[w]=-\frac{2}{3} I_{A}[w]+\frac{1}{3} I_{B}[w]+\frac{1}{3} I_{C}[w] \\ & I_{C}^{p}[w]=-\frac{2}{3} I_{B}[w]+\frac{1}{3} I_{A}[w]+\frac{1}{3} I_{C}[w] \end{aligned}$ |
| $90^{\circ} \mathrm{lag}$ | $\begin{aligned} & I_{A}^{p}[w]=\frac{1}{\sqrt{3}} I_{B}[w]-\frac{1}{\sqrt{3}} I_{C}[w] \\ & I_{B}^{p}[w]=\frac{1}{\sqrt{3}} I_{C}[w]-\frac{1}{\sqrt{3}} I_{A}[w] \\ & I_{C}^{p}[w]=\frac{1}{\sqrt{3}} I_{A}[w]-\frac{1}{\sqrt{3}} I_{B}[w] \end{aligned}$ | $\begin{aligned} & I_{A}^{p}[w]=\frac{1}{\sqrt{3}} I_{B}[w]-\frac{1}{\sqrt{3}} I_{C}[w] \\ & I_{B}^{p}[w]=\frac{1}{\sqrt{3}} I_{C}[w]-\frac{1}{\sqrt{3}} I_{A}[w] \\ & I_{C}^{p}[w]=\frac{1}{\sqrt{3}} I_{A}[w]-\frac{1}{\sqrt{3}} I_{B}[w] \end{aligned}$ |
| $120^{\circ} \mathrm{lag}$ | $\begin{aligned} & I_{A}^{p}[w]=I_{B}[w] \\ & I_{B}^{p}[w]=I_{C}[w] \\ & I_{C}^{p}[w]=I_{A}[w] \end{aligned}$ | $\begin{aligned} I_{A}^{p}[w] & =\frac{2}{3} I_{B}[w]-\frac{1}{3} I_{A}[w]-\frac{1}{3} I_{C}[w] \\ I_{B}^{p}[w] & =\frac{2}{3} I_{C}[w]-\frac{1}{3} I_{A}[w]-\frac{1}{3} I_{B}[w] \\ I_{C}^{p}[w] & =\frac{2}{3} I_{A}[w]-\frac{1}{3} I_{B}[w]-\frac{1}{3} I_{C}[w] \end{aligned}$ |
| $150^{\circ}$ lag | $\begin{aligned} & I_{A}^{p}[w]=\frac{1}{\sqrt{3}} I_{B}[w]-\frac{1}{\sqrt{3}} I_{A}[w] \\ & I_{B}^{p}[w]=\frac{1}{\sqrt{3}} I_{C}[w]-\frac{1}{\sqrt{3}} I_{B}[w] \\ & I_{C}^{p}[w]=\frac{1}{\sqrt{3}} I_{A}[w]-\frac{1}{\sqrt{3}} I_{C}[w] \end{aligned}$ | $\begin{aligned} & I_{A}^{p}[w]=\frac{1}{\sqrt{3}} I_{B}[w]-\frac{1}{\sqrt{3}} I_{A}[w] \\ & I_{B}^{p}[w]=\frac{1}{\sqrt{3}} I_{C}[w]-\frac{1}{\sqrt{3}} I_{B}[w] \\ & I_{C}^{p}[w]=\frac{1}{\sqrt{3}} I_{A}[w]-\frac{1}{\sqrt{3}} I_{C}[w] \end{aligned}$ |
| $180^{\circ} \mathrm{lag}$ | $\begin{aligned} I_{A}^{p}[w] & =-I_{A}[w] \\ I_{B}^{p}[w] & =-I_{B}[w] \\ I_{C}^{p}[w] & =-I_{C}[w] \end{aligned}$ | $\begin{aligned} & I_{A}^{p}[w]=-\frac{2}{3} I_{A}[w]+\frac{1}{3} I_{B}[w]+\frac{1}{3} I_{C}[w] \\ & I_{B}^{p}[w]=-\frac{2}{3} I_{B}[w]+\frac{1}{3} I_{A}[w]+\frac{1}{3} I_{C}[w] \\ & I_{C}^{p}[w]=-\frac{2}{3} I_{C}[w]+\frac{1}{3} I_{A}[w]+\frac{1}{3} I_{B}[w] \end{aligned}$ |
| $210^{\circ} \mathrm{lag}$ | $\begin{aligned} & I_{A}^{p}[w]=\frac{1}{\sqrt{3}} I_{C}[w]-\frac{1}{\sqrt{3}} I_{A}[w] \\ & I_{B}^{p}[w]=\frac{1}{\sqrt{3}} I_{A}[w]-\frac{1}{\sqrt{3}} I_{B}[w] \\ & I_{C}^{p}[w]=\frac{1}{\sqrt{3}} I_{B}[w]-\frac{1}{\sqrt{3}} I_{C}[w] \end{aligned}$ | $\begin{aligned} & I_{A}^{p}[w]=\frac{1}{\sqrt{3}} I_{C}[w]-\frac{1}{\sqrt{3}} I_{A}[w] \\ & I_{B}^{p}[w]=\frac{1}{\sqrt{3}} I_{A}[w]-\frac{1}{\sqrt{3}} I_{B}[w] \\ & I_{C}^{p}[w]=\frac{1}{\sqrt{3}} I_{B}[w]-\frac{1}{\sqrt{3}} I_{C}[w] \end{aligned}$ |

Table 5-5: PHASE AND ZERO SEQUENCE COMPENSATION FOR TYPICAL VALUES OF $\Phi_{\text {comp }}$

| $\Phi_{\text {comp }}[W]$ | Grounding[w] = "Not within zone" | Grounding[ $W$ ] = "Within zone" |
| :---: | :---: | :---: |
| $240^{\circ} \mathrm{lag}$ | $\begin{aligned} & I_{A}^{p}[w]=I_{C}[w] \\ & I_{B}^{p}[w]=I_{A}[w] \\ & I_{C}^{p}[w]=I_{B}[w] \end{aligned}$ | $\begin{aligned} & I_{A}^{p}[w]=\frac{2}{3} I_{C}[w]-\frac{1}{3} I_{A}[w]-\frac{1}{3} I_{B}[w] \\ & I_{B}^{p}[w]=\frac{2}{3} I_{A}[w]-\frac{1}{3} I_{B}[w]-\frac{1}{3} I_{C}[w] \\ & I_{C}^{p}[w]=\frac{2}{3} I_{B}[w]-\frac{1}{3} I_{A}[w]-\frac{1}{3} I_{C}[w] \end{aligned}$ |
| $270^{\circ} \mathrm{lag}$ | $\begin{aligned} & I_{A}^{p}[w]=\frac{1}{\sqrt{3}} I_{C}[w]-\frac{1}{\sqrt{3}} I_{B}[w] \\ & I_{B}^{p}[w]=\frac{1}{\sqrt{3}} I_{A}[w]-\frac{1}{\sqrt{3}} I_{C}[w] \\ & I_{C}^{p}[w]=\frac{1}{\sqrt{3}} I_{B}[w]-\frac{1}{\sqrt{3}} I_{A}[w] \end{aligned}$ | $\begin{aligned} & I_{A}^{p}[w]=\frac{1}{\sqrt{3}} I_{C}[w]-\frac{1}{\sqrt{3}} I_{B}[w] \\ & I_{B}^{p}[w]=\frac{1}{\sqrt{3}} I_{A}[w]-\frac{1}{\sqrt{3}} I_{C}[w] \\ & I_{C}^{p}[w]=\frac{1}{\sqrt{3}} I_{B}[w]-\frac{1}{\sqrt{3}} I_{A}[w] \end{aligned}$ |
| $300^{\circ} \mathrm{lag}$ | $\begin{aligned} & I_{A}^{p}[w]=-I_{B}[w] \\ & I_{B}^{p}[w]=-I_{C}[w] \\ & I_{C}^{p}[w]=-I_{A}[w] \end{aligned}$ | $\begin{aligned} & I_{A}^{p}[w]=-\frac{2}{3} I_{B}[w]+\frac{1}{3} I_{A}[w]+\frac{1}{3} I_{C}[w] \\ & I_{B}^{p}[w]=-\frac{2}{3} I_{C}[w]+\frac{1}{3} I_{A}[w]+\frac{1}{3} I_{B}[w] \\ & I_{C}^{p}[w]=-\frac{2}{3} I_{A}[w]+\frac{1}{3} I_{B}[w]+\frac{1}{3} I_{C}[w] \end{aligned}$ |
| $330^{\circ} \mathrm{lag}$ | $\begin{aligned} & I_{A}^{p}[w]=\frac{1}{\sqrt{3}} I_{A}[w]-\frac{1}{\sqrt{3}} I_{B}[w] \\ & I_{B}^{p}[w]=\frac{1}{\sqrt{3}} I_{B}[w]-\frac{1}{\sqrt{3}} I_{C}[w] \\ & I_{C}^{p}[w]=\frac{1}{\sqrt{3}} I_{C}[w]-\frac{1}{\sqrt{3}} I_{A}[w] \end{aligned}$ | $\begin{aligned} & I_{A}^{p}[w]=\frac{1}{\sqrt{3}} I_{A}[w]-\frac{1}{\sqrt{3}} I_{B}[w] \\ & I_{B}^{p}[w]=\frac{1}{\sqrt{3}} I_{B}[w]-\frac{1}{\sqrt{3}} I_{C}[w] \\ & I_{C}^{p}[w]=\frac{1}{\sqrt{3}} I_{C}[w]-\frac{1}{\sqrt{3}} I_{A}[w] \end{aligned}$ |

In our example, the following phase and zero-sequence compensation equations would be used:
For Winding 1 :

$$
\begin{equation*}
I_{A}^{p}[1]=\frac{2}{3} I_{A}[1]-\frac{1}{3} I_{B}[1]-\frac{1}{3} I_{C}[1] ; \quad I_{B}^{p}[1]=\frac{2}{3} I_{B}[1]-\frac{1}{3} I_{A}[1]-\frac{1}{3} I_{C}[1] ; \quad I_{C}^{p}[1]=\frac{2}{3} I_{C}[1]-\frac{1}{3} I_{A}[1]-\frac{1}{3} I_{B}[1] \tag{EQ5.16}
\end{equation*}
$$

For Winding 2 :

$$
\begin{equation*}
I_{A}^{p}[w]=\frac{1}{\sqrt{3}} I_{A}[2]-\frac{1}{\sqrt{3}} I_{B}[2] ; \quad I_{B}^{p}[w]=\frac{1}{\sqrt{3}} I_{B}[2]-\frac{1}{\sqrt{3}} I_{C}[2] ; \quad I_{C}^{p}[w]=\frac{1}{\sqrt{3}} I_{C}[2]-\frac{1}{\sqrt{3}} I_{A}[2] \tag{EQ5.17}
\end{equation*}
$$

## g) MAGNITUDE, PHASE ANGLE, AND ZERO SEQUENCE COMPENSATION

La compensation complète de magnitude d'angle de phase et zéro séquence est comme suit:

$$
\begin{align*}
& I_{A}^{c}[w]=M[w] \times I_{A}^{p}[w], \quad \text { où } w=1,2, \ldots, w_{\text {total }}  \tag{EQ5.18}\\
& I_{B}^{c}[w]=M[w] \times I_{B}^{p}[w], \quad \text { où } w=1,2, \ldots, w_{\text {total }}  \tag{EQ5.19}\\
& I_{C}^{c}[w]=M[w] \times I_{C}^{p}[w], \quad \text { où } w=1,2, \ldots, w_{\text {total }} \tag{EQ5.20}
\end{align*}
$$

où: $\quad I_{A}^{c}[w], I_{B}^{c}[w]$, et $I_{C}^{c}[w]=$ enroulement compensé en magnitude, en phase et en composante homopolaire «W» courant phase $\mathrm{A} ; M[\mathrm{~W}]=$ facteur de compensation de magnitude pour l'enroulement «W» (tel que calculé);
$I_{A}^{p}[w], I_{B}^{C}[w]$, et $I_{C}^{C}[W]=$ enroulement compensé en phase et en composante homopolaire «W», courant phase A (tel que calculé)

## h) DIFFERENTIAL AND RESTRAINT CURRENT CALCULATIONS

Differential and restraint currents are calculated as follows:

$$
\begin{gather*}
I d_{A}=I_{A}^{C}[1]+I_{A}^{c}[2]+\ldots+I_{A}^{C}\left[w_{\text {total }}\right]  \tag{EQ5.21}\\
I d_{B}=I_{B}^{c}[1]+I_{B}^{c}[2]+\ldots+I_{B}^{c}\left[w_{\text {total }}\right]  \tag{EQ5.22}\\
I d_{C}=I_{C}^{c}[1]+I_{C}^{c}[2]+\ldots+I_{C}^{c}\left[w_{\text {total }}\right]  \tag{EQ5.23}\\
I r_{A}=\max \left(\left|I_{A}^{c}[1]\right|,\left|I_{A}^{c}[2]\right|, \ldots, I_{A}^{C}\left[w_{\text {total }}\right]\right)  \tag{EQ5.24}\\
I r_{B}=\max \left(\left|I_{B}^{c}[1]\right|,\left|I_{B}^{c}[2]\right|, \ldots, I_{B}^{c}\left[w_{\text {total }}\right]\right)  \tag{EQ5.25}\\
I r_{C}=\max \left(\left|I_{C}^{c}[1]\right|,\left|I_{C}^{c}[2]\right|, \ldots, I_{C}^{c}\left[w_{\text {total }}\right]\right) \tag{EQ5.26}
\end{gather*}
$$

where $I d_{A}, I d_{B}$, and $I d_{C}$ are the phase differential currents and $I r_{A}, I r_{B}$, and $I r_{C}$ are the phase restraint currents.

## i) TRANSFORMER WINDINGS BETWEEN TWO BREAKERS

When the relay is to protect a transformer with windings connected between two breakers, such as in a ring bus or breaker-and-a-half station configuration, one of the methods for configuring currents into the relay presented below should be used (see the Breaker-and-a-Half Scheme diagram in the Overview section of this chapter).
For this example it is assumed that winding 1 is connected between two breakers and winding 2 is connected to a single breaker. The CTs associated with winding 1 are CTX, at 1200/5 A and CTY, at 1000/5 A. CTX is connected to current input channels 1 through 3 inclusive and CTY is connected to current input channels 5 through 7 inclusive on a type 8H CT/VT module in relay slot " $F$." The CT2 on winding 2 is $5000 / 5$ A and is connected to current input channels 1 through 4 inclusive on a type 8 F CT/VT module in relay slot " M ".

## SETUP METHOD A (PREFERRED)

This approach is preferred because it provides increased sensitivity as the current from each individual set of CTs participates directly in the calculation of CT ratio mismatch, phase compensation, zero-sequence removal (if required) and the differential restraint current. The concept used in this approach is to consider that each set of CTs connected to winding 1 represents a connection to an individual winding. For our example we consider the two-winding transformer to be a threewinding transformer.

1. Enter the settings for each set of CTs in the SYSTEM SETUP $\Rightarrow$ AC INPUTS $\Rightarrow$ CURRENT BANK settings menu.

PHASE CT F1 PRIMARY: "1200 A"
PHASE CT F1 SECONDARY: " 5 A"
GROUND CT F1 PRIMARY: "1 A" (default value)
GROUND CT F1 SECONDARY: "1 A" (default value)
PHASE CT F5 PRIMARY: " 1000 A"
PHASE CT F5 SECONDARY: "5 A"
GROUND CT F5 PRIMARY: "1 A" (default value)
GROUND CT F5 SECONDARY: "1 A" (default value)
PHASE CT M1 PRIMARY: "5000 A"
PHASE CT M1 SECONDARY: " 5 A"
GROUND CT M5 PRIMARY: " 5000 A"
GROUND CT M5 SECONDARY: "5 A"
2. Configure Source $n$ (Source 1 for this example) as the current from CTX in Winding 1 in the SYSTEM SETUP $\Rightarrow \sqrt{ }$ SIGNAL SOURCES $\Rightarrow \sqrt{ }$ SOURCE $n$ settings menu.
SOURCE 1 NAME: "WDG 1 X" SOURCE 1 PHASE CT: "F1" SOURCE 1 GROUND CT: "None"
SOURCE 1 PHASE VT: "None"
SOURCE 1 AUX VT: "None"
3. Configure Source $n$ (Source 2 for this example) as the current from CTY in Winding 1 in the SYSTEM SETUP $\Rightarrow \curvearrowleft$ sIGNAL SOURCES $\Rightarrow \sqrt{ }$ SOURCE $n$ settings menu.
SOURCE 2 NAME: "WDG 1Y"
SOURCE 2 PHASE CT: "F5"
SOURCE 2 GROUND CT: "None"
SOURCE 2 PHASE VT: "None"
SOURCE 2 AUX VT: "None"
4. Configure Source $n$ (Source 3 for this example) to be used as the current in Winding 2 in the SYSTEM SETUP $\Rightarrow \sqrt{ }$ SIGNAL SOURCES $\Rightarrow \sqrt{ }$ SOURCE $\mathbf{n}$ settings menu.
SOURCE 3 NAME: "WDG 2"
SOURCE 3 PHASE CT: "M1"
SOURCE 3 GROUND CT: "M1"
SOURCE 3 PHASE VT. "None"
SOURCE 3 AUX VT: "None"
5. Configure the Source setting of the transformer windings in the SYSTEM SETUP $\Rightarrow \sqrt[\Omega]{ }$ TRANSFORMER $\Rightarrow \sqrt{ }$ WINDING n settings menu.
winding 1 source: "WDG 1 X "
winding 2 SOURCE: "WDG 1Y"
WINDING 3 SOURCE: "WDG 2"

## SETUP METHOD B (ALTERNATE)

This approach adds the current from each phase of the CT1 and CT2 together to represent the total winding 1 current. The procedure is shown below.

1. Enter the settings for each set of CTs in the SYSTEM SETUP $\Rightarrow$ AC INPUTS $\Rightarrow$ CURRENT BANK settings menu, as shown for Method A above.
2. Configure Source $n$ (Source 1 for this example) to be used as the summed current in Winding 1 in the system setup $\Rightarrow \sqrt{3}$ SIGNAL SOURCES $\Rightarrow \sqrt{ }$ SOURCE $\mathbf{n}$ settings menu.
source 1 NAme: "WDG 1"
SOURCE 1 PHASE CT: "F1 + F5"
SOURCE 1 GROUND CT: "None"
SOURCE 1 PHASE VT: "None"
SOURCE 1 AUX VT: "None"
3. Configure Source $n$ (Source 2 for this example) to be used as the Winding 2 current in the SYSTEM SETUP $\Rightarrow \curvearrowleft$ SIGNAL SOURCES $\Rightarrow \sqrt{ }$ SOURCE $n$ settings menu.
source 2 NAME: "WDG 2"
SOURCE 2 PHASE CT: "M1"
SOURCE 2 GROUND CT: "M1" SOURCE 2 PHASE VT: "None" SOURCE 2 AUX VT: "None"

## j) TRANSFORMER THERMAL INPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ TRANSFORMER $\Rightarrow \sqrt{ }$ THERMAL INPUTS

| $\square$ THERMAL INPUTS | (1) | WINDING CURRENTS: SRC 1 | Range | SRC 1, SRC 2, SRC 3, SRC 4 (or the user-defined name) |
| :---: | :---: | :---: | :---: | :---: |
| MESSAGE | $\square$ | AMBIENT TEMPERATURE: RTD Input 1 | Range | RTD Input 1,.... RTD Input 8, dcmA Input 1,..., dcmA Input 8, Monthly Average |
| MESSAGE | (4) | TOP-OIL TEMPERATURE: <br> RTD Input 1 | Range | RTD Input 1,.... RTD Input 8, dcmA Input 1,..., dcmA Input 8, Computed |

The thermal inputs settings are used for computation of hottest-spot winding temperature, aging factor and accumulated loss of life.

- WINDING CURRENTS: Enter a source that represents the true winding load currents.
 In cases where two or more sets of CTs are associated to the winding and where thermal elements are to be set (for example, in a breaker-and-a-half scheme), a spare source for current summation from these CTs should be used to obtain the total true winding current. Otherwise, select the only source representing the other winding current.
- AMBIENT TEMPERATURE: Select an RTD or dcmA input if the ambient temperature is to be measured directly. Otherwise, select "Monthly Average" and enter an average temperature for each month of the year if a directly measured device output is not available (see monthly settings below).
- TOP OIL TEMPERATURE: Select RTD or dcmA input for direct measurement of top-oil temperature. If an RTD or dcmA input is not available, select the "Computed".

The following menu will be available when Ambient temperature is "Monthly Average".


a) SETTINGS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ FLEXCURVES $\Rightarrow$ FLEXCURVE A(D)


FlexCurves ${ }^{\top \mathrm{TM}} \mathrm{A}$ through D have settings for entering times to Reset/Operate at the following pickup levels: 0.00 to 0.98 / 1.03 to 20.00. This data is converted into 2 continuous curves by linear interpolation between data points. To enter a custom FlexCurve ${ }^{\text {TM }}$, enter the Reset/Operate time (using the VALUE $\sigma$ keys) for each selected pickup point (using the $\triangle$ MESSAGE $\nabla$ keys) for the desired protection curve (A, B, C, or D).

Table 5-6: FLEXCURVE ${ }^{\text {TM }}$ TABLE

| RESET | $\begin{gathered} \text { TIME } \\ \text { MS } \end{gathered}$ | RESET | $\begin{aligned} & \text { TIME } \\ & \text { MS } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 0.00 |  | 0.68 |  |
| 0.05 |  | 0.70 |  |
| 0.10 |  | 0.72 |  |
| 0.15 |  | 0.74 |  |
| 0.20 |  | 0.76 |  |
| 0.25 |  | 0.78 |  |
| 0.30 |  | 0.80 |  |
| 0.35 |  | 0.82 |  |
| 0.40 |  | 0.84 |  |
| 0.45 |  | 0.86 |  |
| 0.48 |  | 0.88 |  |
| 0.50 |  | 0.90 |  |
| 0.52 |  | 0.91 |  |
| 0.54 |  | 0.92 |  |
| 0.56 |  | 0.93 |  |
| 0.58 |  | 0.94 |  |
| 0.60 |  | 0.95 |  |
| 0.62 |  | 0.96 |  |
| 0.64 |  | 0.97 |  |
| 0.66 |  | 0.98 |  |


| OPERATE | TIME <br> MS | OPERATE | TIME <br> MS | OPERATE | TIME <br> MS | OPERATE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TIME |  |  |  |  |  |  |
| MS |  |  |  |  |  |  |$|$

The relay using a given FlexCurve ${ }^{T M}$ applies linear approximation for times between the user-entered points. Special care must be applied when setting the two points that are close to the multiple of pickup of 1, i.e. 0.98 pu and 1.03 pu . It is recommended to set the two times to a similar value; otherwise, the linear approximation may result in undesired behavior for the operating quantity that is close to 1.00 pu .

## b) FLEXCURVE ${ }^{\text {TM }}$ CONFIGURATION WITH ENERVISTA UR SETUP

The EnerVista UR Setup software allows for easy configuration and management of FlexCurves ${ }^{\top \mathrm{M}}$ and their associated data points. Prospective FlexCurves ${ }^{\text {TM }}$ can be configured from a selection of standard curves to provide the best approximate fit, then specific data points can be edited afterwards. Alternately, curve data can be imported from a specified file (.csv format) by selecting the Import Data From EnerVista UR Setup setting.

Curves and data can be exported, viewed, and cleared by clicking the appropriate buttons. FlexCurves ${ }^{\top \mathrm{M}}$ are customized by editing the operating time (ms) values at pre-defined per-unit current multiples. Note that the pickup multiples start at zero (implying the "reset time"), operating time below pickup, and operating time above pickup.

## c) RECLOSER CURVE EDITING

Recloser Curve selection is special in that recloser curves can be shaped into a composite curve with a minimum response time and a fixed time above a specified pickup multiples. There are 41 recloser curve types supported. These definite operating times are useful to coordinate operating times, typically at higher currents and where upstream and downstream protective devices have different operating characteristics. The Recloser Curve configuration window shown below appears when the Initialize From EnerVista UR Setup setting is set to "Recloser Curve" and the Initialize FlexCurve button is clicked.


Figure 5-18: RECLOSER CURVE INITIALIZATION
Multiplier and Adder settings only affect the curve portion of the characteristic and not the MRT and HCT settings. The HCT settings override the MRT settings for multiples of pickup greater than the HCT Ratio.

## d) EXAMPLE

A composite curve can be created from the GE_111 standard with MRT $=200 \mathrm{~ms}$ and HCT initially disabled and then enabled at 8 times pickup with an operating time of 30 ms . At approximately 4 times pickup, the curve operating time is equal to the MRT and from then onwards the operating time remains at 200 ms (see below).



Multiple of Pickup

Figure 5-19: COMPOSITE RECLOSER CURVE WITH HCT DISABLED
With the HCT feature enabled, the operating time reduces to 30 ms for pickup multiples exceeding 8 times pickup.


Figure 5-20: COMPOSITE RECLOSER CURVE WITH HCT ENABLED
Configuring a composite curve with an increase in operating time at increased pickup multiples is not allowed. If this is attempted, the EnerVista UR Setup software generates an error message and discards the proposed changes.
e) STANDARD RECLOSER CURVES

The standard Recloser curves available for the T60 are displayed in the following graphs.


Figure 5-21: RECLOSER CURVES GE101 TO GE106


Figure 5-22: RECLOSER CURVES GE113, GE120, GE138 AND GE142


Figure 5-23: RECLOSER CURVES GE134, GE137, GE140, GE151 AND GE201


Figure 5-24: RECLOSER CURVES GE131, GE141, GE152, AND GE200


Figure 5-25: RECLOSER CURVES GE133, GE161, GE162, GE163, GE164 AND GE165


Figure 5-26: RECLOSER CURVES GE116, GE117, GE118, GE132, GE136, AND GE139


Figure 5-27: RECLOSER CURVES GE107, GE111, GE112, GE114, GE115, GE121, AND GE122


Figure 5-28: RECLOSER CURVES GE119, GE135, AND GE202

To provide maximum flexibility to the user, the arrangement of internal digital logic combines fixed and user-programmed parameters. Logic upon which individual features are designed is fixed, and all other logic, from digital input signals through elements or combinations of elements to digital outputs, is variable. The user has complete control of all variable logic through FlexLogic ${ }^{\text {TM }}$. In general, the system receives analog and digital inputs which it uses to produce analog and digital outputs. The major sub-systems of a generic UR-series relay involved in this process are shown below.


Figure 5-29: UR ARCHITECTURE OVERVIEW
The states of all digital signals used in the $T 60$ are represented by flags (or FlexLogic ${ }^{\text {TM }}$ operands, which are described later in this section). A digital " 1 " is represented by a 'set' flag. Any external contact change-of-state can be used to block an element from operating, as an input to a control feature in a FlexLogic ${ }^{\text {TM }}$ equation, or to operate a contact output. The state of the contact input can be displayed locally or viewed remotely via the communications facilities provided. If a simple scheme where a contact input is used to block an element is desired, this selection is made when programming the element. This capability also applies to the other features that set flags: elements, virtual inputs, remote inputs, schemes, and human operators.
If more complex logic than presented above is required, it is implemented via FlexLogic ${ }^{\text {TM }}$. For example, if it is desired to have the closed state of contact input H 7 a and the operated state of the phase undervoltage element block the operation of the phase time overcurrent element, the two control input states are programmed in a FlexLogic ${ }^{T M}$ equation. This equation ANDs the two control inputs to produce a 'virtual output' which is then selected when programming the phase time overcurrent to be used as a blocking input. Virtual outputs can only be created by FlexLogic ${ }^{\text {TM }}$ equations.

Traditionally, protective relay logic has been relatively limited. Any unusual applications involving interlocks, blocking, or supervisory functions had to be hard-wired using contact inputs and outputs. FlexLogic ${ }^{\text {TM }}$ minimizes the requirement for auxiliary components and wiring while making more complex schemes possible.

The logic that determines the interaction of inputs, elements, schemes and outputs is field programmable through the use of logic equations that are sequentially processed. The use of virtual inputs and outputs in addition to hardware is available internally and on the communication ports for other relays to use (distributed FlexLogic ${ }^{\text {TM }}$ ).
FlexLogic ${ }^{\text {TM }}$ allows users to customize the relay through a series of equations that consist of operators and operands. The operands are the states of inputs, elements, schemes and outputs. The operators are logic gates, timers and latches (with set and reset inputs). A system of sequential operations allows any combination of specified operands to be assigned as inputs to specified operators to create an output. The final output of an equation is a numbered register called a virtual output. Virtual outputs can be used as an input operand in any equation, including the equation that generates the output, as a seal-in or other type of feedback.
A FlexLogic ${ }^{\top M}$ equation consists of parameters that are either operands or operators. Operands have a logic state of 1 or 0. Operators provide a defined function, such as an AND gate or a Timer. Each equation defines the combinations of parameters to be used to set a Virtual Output flag. Evaluation of an equation results in either a 1 (=ON, i.e. flag set) or 0 (=OFF, i.e. flag not set). Each equation is evaluated at least 4 times every power system cycle.
Some types of operands are present in the relay in multiple instances; e.g. contact and remote inputs. These types of operands are grouped together (for presentation purposes only) on the faceplate display. The characteristics of the different types of operands are listed in the table below.

Table 5-7: T60 FLEXLOGIC ${ }^{\text {TM }}$ OPERAND TYPES

| OPERAND TYPE | STATE | EXAMPLE FORMAT | CHARACTERISTICS <br> [INPUT IS '1' (= ON) IF...] |
| :---: | :---: | :---: | :---: |
| Contact Input | On | Cont Ip On | Voltage is presently applied to the input (external contact closed). |
|  | Off | Cont Ip Off | Voltage is presently not applied to the input (external contact open). |
| Contact Output (type Form-A contact only) | Voltage On | Cont Op 1 VOn | Voltage exists across the contact. |
|  | Voltage Off | Cont Op 1 VOff | Voltage does not exists across the contact. |
|  | Current On | Cont Op 1 IOn | Current is flowing through the contact. |
|  | Current Off | Cont Op 1 IOff | Current is not flowing through the contact. |
| Direct Input | On | DIRECT INPUT 1 On | The direct input is presently in the ON state. |
| Element (Analog) | Pickup | PHASE TOC1 PKP | The tested parameter is presently above the pickup setting of an element which responds to rising values or below the pickup setting of an element which responds to falling values. |
|  | Dropout | PHASE TOC1 DPO | This operand is the logical inverse of the above PKP operand. |
|  | Operate | PHASE TOC1 OP | The tested parameter has been above/below the pickup setting of the element for the programmed delay time, or has been at logic 1 and is now at logic 0 but the reset timer has not finished timing. |
|  | Block | PH DIR1 BLK | The output of the comparator is set to the block function. |
| Element <br> (Digital) | Pickup | Dig Element 1 PKP | The input operand is at logic 1. |
|  | Dropout | Dig Element 1 DPO | This operand is the logical inverse of the above PKP operand. |
|  | Operate | Dig Element 1 OP | The input operand has been at logic 1 for the programmed pickup delay time, or has been at logic 1 for this period and is now at logic 0 but the reset timer has not finished timing. |
| Element <br> (Digital Counter) | Higher than | Counter 1 HI | The number of pulses counted is above the set number. |
|  | Equal to | Counter 1 EQL | The number of pulses counted is equal to the set number. |
|  | Lower than | Counter 1 LO | The number of pulses counted is below the set number. |
| Fixed | On | On | Logic 1 |
|  | Off | Off | Logic 0 |
| Remote Input | On | REMOTE INPUT 1 On | The remote input is presently in the ON state. |
| Virtual Input | On | Virt Ip 1 On | The virtual input is presently in the ON state. |
| Virtual Output | On | Virt Op 1 On | The virtual output is presently in the set state (i.e. evaluation of the equation which produces this virtual output results in a "1"). |

The operands available for this relay are listed alphabetically by types in the following table.
Table 5-8: T60 FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS (Sheet 1 of 5)

| OPERAND TYPE | OPERAND SYNTAX | OPERAND DESCRIPTION |
| :---: | :---: | :---: |
| CONTROL PUSHBUTTONS | CONTROL PUSHBTN n ON | Control Pushbutton $n$ ( $n=1$ to 7) is being pressed. |
| DIRECT DEVICES | DIRECT DEVICE 1On DIRECT DEVICE 16On DIRECT DEVICE 1Off DIRECT DEVICE 16Off | $\begin{gathered} \text { Flag is set, logic=1 } \\ \downarrow \\ \text { Flag is set, logic=1 } \\ \text { Flag is set, logic=1 } \\ \downarrow \\ \text { Flag is set, logic=1 } \end{gathered}$ |
| DIRECT INPUT/ OUTPUT CHANNEL MONITORING | DIR IO CH1(2) CRC ALARM DIR IO CRC ALARM DIR IO CH1(2) UNRET ALM DIR IO UNRET ALM | The rate of Direct Input messages received on Channel 1(2) and failing the CRC exceeded the user-specified level. <br> The rate of Direct Input messages failing the CRC exceeded the userspecified level on Channel 1 or 2. <br> The rate of returned direct input/output messages on Channel 1(2) exceeded the user-specified level (ring configurations only). <br> The rate of returned direct input/output messages exceeded the userspecified level on Channel 1 or 2 (ring configurations only). |
| ELEMENT: <br> Auxiliary Overvoltage | AUX OV1 PKP <br> AUX OV1 DPO <br> AUX OV1 OP | Auxiliary Overvoltage element has picked up Auxiliary Overvoltage element has dropped out Auxiliary Overvoltage element has operated |
| ELEMENT: <br> Auxiliary Undervoltage | AUX UV1 PKP AUX UV1 DPO AUX UV1 OP | Auxiliary Undervoltage element has picked up Auxiliary Undervoltage element has dropped out Auxiliary Undervoltage element has operated |
| ELEMENT: Breaker Arcing | BKR ARC 1 OP BKR ARC 2 OP | Breaker Arcing Current 1 has operated Breaker Arcing Current 2 has operated |
| ELEMENT: <br> Digital Counters | $\begin{aligned} & \hline \text { Counter } 1 \mathrm{HI} \\ & \text { Counter } 1 \mathrm{EQL} \\ & \text { Counter } 1 \mathrm{LO} \\ & \downarrow \\ & \text { Counter } 8 \mathrm{HI} \\ & \text { Counter } 8 \mathrm{EQL} \\ & \text { Counter } 8 \mathrm{LO} \end{aligned}$ | Digital Counter 1 output is 'more than' comparison value Digital Counter 1 output is 'equal to' comparison value Digital Counter 1 output is 'less than' comparison value <br> Digital Counter 8 output is 'more than' comparison value Digital Counter 8 output is 'equal to' comparison value Digital Counter 8 output is 'less than' comparison value |
| ELEMENT: Digital Elements | Dig Element 1 PKP Dig Element 1 OP Dig Element 1 DPO <br> Dig Element 48 PKP <br> Dig Element 48 OP <br> Dig Element 48 DPO | Digital Element 1 is picked up Digital Element 1 is operated Digital Element 1 is dropped out <br> Digital Element 48 is picked up Digital Element 48 is operated Digital Element 48 is dropped out |
| ELEMENT: FlexElements ${ }^{\text {™ }}$ | $\begin{aligned} & \text { FXE } 1 \text { PKP } \\ & \text { FXE } 1 \text { OP } \\ & \text { FXE } 1 \text { DPO } \\ & \downarrow \\ & \text { FxE } 16 \text { PKP } \\ & \text { FxE } 16 \mathrm{OP} \\ & \text { FxE } 16 \mathrm{DPO} \end{aligned}$ | FlexElement ${ }^{T M} 1$ has picked up FlexElement $^{T M} 1$ has operated FlexElement $^{T M} 1$ has dropped out $\downarrow$ FlexElement FlexElement 16 has picked up FlexElement ${ }^{T M} 16$ has operated 16 has dropped out |
| ELEMENT: <br> Ground Instantaneous Overcurrent | GROUND IOC1 PKP GROUND IOC1 OP GROUND IOC1 DPO | Ground Instantaneous Overcurrent 1 has picked up Ground Instantaneous Overcurrent 1 has operated Ground Instantaneous Overcurrent 1 has dropped out |
|  | GROUND IOC2 to IOC8 | Same set of operands as shown for GROUND IOC 1 |
| ELEMENT: Ground Time Overcurrent | $\begin{aligned} & \text { GROUND TOC1 PKP } \\ & \text { GROUND TOC1 OP } \\ & \text { GROUND TOC1 DPO } \end{aligned}$ | Ground Time Overcurrent 1 has picked up Ground Time Overcurrent 1 has operated Ground Time Overcurrent 1 has dropped out |
|  | GROUND TOC2 to TOC6 | Same set of operands as shown for GROUND TOC1 |
| ELEMENT Non-Volatile Latches | LATCH 1 ON LATCH 1 OFF $\downarrow$ LATCH 16 ON LATCH 16 OFF | $\begin{aligned} & \text { Non-Volatile Latch } 1 \text { is ON }(\text { Logic = } 1) \\ & \text { Non-Voltage Latch } 1 \text { is OFF }(\text { Logic }=0) \\ & \downarrow \\ & \text { Non-Volatile Latch } 16 \text { is ON }(\text { Logic }=1) \\ & \text { Non-Voltage Latch } 16 \text { is OFF }(\text { Logic }=0) \end{aligned}$ |
| ELEMENT: <br> Neutral Instantaneous Overcurrent | NEUTRAL IOC1 PKP NEUTRAL IOC1 OP NEUTRAL IOC1 DPO | Neutral Instantaneous Overcurrent 1 has picked up Neutral Instantaneous Overcurrent 1 has operated Neutral Instantaneous Overcurrent 1 has dropped out |
|  | NEUTRAL IOC2 to IOC8 | Same set of operands as shown for NEUTRAL IOC1 |
| ELEMENT: Neutral Overvoltage | NEUTRAL OV1 PKP NEUTRAL OV1 DPO NEUTRAL OV1 OP | Neutral Overvoltage element has picked up Neutral Overvoltage element has dropped out Neutral Overvoltage element has operated |

Table 5-8: T60 FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS (Sheet 2 of 5)

| OPERAND TYPE | OPERAND SYNTAX | OPERAND DESCRIPTION |
| :---: | :---: | :---: |
| ELEMENT: Neutral Time Overcurrent | NEUTRAL TOC1 PKP NEUTRAL TOC1 OP NEUTRAL TOC1 DPO | Neutral Time Overcurrent 1 has picked up Neutral Time Overcurrent 1 has operated Neutral Time Overcurrent 1 has dropped out |
|  | NEUTRAL TOC2 to TOC6 | Same set of operands as shown for NEUTRAL TOC1 |
| ELEMENT: <br> Neutral Directional Overcurrent | NTRL DIR OC1 FWD NTRL DIR OC1 REV | Neutral Directional OC1 Forward has operated Neutral Directional OC1 Reverse has operated |
| ELEMENT: Overfrequency | OVERFREQ 1 PKP OVERFREQ 1 OP OVERFREQ 1 DPO | Overfrequency 1 has picked up Overfrequency 1 has operated Overfrequency 1 has dropped out |
|  | OVERFREQ 2 to 4 | Same set of operands as shown for OVERFREQ 1 |
| ELEMENT: <br> Phase Directional Overcurrent | PH DIR1 BLK A <br> PH DIR1 BLK B <br> PH DIR1 BLK C <br> PH DIR1 BLK | Phase A Directional 1 Block Phase B Directional 1 Block Phase C Directional 1 Block Phase Directional 1 Block |
| ELEMENT: <br> Phase <br> Instantaneous Overcurrent | PHASE IOC1 PKP PHASE IOC1 OP PHASE IOC1 DPO PHASE IOC1 PKP A PHASE IOC1 PKP B PHASE IOC1 PKP C PHASE IOC1 OP A PHASE IOC1 OP B PHASE IOC1 OP C PHASE IOC1 DPO A PHASE IOC1 DPO B PHASE IOC1 DPO C | At least one phase of PHASE IOC1 has picked up At least one phase of PHASE IOC1 has operated At least one phase of PHASE IOC1 has dropped out Phase A of PHASE IOC1 has picked up Phase B of PHASE IOC1 has picked up Phase C of PHASE IOC1 has picked up Phase A of PHASE IOC1 has operated Phase B of PHASE IOC1 has operated Phase C of PHASE IOC1 has operated Phase A of PHASE IOC1 has dropped out Phase B of PHASE IOC1 has dropped out Phase C of PHASE IOC1 has dropped out |
|  | PHASE IOC2 to IOC8 | Same set of operands as shown for PHASE IOC1 |
| ELEMENT: <br> Phase Overvoltage | PHASE OV1 PKP <br> PHASE OV1 OP <br> PHASE OV1 DPO <br> PHASE OV1 PKP A <br> PHASE OV1 PKP B <br> PHASE OV1 PKP C <br> PHASE OV1 OP A <br> PHASE OV1 OP B <br> PHASE OV1 OP C <br> PHASE OV1 DPO A <br> PHASE OV1 DPO B <br> PHASE OV1 DPO C | At least one phase of Overvoltage 1 has picked up At least one phase of Overvoltage 1 has operated At least one phase of Overvoltage 1 has dropped out Phase A of Overvoltage 1 has picked up Phase B of Overvoltage 1 has picked up Phase C of Overvoltage 1 has picked up Phase A of Overvoltage 1 has operated Phase B of Overvoltage 1 has operated Phase C of Overvoltage 1 has operated Phase A of Overvoltage 1 has dropped out Phase B of Overvoltage 1 has dropped out Phase C of Overvoltage 1 has dropped out |
| ELEMENT: Phase Time Overcurrent | PHASE TOC1 PKP PHASE TOC1 OP PHASE TOC1 DPO PHASE TOC1 PKP A PHASE TOC1 PKP B PHASE TOC1 PKP C PHASE TOC1 OP A PHASE TOC1 OP B PHASE TOC1 OP C PHASE TOC1 DPO A PHASE TOC1 DPO B PHASE TOC1 DPO C | At least one phase of PHASE TOC1 has picked up At least one phase of PHASE TOC1 has operated At least one phase of PHASE TOC1 has dropped out Phase A of PHASE TOC1 has picked up Phase B of PHASE TOC1 has picked up Phase C of PHASE TOC1 has picked up Phase A of PHASE TOC1 has operated Phase B of PHASE TOC1 has operated Phase C of PHASE TOC1 has operated Phase A of PHASE TOC1 has dropped out Phase B of PHASE TOC1 has dropped out Phase C of PHASE TOC1 has dropped out |
|  | PHASE TOC2 to TOC6 | Same set of operands as shown for PHASE TOC1 |
| ELEMENT: <br> Phase Undervoltage | PHASE UV1 PKP <br> PHASE UV1 OP <br> PHASE UV1 DPO <br> PHASE UV1 PKP A <br> PHASE UV1 PKP B <br> PHASE UV1 PKP C <br> PHASE UV1 OP A <br> PHASE UV1 OP B <br> PHASE UV1 OP C <br> PHASE UV1 DPO A <br> PHASE UV1 DPO B <br> PHASE UV1 DPO C | At least one phase of UV1 has picked up At least one phase of UV1 has operated At least one phase of UV1 has dropped out Phase A of UV1 has picked up Phase B of UV1 has picked up Phase C of UV1 has picked up Phase A of UV1 has operated Phase B of UV1 has operated Phase C of UV1 has operated Phase A of UV1 has dropped out Phase B of UV1 has dropped out Phase C of UV1 has dropped out |
|  | PHASE UV2 | Same set of operands as shown for PHASE UV1 |

Table 5-8: T60 FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS (Sheet 3 of 5)

| OPERAND TYPE | OPERAND SYNTAX | OPERAND DESCRIPTION |
| :--- | :--- | :--- |
| ELEMENT: <br> Restricted Ground <br> Fault | RESTD GND FT1 PKP <br> RESTD GND FT1 OP <br> RESTD GND FT1 DOP | Restricted Ground Fault 1 has picked up <br> Restricted Ground Fault 1 has operated <br> Restricted Ground Fault 1 has dropped out |
|  | RESTD GND FT2 to FT4 | Same set of operands as shown for RESTD GND FT1 |

Table 5-8: T60 FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS (Sheet 4 of 5)

| OPERAND TYPE | OPERAND SYNTAX | OPERAND DESCRIPTION |
| :--- | :--- | :--- |
| ELEMENT: <br> Transformer Percent <br> Differential | XFMR PCNT DIFF PKP A <br> XFMR PCNT DIFF PKP B <br> XFMR PCNT DIFF PKP C <br> XFMR PCNT DIFF 2ND A <br> XFMR PCNT DIFF 2ND B <br> XFMR PCNT DIFF 2ND C <br> XFMR PCNT DIFF 5TH A <br> XFMR PCNT DIFF 5TH B <br> XFMR PCNT DIFF 5TH C <br> XFMR PCNT DIFF OP <br> XFMR PCNT DIFF OP A <br> XFMR PCNT DIFF OP B <br> XFMR PCNT DIFF OP C | Transformer Percent Differential protection has picked up in Phase A <br> Transformer Percent Differential protection has picked up in Phase B <br> Transformer Percent Differential protection has picked up in Phase C <br> The 2nd harmonic of Transformer Percent Differential has blocked Phase A <br> The 2nd harmonic of Transformer Percent Differential has blocked Phase B <br> The 2nd harmonic of Transformer Percent Differential has blocked Phase C <br> The 5th harmonic of Transformer Percent Differential has blocked Phase A <br> The 5th harmonic of Transformer Percent Differential has blocked Phase B <br> The 5th harmonic of Transformer Percent Differential has blocked Phase C <br> At least one phase of Transformer Percent Differential has operated |

Table 5-8: T60 FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS (Sheet 5 of 5)

| OPERAND TYPE | OPERAND SYNTAX | OPERAND DESCRIPTION |
| :---: | :---: | :---: |
| SELF- <br> DIAGNOSTICS | ANY MAJOR ERROR ANY MINOR ERROR ANY SELF-TEST BATTERY FAIL DIRECT DEVICE OFF DIRECT RING BREAK DSP ERROR EEPROM DATA ERROR EQUIPMENT MISMATCH FLEXLOGIC ERR TOKEN IRIG-B FAILURE LATCHING OUT ERROR LOW ON MEMORY NO DSP INTERRUPTS PRI ETHERNET FAIL PROGRAM MEMORY PROTOTYPE FIRMWARE REMOTE DEVICE OFF SEC ETHERNET FAIL SNTP FAILURE SYSTEM EXCEPTION UNIT NOT CALIBRATED UNIT NOT PROGRAMMED WATCHDOG ERROR | Any of the major self-test errors generated (major error) Any of the minor self-test errors generated (minor error) Any self-test errors generated (generic, any error) See description in Chapter 7: Commands and Targets. |
| UNAUTHORIZED ACCESS ALARM | UNAUTHORIZED ACCESS | Asserted when a password entry fails while accessing a password-protected level of the relay. |
| USER- <br> PROGRAMMABLE <br> PUSHBUTTONS | $\begin{aligned} & \text { PUSHBUTTON } \times \text { ON } \\ & \text { PUSHBUTTON } \times \text { OFF } \end{aligned}$ | Pushbutton Number $x$ is in the 'On' position Pushbutton Number $x$ is in the 'Off' position |

Some operands can be re-named by the user. These are the names of the breakers in the breaker control feature, the ID (identification) of contact inputs, the ID of virtual inputs, and the ID of virtual outputs. If the user changes the default name/ ID of any of these operands, the assigned name will appear in the relay list of operands. The default names are shown in the FlexLogic ${ }^{\text {TM }}$ operands table above.

The characteristics of the logic gates are tabulated below, and the operators available in FlexLogic ${ }^{\text {™ }}$ are listed in the FlexLogic ${ }^{\text {TM }}$ operators table.

Table 5-9: FLEXLOGIC ${ }^{\text {™ }}$ GATE CHARACTERISTICS

| GATES | NUMBER OF INPUTS | OUTPUT IS '1' (= ON) IF... |
| :---: | :---: | :---: |
| NOT | 1 | input is '0' |
| OR | 2 to 16 | any input is '1' |
| AND | 2 to 16 | all inputs are '1' |
| NOR | 2 to 16 | all inputs are '0' |
| NAND | 2 to 16 | any input is '0' |
| XOR | 2 | only one input is '1' |

Table 5-10: FLEXLOGIC ${ }^{\text {TM }}$ OPERATORS

| TYPE | SYNTAX | DESCRIPTION | NOTES |
| :---: | :---: | :---: | :---: |
| Editor | INSERT | Insert a parameter in an equation list. |  |
|  | DELETE | Delete a parameter from an equation list. |  |
| End | END | The first END encountered signifies the last entry in the list of processed FlexLogic ${ }^{\text {TM }}$ parameters. |  |
| One Shot | POSITIVE ONE SHOT | One shot that responds to a positive going edge. | A 'one shot' refers to a single input gate that generates a pulse in response to an edge on the input. The output from a 'one shot' is True (positive) for only one pass through the FlexLogic ${ }^{\text {TM }}$ equation. There is a maximum of 64 'one shots'. |
|  | NEGATIVE ONE SHOT | One shot that responds to a negative going edge. |  |
|  | DUAL ONE SHOT | One shot that responds to both the positive and negative going edges. |  |
| Logic Gate | NOT | Logical Not | Operates on the previous parameter. |
|  | $\begin{aligned} & \hline \mathrm{OR}(2) \\ & \downarrow \\ & \mathrm{OR}(16) \end{aligned}$ | 2 input OR gate <br> 16 input OR gate | Operates on the 2 previous parameters. Operates on the 16 previous parameters. |
|  | $\begin{aligned} & \text { AND(2) } \\ & \downarrow \downarrow(16) \end{aligned}$ | 2 input AND gate <br> 16 input AND gate | Operates on the 2 previous parameters. Operates on the 16 previous parameters. |
|  | $\begin{aligned} & \hline \operatorname{NOR}(2) \\ & \downarrow \downarrow(16) \end{aligned}$ | 2 input NOR gate <br> 16 input NOR gate | Operates on the 2 previous parameters. Operates on the 16 previous parameters. |
|  | $\begin{aligned} & \hline \text { NAND(2) } \\ & \downarrow \downarrow(16) \end{aligned}$ | 2 input NAND gate <br> 16 input NAND gate | Operates on the 2 previous parameters. Operates on the 16 previous parameters. |
|  | XOR(2) | 2 input Exclusive OR gate | Operates on the 2 previous parameters. |
|  | LATCH (S,R) | Latch (Set, Reset) - reset-dominant | The parameter preceding $\operatorname{LATCH}(\mathrm{S}, \mathrm{R})$ is the Reset input. The parameter preceding the Reset input is the Set input. |
| Timer | $\underset{\downarrow}{\downarrow}$ TIMER 1 TIMER 32 | Timer set with FlexLogic ${ }^{\text {M }}$ Timer 1 settings. <br> Timer set with FlexLogic ${ }^{\text {™ }}$ Timer 32 settings. | The timer is started by the preceding parameter. The output of the timer is TIMER \#. |
| Assign Virtual Output | $\begin{aligned} & =\text { Virt Op } 1 \\ & =\text { Virt Op } 96 \end{aligned}$ | Assigns previous FlexLogic ${ }^{\text {TM }}$ parameter to Virtual Output 1. <br> Assigns previous FlexLogic ${ }^{\text {TM }}$ parameter to Virtual Output 96. | The virtual output is set by the preceding parameter |

When forming a FlexLogic ${ }^{\text {TM }}$ equation, the sequence in the linear array of parameters must follow these general rules:

1. Operands must precede the operator which uses the operands as inputs.
2. Operators have only one output. The output of an operator must be used to create a virtual output if it is to be used as an input to two or more operators.
3. Assigning the output of an operator to a Virtual Output terminates the equation.
4. A timer operator (e.g. "TIMER 1") or virtual output assignment (e.g. " = Virt Op 1") may only be used once. If this rule is broken, a syntax error will be declared.

Each equation is evaluated in the order in which the parameters have been entered.
FlexLogic ${ }^{\text {TM }}$ provides latches which by definition have a memory action, remaining in the set state after the set input has been asserted. However, they are volatile; i.e. they reset on the re-application of control power.
When making changes to settings, all FlexLogic ${ }^{\text {TM }}$ equations are re-compiled whenever any new setting value is entered, so all latches are automatically reset. If it is necessary to re-initialize FlexLogic ${ }^{\text {TM }}$ during testing, for example, it is suggested to power the unit down and then back up.

### 5.4.4 FLEXLOGIC $^{\text {TM }}$ EXAMPLE

This section provides an example of implementing logic for a typical application. The sequence of the steps is quite important as it should minimize the work necessary to develop the relay settings. Note that the example presented in the figure below is intended to demonstrate the procedure, not to solve a specific application situation.

In the example below, it is assumed that logic has already been programmed to produce Virtual Outputs 1 and 2, and is only a part of the full set of equations used. When using FlexLogic ${ }^{\text {™ }}$, it is important to make a note of each Virtual Output used - a Virtual Output designation (1 to 96) can only be properly assigned once.


Figure 5-30: EXAMPLE LOGIC SCHEME

1. Inspect the example logic diagram to determine if the required logic can be implemented with the FlexLogic ${ }^{\text {TM }}$ operators. If this is not possible, the logic must be altered until this condition is satisfied. Once this is done, count the inputs to each gate to verify that the number of inputs does not exceed the FlexLogic ${ }^{\text {TM }}$ limits, which is unlikely but possible. If the number of inputs is too high, subdivide the inputs into multiple gates to produce an equivalent. For example, if 25 inputs to an AND gate are required, connect Inputs 1 through 16 to AND(16), 17 through 25 to AND(9), and the outputs from these two gates to AND(2).
Inspect each operator between the initial operands and final virtual outputs to determine if the output from the operator is used as an input to more than one following operator. If so, the operator output must be assigned as a Virtual Output.

For the example shown above, the output of the AND gate is used as an input to both OR\#1 and Timer 1, and must therefore be made a Virtual Output and assigned the next available number (i.e. Virtual Output 3). The final output must also be assigned to a Virtual Output as Virtual Output 4, which will be programmed in the contact output section to operate relay H1 (i.e. Output Contact H1).
Therefore, the required logic can be implemented with two FlexLogic ${ }^{T M}$ equations with outputs of Virtual Output 3 and Virtual Output 4 as shown below.


Figure 5-31: LOGIC EXAMPLE WITH VIRTUAL OUTPUTS
2. Prepare a logic diagram for the equation to produce Virtual Output 3, as this output will be used as an operand in the Virtual Output 4 equation (create the equation for every output that will be used as an operand first, so that when these operands are required they will already have been evaluated and assigned to a specific Virtual Output). The logic for Virtual Output 3 is shown below with the final output assigned.


Figure 5-32: LOGIC FOR VIRTUAL OUTPUT 3
3. Prepare a logic diagram for Virtual Output 4, replacing the logic ahead of Virtual Output 3 with a symbol identified as Virtual Output 3, as shown below.


Figure 5-33: LOGIC FOR VIRTUAL OUTPUT 4
4. Program the FlexLogic ${ }^{\text {TM }}$ equation for Virtual Output 3 by translating the logic into available FlexLogic ${ }^{\text {TM }}$ parameters. The equation is formed one parameter at a time until the required logic is complete. It is generally easier to start at the output end of the equation and work back towards the input, as shown in the following steps. It is also recommended to list operator inputs from bottom to top. For demonstration, the final output will be arbitrarily identified as parameter 99,
and each preceding parameter decremented by one in turn. Until accustomed to using FlexLogic ${ }^{\text {TM }}$, it is suggested that a worksheet with a series of cells marked with the arbitrary parameter numbers be prepared, as shown below.


Figure 5-34: FLEXLOGIC ${ }^{\text {TM }}$ WORKSHEET
5. Following the procedure outlined, start with parameter 99, as follows:

99: The final output of the equation is Virtual Output 3, which is created by the operator "= Virt Op n". This parameter is therefore "= Virt Op 3."
98: The gate preceding the output is an AND, which in this case requires two inputs. The operator for this gate is a 2input AND so the parameter is "AND(2)". Note that FlexLogic ${ }^{\text {TM }}$ rules require that the number of inputs to most types of operators must be specified to identify the operands for the gate. As the 2-input AND will operate on the two operands preceding it, these inputs must be specified, starting with the lower.
97: This lower input to the AND gate must be passed through an inverter (the NOT operator) so the next parameter is "NOT". The NOT operator acts upon the operand immediately preceding it, so specify the inverter input next.
96: The input to the NOT gate is to be contact input H1c. The ON state of a contact input can be programmed to be set when the contact is either open or closed. Assume for this example the state is to be ON for a closed contact. The operand is therefore "Cont Ip H1c On".

95: The last step in the procedure is to specify the upper input to the AND gate, the operated state of digital element 2. This operand is "DIG ELEM 2 OP".

Writing the parameters in numerical order can now form the equation for VIRTUAL OUTPUT 3:

```
[95] DIG ELEM 2 OP
[96] Cont Ip H1c On
[97] NOT
[98] AND(2)
[99] = Virt Op 3
```

It is now possible to check that this selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to the Logic for Virtual Output 3 diagram as a check.


Figure 5-35: FLEXLOGIC ${ }^{\text {TM }}$ EQUATION FOR VIRTUAL OUTPUT 3
6. Repeating the process described for VIRTUAL OUTPUT 3, select the FlexLogic ${ }^{\text {TM }}$ parameters for Virtual Output 4.

99: The final output of the equation is VIRTUAL OUTPUT 4 which is parameter "= Virt Op 4".
98: The operator preceding the output is Timer 2, which is operand "TIMER 2". Note that the settings required for the timer are established in the timer programming section.

97: The operator preceding Timer 2 is OR \#2, a 3-input OR, which is parameter "OR(3)".
96: The lowest input to OR \#2 is operand "Cont Ip H1c On".
95: The center input to OR \#2 is operand "TIMER 1".
94: The input to Timer 1 is operand "Virt Op 3 On".
93: The upper input to OR \#2 is operand "LATCH (S,R)".
92: There are two inputs to a latch, and the input immediately preceding the latch reset is OR \#1, a 4-input OR, which is parameter " $\mathrm{OR}(4)$ ".
91: The lowest input to OR \#1 is operand "Virt Op 3 On".
90: The input just above the lowest input to OR \#1 is operand " $\mathrm{XOR}(2)$ ".
89: The lower input to the XOR is operand "DIG ELEM 1 PKP".
88: The upper input to the XOR is operand "Virt Ip 1 On".
87: The input just below the upper input to OR \#1 is operand "Virt Op 2 On".
86: The upper input to OR \#1 is operand "Virt Op 1 On".
85: The last parameter is used to set the latch, and is operand "Virt Op 4 On".
The equation for VIRTUAL OUTPUT 4 is:

```
[85] Virt Op 4 On
[86] Virt Op 1 On
[87] Virt Op 2 On
[88] Virt Ip 1 On
[89] DIG ELEM 1 PKP
[90] XOR(2)
[91] Virt Op 3 On
[92] OR(4)
[93] LATCH (S,R)
[94] Virt Op 3 On
[95] TIMER 1
[96] Cont Ip H1c On
[97] OR(3)
[98] TIMER 2
[99] = Virt Op 4
```

It is now possible to check that the selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to the Logic for Virtual Output 4 diagram as a check.


Figure 5-36: FLEXLOGIC ${ }^{\text {TM }}$ EQUATION FOR VIRTUAL OUTPUT 4
7. Now write the complete FlexLogic ${ }^{\text {TM }}$ expression required to implement the logic, making an effort to assemble the equation in an order where Virtual Outputs that will be used as inputs to operators are created before needed. In cases where a lot of processing is required to perform logic, this may be difficult to achieve, but in most cases will not cause problems as all logic is calculated at least 4 times per power frequency cycle. The possibility of a problem caused by sequential processing emphasizes the necessity to test the performance of FlexLogic ${ }^{T M}$ before it is placed in service.
In the following equation, Virtual Output 3 is used as an input to both Latch 1 and Timer 1 as arranged in the order shown below:

```
```

DIG ELEM 2 OP

```
```

DIG ELEM 2 OP
Cont Ip H1c On
Cont Ip H1c On
NOT
NOT
AND(2)
AND(2)
= Virt Op 3
= Virt Op 3
Virt Op 4 On
Virt Op 4 On
Virt Op 1 On
Virt Op 1 On
Virt Op 2 On
Virt Op 2 On
Virt Ip 1 On
Virt Ip 1 On
DIG ELEM 1 PKP
DIG ELEM 1 PKP
XOR(2)
XOR(2)
Virt Op 3 On
Virt Op 3 On
OR(4)
OR(4)
LATCH (S,R)
LATCH (S,R)
Virt Op 3 On
Virt Op 3 On
TIMER 1
TIMER 1
Cont Ip H1c On
Cont Ip H1c On
OR(3)
OR(3)
TIMER 2
TIMER 2
= Virt Op 4
= Virt Op 4
END

```
END
```

```
AND(2)
```

```
AND(2)
```

In the expression above, the Virtual Output 4 input to the 4-input OR is listed before it is created. This is typical of a form of feedback, in this case, used to create a seal-in effect with the latch, and is correct.

8. The logic should always be tested after it is loaded into the relay, in the same fashion as has been used in the past. Testing can be simplified by placing an "END" operator within the overall set of FlexLogic ${ }^{T M}$ equations. The equations will then only be evaluated up to the first "END" operator.
The "On" and "Off" operands can be placed in an equation to establish a known set of conditions for test purposes, and the "INSERT" and "DELETE" commands can be used to modify equations.
5.4.5 FLEXLOGIC ${ }^{\text {TM }}$ EQUATION EDITOR

PATH: SETTINGS $\Rightarrow \Omega$ FLEXLOGIC $\Rightarrow$ FLEXLOGIC EQUATION EDITOR


There are 512 FlexLogic ${ }^{\text {TM }}$ entries available, numbered from 1 to 512, with default 'END' entry settings. If a "Disabled" Element is selected as a FlexLogic ${ }^{\text {TM }}$ entry, the associated state flag will never be set to ' 1 '. The ' $+/-$ ' key may be used when editing FlexLogic ${ }^{\top M}$ equations from the keypad to quickly scan through the major parameter types.
5.4.6 FLEXLOGIC ${ }^{\text {TM }}$ TIMERS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ FLEXLOGIC $\Rightarrow \sqrt{ }$ FLEXLOGIC TIMERS $\Rightarrow$ FLEXLOGIC TIMER 1(32)

| $\square$ FLEXLOGIC |  | (1) | TIMER 1 TYPE: millisecond | Range: millisecond, second, minute |
| :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | TIMER 1 PICKUP <br> DELAY: 0  | Range: 0 to 60000 in steps of 1 |
|  | MESSAGE | - | TIMER 1 <br> DROPOUT  <br> DELAY: 0 | Range: 0 to 60000 in steps of 1 |

There are 32 identical FlexLogic ${ }^{\top M}$ timers available. These timers can be used as operators for FlexLogic ${ }^{\top M}$ equations. $^{\text {and }}$.

- TIMER 1 TYPE: This setting is used to select the time measuring unit.
- TIMER 1 PICKUP DELAY: Sets the time delay to pickup. If a pickup delay is not required, set this function to "0".
- TIMER 1 DROPOUT DELAY: Sets the time delay to dropout. If a dropout delay is not required, set this function to " 0 ".

PATH: SETTING $\Rightarrow \sqrt{ }$ FLEXLOGIC $\Rightarrow \sqrt{ }$ FLEXELEMENTS $\Rightarrow$ FLEXELEMENT 1(16)


A FlexElement ${ }^{T M}$ is a universal comparator that can be used to monitor any analog actual value calculated by the relay or a net difference of any two analog actual values of the same type. The effective operating signal could be treated as a signed number or its absolute value could be used as per user's choice.

The element can be programmed to respond either to a signal level or to a rate-of-change (delta) over a pre-defined period of time. The output operand is asserted when the operating signal is higher than a threshold or lower than a threshold as per user's choice.


Figure 5-37: FLEXELEMENT ${ }^{\text {TM }}$ SCHEME LOGIC
The FLEXELEMENT $1+$ IN setting specifies the first (non-inverted) input to the FlexElement ${ }^{\text {TM }}$. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands.
This FLEXELEMENT 1 -IN setting specifies the second (inverted) input to the FlexElement ${ }^{T M}$. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands. This input should be used to invert the signal if needed for convenience, or to make the element respond to a differential signal such as for a top-bottom oil temperature differential alarm. The element will not operate if the two input signals are of different types, for example if one tries to use active power and phase angle to build the effective operating signal.

The element responds directly to the differential signal if the fLEXELEMENT 1 INPUT MODE setting is set to "Signed". The element responds to the absolute value of the differential signal if this setting is set to "Absolute". Sample applications for the "Absolute" setting include monitoring the angular difference between two phasors with a symmetrical limit angle in both directions; monitoring power regardless of its direction, or monitoring a trend regardless of whether the signal increases of decreases.

The element responds directly to its operating signal - as defined by the FLEXELEMENT 1 +IN, FLEXELEMENT 1 -IN and flexELEMENT 1 INPUT MODE settings - if the FLEXELEMENT 1 COMP MODE setting is set to "Level". The element responds to the rate of change of its operating signal if the flexelement 1 COMP mode setting is set to "Delta". In this case the flexeleMENT 1 dt UNIT and FLEXELEMENT 1 dt settings specify how the rate of change is derived.
The FLEXELEMENT 1 DIRECTION setting enables the relay to respond to either high or low values of the operating signal. The following figure explains the application of the flexelement 1 DIRECTION, fLEXELEMENT 1 PICKUP and fLexelement 1 hysTERESIS settings.


Figure 5-38: FLEXELEMENT ${ }^{\text {TM }}$ DIRECTION, PICKUP, AND HYSTERESIS
In conjunction with the FLEXELEMENT 1 INPUT MODE setting the element could be programmed to provide two extra characteristics as shown in the figure below.



842706A2.CDR
Figure 5-39: FLEXELEMENT ${ }^{\text {TM }}$ INPUT MODE SETTING

The fLEXELEMENT 1 PICKUP setting specifies the operating threshold for the effective operating signal of the element. If set to "Over", the element picks up when the operating signal exceeds the FLEXELEMENT 1 PICKUP value. If set to "Under", the element picks up when the operating signal falls below the FLEXELEMENT 1 PICKUP value.

The flexelement 1 hysteresis setting controls the element dropout. It should be noticed that both the operating signal and the pickup threshold can be negative facilitating applications such as reverse power alarm protection. The FlexElement ${ }^{T M}$ can be programmed to work with all analog actual values measured by the relay. The FLEXELEMENT 1 PICKUP setting is entered in per-unit values using the following definitions of the base units:

Table 5-11: FLEXELEMENT ${ }^{\text {TM }}$ BASE UNITS

| dcmA | BASE = maximum value of the DCMA INPUT MAX setting for the two transducers configured under the +IN and -IN inputs. |
| :---: | :---: |
| FREQUENCY | $f_{\text {BASE }}=1 \mathrm{~Hz}$ |
| PHASE ANGLE | $\varphi_{\text {BASE }}=360$ degrees (see the UR angle referencing convention) |
| POWER FACTOR | $\mathrm{PF}_{\text {BASE }}=1.00$ |
| RTDs | BASE $=100^{\circ} \mathrm{C}$ |
| SOURCE CURRENT | $\mathrm{I}_{\text {BASE }}=$ maximum nominal primary RMS value of the +IN and -IN inputs |
| SOURCE ENERGY <br> (Positive and Negative Watthours, Positive and Negative Varhours) | $\mathrm{E}_{\text {BASE }}=10000 \mathrm{MWh}$ or MVAh, respectively |
| SOURCE POWER | $\mathrm{P}_{\text {BASE }}=$ maximum value of $\mathrm{V}_{\text {BASE }} \times \mathrm{I}_{\text {BASE }}$ for the +IN and -IN inputs |
| SOURCE THD \& HARMONICS | BASE $=100 \%$ of fundamental frequency component |
| SOURCE VOLTAGE | $\mathrm{V}_{\text {BASE }}=$ maximum nominal primary RMS value of the +IN and -IN inputs |
| VOLTS PER HERTZ | BASE $=1.00 \mathrm{pu}$ |
| XFMR DIFFERENTIAL CURRENT <br> (Xfmr Iad, Ibd, and Icd Mag) | $\mathrm{I}_{\text {BASE }}=$ maximum primary RMS value of the +IN and -IN inputs (CT primary for source currents, and transformer reference primary current for transformer differential currents) |
| XFMR DIFFERENTIAL <br> HARMONIC CONTENT <br> (Xfmr Harm2 Iad, Ibd, and Icd Mag) <br> (Xfmr Harm5 Iad, Ibd, and Icd Mag) | BASE = 100\% |
| XFMR RESTRAINING CURRENT (Xfmr lar, Ibr, and Icr Mag) | $\mathrm{I}_{\mathrm{BASE}}=$ maximum primary RMS value of the +IN and -IN inputs (CT primary for source currents, and transformer reference primary current for transformer differential currents) |

The flexelement 1 hysteresis setting defines the pickup-dropout relation of the element by specifying the width of the hysteresis loop as a percentage of the pickup value as shown in the FlexElement ${ }^{T M}$ Direction, Pickup, and Hysteresis diagram.
The FLEXELEMENT 1 DT UNIT setting specifies the time unit for the setting FLEXELEMENT 1 dt . This setting is applicable only if flexelement 1 Comp mode is set to "Delta". The flexelement 1 dt setting specifies duration of the time interval for the rate of change mode of operation. This setting is applicable only if FLEXELEMENT 1 COMP MODE is set to "Delta".
This flexelement 1 PKP delay setting specifies the pickup delay of the element. The flexelement 1 rst delay setting specifies the reset delay of the element.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ FLEXLOGIC $\Rightarrow \sqrt{ }$ NON-VOLATILE LATCHES $\Rightarrow$ LATCH 1(16)


The non-volatile latches provide a permanent logical flag that is stored safely and will not reset upon reboot after the relay is powered down. Typical applications include sustaining operator commands or permanently block relay functions, such as Autorecloser, until a deliberate HMI action resets the latch. The settings, logic, and element operation are described below:

- LATCH 1 TYPE: This setting characterizes Latch 1 to be Set- or Reset-dominant.
- LATCH 1 SET: If asserted, the specified FlexLogic ${ }^{\text {TM }}$ operands 'sets' Latch 1.
- LATCH 1 RESET: If asserted, the specified FlexLogic ${ }^{\top M}$ operand 'resets' Latch 1.

| LATCH N TYPE | $\begin{aligned} & \text { LATCH N } \\ & \text { SET } \end{aligned}$ | LATCHN RESET | $\begin{aligned} & \text { LATCHN } \\ & \text { ON } \end{aligned}$ | $\begin{gathered} \text { LATCHN } \\ \text { OFF } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Reset Dominant | ON | OFF | ON | OFF |
|  | OFF | OFF | Previous State | Previous State |
|  | ON | ON | OFF | ON |
|  | OFF | ON | OFF | ON |
| Set Dominant | ON | OFF | ON | OFF |
|  | ON | ON | ON | OFF |
|  | OFF | OFF | Previous State | Previous State State |
|  | OFF | ON | OFF | ON |



Figure 5-40: NON-VOLATILE LATCH OPERATION TABLE (N=1 to 16) AND LOGIC

Each protection element can be assigned up to six different sets of settings according to Setting Group designations 1 to 6. The performance of these elements is defined by the active Setting Group at a given time. Multiple setting groups allow the user to conveniently change protection settings for different operating situations (e.g. altered power system configuration, season of the year). The active setting group can be preset or selected via the SETTING GROUPS menu (see the Control Elements section later in this chapter). See also the Introduction to Elements section at the beginning of this chapter.
5.5.2 SETTING GROUP

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP 1(6)

| $\square$ SETTING GROUP 1 | (1) | $\square$ TRANSFORMER | See below. |
| :---: | :---: | :---: | :---: |
| MESSAGE | - | $\square$ PHASE CURRENT | See page 5-96. |
| MESSAG | - | $\square$ NEUTRAL CURRENT | See page 5-107. |
| MESSAG | - | $\square$ GROUND CURRENT | See page 5-115. |
| MESSAG | (4) | $\square$ VOLTAGE ELEMENTS | See page 5-122. |

Each of the six Setting Group menus is identical. Setting Group 1 (the default active group) automatically becomes active if no other group is active (see the Control Elements section in this chapter for additional details).
5.5.3 TRANSFORMER ELEMENTS
a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP 1(6) $\Rightarrow$ TRANSFORMER


This menu contains the settings for the transformer differential elements and the transformer thermal elements.
The thermal elements include hottest-spot temperature, aging factor and loss of life. The computation of these elements follows IEEE standards C57.91-1995: "IEEE Guide for Loading Mineral-Oil-Immersed Transformers" and C57.96-1989: "IEEE Guide for Loading Dry-Type Distribution Transformers". The computations are based on transformer loading conditions, ambient temperature, and the entered transformer data.

## b) PERCENT DIFFERENTIAL

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow$ TRANSFORMER $\Rightarrow$ PERCENT DIFFERENTIAL


The calculation of differential $\left(I_{d}\right)$ and restraint $\left(I_{r}\right)$ currents for the purposes of the percent differential element is described by the following block diagram, where " $\Sigma$ " has as its output the vector sum of inputs, and "max" has as its output the input of maximum magnitude; these calculations are performed for each phase.
The differential current is calculated as a vector sum of currents from all windings after magnitude and angle compensation.

$$
\begin{equation*}
I_{d}=\stackrel{I_{1_{\text {comp }}}}{ }+\ldots+\widetilde{I_{4_{\text {comp }}}} \tag{EQ5.27}
\end{equation*}
$$

The restraint current is calculated as a maximum of the same internally compensated currents.

$$
\begin{equation*}
I_{r}=\max \cdot\left(\overrightarrow{I_{1_{\text {comp }}}}, \ldots, I, I I_{4_{\text {comp }}}\right) \tag{EQ5.28}
\end{equation*}
$$



828714A1.CDR
Figure 5-41: PERCENT DIFFERENTIAL CALCULATIONS
The T60 Percent Differential element is based on a configurable dual-breakpoint / dual-slope differential restraint characteristic. The purpose of the preset characteristic is to define the differential restraint ratio for the transformer winding currents at different loading conditions and distinguish between external and internal faults. Differential restraint ratio variations occur due to current unbalance between primary and secondary windings and can be caused by the following:

1. Inherent CT inaccuracies.
2. Onload tap changer operation - it adjusts the transformer ratio and consequently the winding currents.
3. CT saturation.


Figure 5-42: PERCENT DIFFERENTIAL OPERATING CHARACTERISTIC

- PERCENT DIFFERENTIAL PICKUP: This setting defines the minimum differential current required for operation. It is chosen, based on the amount of differential current that might be seen under normal operating conditions. Two factors may create differential current during the normal transformer operation: errors due to CT inaccuracies and current variation due to onload tap changer operation.
A setting of 0.1 to 0.3 is generally recommended (the factory default is 0.1 pu ).
- PERCENT DIFFERENTIAL SLOPE 1: This setting defines the differential restraint during normal operating conditions to assure sensitivity to internal faults. The setting must be high enough, however, to cope with CT saturation errors during saturation under small current magnitudes but significant and long lasting DC components (such as during distant external faults in vicinity of generators).
- PERCENT DIFFERENTIAL BREAK 1 and BREAK 2: The settings for Break 1 and Break 2 depend very much on the capability of CTs to correctly transform primary into secondary currents during external faults. Break 2 should be set below the fault current that is most likely to saturate some CTs due to an AC component alone. Break 1 should be set below a current that would cause CT saturation due to DC components and/or residual magnetism. The latter may be as high as $80 \%$ of the nominal flux, effectively reducing the CT capabilities by the factor of 5 .
- PERCENT DIFFERENTIAL SLOPE 2: The Slope 2 setting ensures stability during heavy through fault conditions, where CT saturation results in high differential current. Slope 2 should be set high to cater for the worst case where one set of CTs saturates but the other set doesn't. In such a case the ratio of the differential current to restraint current can be as high as 95 to $98 \%$.
- INRUSH INHIBIT FUNCTION: This setting provides a choice for 2nd harmonic differential protection blocking during magnetizing inrush conditions. Two choices are available: "Adapt. 2nd" - adaptive 2nd harmonic, and "Trad. 2nd" - traditional 2nd harmonic blocking. The adaptive 2nd harmonic restraint responds to both magnitudes and phase angles of the 2 nd harmonic and the fundamental frequency component. The traditional $2 n d$ harmonic restraint responds to the ratio of magnitudes of the 2 nd harmonic and fundamental frequency components. If low second harmonic ratios during magnetizing inrush conditions are not expected, the relay should be set to traditional way of restraining.
- INRUSH INHIBIT MODE: This setting specifies mode of blocking on magnetizing inrush conditions. Modern transformers may produce small 2nd harmonic ratios during inrush conditions. This may result undesired tripping of the protected transformer. Reducing the 2nd harmonic inhibit threshold may jeopardize dependability and speed of protection. The 2 nd harmonic ratio, if low, causes problems in one phase only. This may be utilized as a mean to ensure security by applying cross-phase blocking rather than lowering the inrush inhibit threshold.
If set to "Per phase", the relay performs inrush inhibit individually in each phase. If used on modern transformers, this setting should be combined with adaptive 2nd harmonic function.
If set to "2-out-of-3", the relay checks 2 nd harmonic level in all three phases individually. If any two phases establish a blocking condition, the remaining phase is restrained automatically.
If set to "Average", the relay first calculates the average 2 nd harmonic ratio, then applies the inrush threshold to the calculated average. This mode works only in conjunction with the traditional 2nd harmonic function.
- INRUSH INHIBIT LEVEL: This setting specifies the level of 2nd harmonic component in the transformer magnetizing inrush current above which the percent differential element will be inhibited from operating. The value of the INRUSH inhibit mode setting must be taken into account when programming this value. The inRUSH INHIbIT Level is typically set to $20 \%$.
- OVEREXCITATION INHIBIT MODE: An overexcitation condition resulting from an increased V/Hz ratio poses a danger to the protected transformer, hence the $\mathrm{V} / \mathrm{Hz}$ protection. A given transformer can, however, tolerate an overfluxing condition for a limited time, as the danger is associated with thermal processes in the core. Instantaneous tripping of the transformer from the differential protection is not desirable. The relay uses a traditional 5th harmonic ratio for inhibiting its differential function during overexcitation conditions.
- OVEREXCITATION INHIBIT LEVEL: This setting is provided to block the differential protection during overexcitation. When the 5th harmonic level exceeds the specified setting (5th harmonic ratio) the differential element is blocked. The overexcitation inhibit works on a per-phase basis.
The relay produces three FlexLogic ${ }^{\text {TM }}$ operands that may be used for testing or for special applications such as building custom logic (1-out-of-3) or supervising some protection functions (ground time overcurrent, for example) from the 2nd harmonic inhibit.


Figure 5-43: PERCENT DIFFERENTIAL SCHEME LOGIC
c) INSTANTANEOUS DIFFERENTIAL


| $\square$ INSTANTANEOUSDIFFERENTIAL |  | (1) | $\begin{aligned} & \text { INST DIFFERENTIAL } \\ & \text { FUNCTION: Disabled } \end{aligned}$ | Range: Disabled, Enabled |
| :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | INST DIFFERENTIAL PICKUP: 8.000 pu | Range: 2.000 to 30.000 pu in steps of 0.001 |
|  | MESSAGE | - | INST DIFF BLOCK: Off | Range: FlexLogic ${ }^{\text {TM }}$ operand |
|  | MESSAGE | - | INST DIFFERENTIAL TARGET: Self-reset | Range: Self-reset, Latched, Disabled |


| INST DIFFERENTIAL | Range: Disabled, Enabled |
| :--- | :--- |
| EVENTS: Disabled |  |

The Instantaneous Differential element acts as an instantaneous overcurrent element responding to the measured differential current magnitude (filtered fundamental frequency component) and applying a user-selectable pickup threshold. The pickup threshold should be set greater than the maximum spurious differential current that could be encountered under non-internal fault conditions (typically magnetizing inrush current or an external fault with extremely severe CT saturation).


Figure 5-44: INSTANTANEOUS DIFFERENTIAL SCHEME LOGIC
d) HOTTEST-SPOT TEMPERATURE

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow$ TRANSFORMER $\Rightarrow \sqrt{ }$ HOTTEST-SPOT TEMPERATURE


The Hottest-Spot Temperature element provides a mechanism for detecting abnormal winding hottest-spot temperatures inside the transformer. It can be set to alarm or trip in cases where the computed hottest-spot temperature is above the pickup threshold for a user-specified time (considered as transformer overheating).

- XFMR HST PICKUP: Enter the hottest-spot temperature required for operation of the element. This setting should be based on the maximum permissible hottest-spot temperature under emergency transformer loading conditions and maximum ambient temperature.
- XFMR HST DELAY: Enter an appropriate time delay before operation of the element.


Figure 5-45: TRANSFORMER HOTTEST-SPOT TEMPERATURE LOGIC

## e) AGING FACTOR

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP 1(6) $\Rightarrow$ TRANSFORMER $\Rightarrow \sqrt{ }$ AGING FACTOR


The Aging Factor element detects transformer aging in per-unit normal insulation aging. The element can be set for alarm or trip whenever the computed aging factor is greater than the user-defined pickup setting for the specified time delay.

- AGING FACTOR PICKUP: Enter a value above which the aging factor element will operate. The setting should be greater than the maximum permissible aging factor under emergency loading conditions and maximum ambient temperature.


Figure 5-46: AGING FACTOR LOGIC

## f) LOSS OF LIFE

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow$ TRANSFORMER $\Rightarrow \sqrt{ }$ LOSS OF LIFE


The Loss of Life element detects the accumulated total consumed transformer life. This element can be set to issue an alarm or trip when the actual accumulated transformer life becomes larger than the user-specified loss of life pickup value. For new transformers installations, the XFMR INITIAL LOSS OF LIFE setting should be " 0 ". For previously installed transformers, the user should pre-determine the consumed transformer life in hours.

- LOSS OF LIFE INITIAL VALUE: Enter a setting for the consumed transformer life in hours. When the Loss of Life element is enabled, the computed loss of life will be added to the initial loss of life.
- LOSS OF LIFE PICKUP: Enter the expended life, in hours, required for operation of the element. This setting should be above the total transformer life set as a reference based on nominal loading conditions and a $30^{\circ} \mathrm{C}$ ambient temperature, as outlined in the IEEE standards.


Figure 5-47: TRANSFORMER LOSS OF LIFE LOGIC
a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow$ PHASE CURRENT


The Phase Current elements can be used for tripping, alarming, or other functions. The actual number of elements depends on the number of current banks.

## b) INVERSE TOC CHARACTERISTICS

The inverse time overcurrent curves used by the time overcurrent elements are the IEEE, IEC, GE Type IAC, and I ${ }^{2}$ t standard curve shapes. This allows for simplified coordination with downstream devices. If however, none of these curve shapes is adequate, FlexCurves ${ }^{\text {TM }}$ may be used to customize the inverse time curve characteristics. The Definite Time curve is also an option that may be appropriate if only simple protection is required.

Table 5-12: OVERCURRENT CURVE TYPES

| IEEE | IEC | GE TYPE IAC | OTHER |
| :---: | :---: | :---: | :---: |
| IEEE Extremely Inv. | IEC Curve A (BS142) | IAC Extremely Inv. | $\mathrm{I}^{2} \mathrm{t}$ |
| IEEE Very Inverse | IEC Curve B (BS142) | IAC Very Inverse | FlexCurves ${ }^{\text {™ }} \mathrm{A}, \mathrm{B}, \mathrm{C}$, and D |
| IEEE Moderately Inv. | IEC Curve C (BS142) | IAC Inverse | Recloser Curves |
|  | IEC Short Inverse | IAC Short Inverse | Definite Time |

A time dial multiplier setting allows selection of a multiple of the base curve shape (where the time dial multiplier $=1$ ) with the curve shape (CURVE) setting. Unlike the electromechanical time dial equivalent, operate times are directly proportional to the time multiplier (TD MULTIPLIER) setting value. For example, all times for a multiplier of 10 are 10 times the multiplier 1 or base curve values. Setting the multiplier to zero results in an instantaneous response to all current levels above pickup.

Time overcurrent time calculations are made with an internal 'energy capacity' memory variable. When this variable indicates that the energy capacity has reached 100\%, a time overcurrent element will operate. If less than 100\% energy capacity is accumulated in this variable and the current falls below the dropout threshold of 97 to $98 \%$ of the pickup value, the variable must be reduced. Two methods of this resetting operation are available: "Instantaneous" and "Timed". The "Instantaneous" selection is intended for applications with other relays, such as most static relays, which set the energy capacity directly to zero when the current falls below the reset threshold. The "Timed" selection can be used where the relay must coordinate with electromechanical relays.

## IEEE CURVES:

The IEEE time overcurrent curve shapes conform to industry standards and the IEEE C37.112-1996 curve classifications for extremely, very, and moderately inverse. The IEEE curves are derived from the formulae:

$$
T=T D M \times\left[\frac{A}{\left(\frac{1}{l_{\text {pickup }}}\right)^{p}-1}+B\right], T_{\text {RESET }}=T D M \times\left[\frac{t_{r}}{\left(\frac{1}{l_{\text {pickup }}}\right)^{2}-1}\right]
$$

(EQ 5.29)
where: $\quad T$ = operate time (in seconds), $T D M=$ Multiplier setting, $I=$ input current, $I_{\text {pickup }}=$ Pickup Current setting $A, B, p=$ constants, $T_{R E S E T}=$ reset time in seconds (assuming energy capacity is $100 \%$ and RESET is "Timed"), $t_{r}=$ characteristic constant

Table 5-13: IEEE INVERSE TIME CURVE CONSTANTS

| IEEE CURVE SHAPE | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{P}$ | $\mathbf{T}_{\mathbf{R}}$ |
| :--- | :---: | :---: | :---: | :---: |
| IEEE Extremely Inverse | 28.2 | 0.1217 | 2.0000 | 29.1 |
| IEEE Very Inverse | 19.61 | 0.491 | 2.0000 | 21.6 |
| IEEE Moderately Inverse | 0.0515 | 0.1140 | 0.02000 | 4.85 |

Table 5-14: IEEE CURVE TRIP TIMES (IN SECONDS)

| MULTIPLIER(TDM) | CURRENT ( I I I pickup $^{\text {) }}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.5 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 |
| IEEE EXTREMELY INVERSE |  |  |  |  |  |  |  |  |  |  |
| 0.5 | 11.341 | 4.761 | 1.823 | 1.001 | 0.648 | 0.464 | 0.355 | 0.285 | 0.237 | 0.203 |
| 1.0 | 22.682 | 9.522 | 3.647 | 2.002 | 1.297 | 0.927 | 0.709 | 0.569 | 0.474 | 0.407 |
| 2.0 | 45.363 | 19.043 | 7.293 | 4.003 | 2.593 | 1.855 | 1.418 | 1.139 | 0.948 | 0.813 |
| 4.0 | 90.727 | 38.087 | 14.587 | 8.007 | 5.187 | 3.710 | 2.837 | 2.277 | 1.897 | 1.626 |
| 6.0 | 136.090 | 57.130 | 21.880 | 12.010 | 7.780 | 5.564 | 4.255 | 3.416 | 2.845 | 2.439 |
| 8.0 | 181.454 | 76.174 | 29.174 | 16.014 | 10.374 | 7.419 | 5.674 | 4.555 | 3.794 | 3.252 |
| 10.0 | 226.817 | 95.217 | 36.467 | 20.017 | 12.967 | 9.274 | 7.092 | 5.693 | 4.742 | 4.065 |
| IEEE VERY INVERSE |  |  |  |  |  |  |  |  |  |  |
| 0.5 | 8.090 | 3.514 | 1.471 | 0.899 | 0.654 | 0.526 | 0.450 | 0.401 | 0.368 | 0.345 |
| 1.0 | 16.179 | 7.028 | 2.942 | 1.798 | 1.308 | 1.051 | 0.900 | 0.802 | 0.736 | 0.689 |
| 2.0 | 32.358 | 14.055 | 5.885 | 3.597 | 2.616 | 2.103 | 1.799 | 1.605 | 1.472 | 1.378 |
| 4.0 | 64.716 | 28.111 | 11.769 | 7.193 | 5.232 | 4.205 | 3.598 | 3.209 | 2.945 | 2.756 |
| 6.0 | 97.074 | 42.166 | 17.654 | 10.790 | 7.849 | 6.308 | 5.397 | 4.814 | 4.417 | 4.134 |
| 8.0 | 129.432 | 56.221 | 23.538 | 14.387 | 10.465 | 8.410 | 7.196 | 6.418 | 5.889 | 5.513 |
| 10.0 | 161.790 | 70.277 | 29.423 | 17.983 | 13.081 | 10.513 | 8.995 | 8.023 | 7.361 | 6.891 |
| IEEE MODERATELY INVERSE |  |  |  |  |  |  |  |  |  |  |
| 0.5 | 3.220 | 1.902 | 1.216 | 0.973 | 0.844 | 0.763 | 0.706 | 0.663 | 0.630 | 0.603 |
| 1.0 | 6.439 | 3.803 | 2.432 | 1.946 | 1.688 | 1.526 | 1.412 | 1.327 | 1.260 | 1.207 |
| 2.0 | 12.878 | 7.606 | 4.864 | 3.892 | 3.377 | 3.051 | 2.823 | 2.653 | 2.521 | 2.414 |
| 4.0 | 25.756 | 15.213 | 9.729 | 7.783 | 6.753 | 6.102 | 5.647 | 5.307 | 5.041 | 4.827 |
| 6.0 | 38.634 | 22.819 | 14.593 | 11.675 | 10.130 | 9.153 | 8.470 | 7.960 | 7.562 | 7.241 |
| 8.0 | 51.512 | 30.426 | 19.458 | 15.567 | 13.507 | 12.204 | 11.294 | 10.614 | 10.083 | 9.654 |
| 10.0 | 64.390 | 38.032 | 24.322 | 19.458 | 16.883 | 15.255 | 14.117 | 13.267 | 12.604 | 12.068 |

## IEC CURVES

For European applications, the relay offers three standard curves defined in IEC 255-4 and British standard BS142. These are defined as IEC Curve A, IEC Curve B, and IEC Curve C. The formulae for these curves are:

$$
T=T D M \times\left[\frac{K}{\left(I / I_{\text {pickup }}\right)^{E}-1}\right], T_{\text {RESET }}=T D M \times\left[\frac{t_{r}}{\left(I / I_{\text {pickup }}\right)^{2}-1}\right]
$$

(EQ 5.30)
where: $\quad T=$ operate time (in seconds), $T D M=$ Multiplier setting, $I=$ input current, $I_{\text {pickup }}=$ Pickup Current setting, $K, E=$ constants, $t_{r}=$ characteristic constant, and $T_{\text {RESET }}=$ reset time in seconds (assuming energy capacity is $100 \%$ and RESET is "Timed")

Table 5-15: IEC (BS) INVERSE TIME CURVE CONSTANTS

| IEC (BS) CURVE SHAPE | $\mathbf{K}$ | $\mathbf{E}$ | $\mathbf{T}_{\mathbf{R}}$ |
| :--- | :---: | :---: | :---: |
| IEC Curve A (BS142) | 0.140 | 0.020 | 9.7 |
| IEC Curve B (BS142) | 13.500 | 1.000 | 43.2 |
| IEC Curve C (BS142) | 80.000 | 2.000 | 58.2 |
| IEC Short Inverse | 0.050 | 0.040 | 0.500 |

Table 5-16: IEC CURVE TRIP TIMES (IN SECONDS)

| $\begin{gathered} \text { MULTIPLIER } \\ \text { (TDM) } \end{gathered}$ | CURRENT ( I I I pickup $^{\text {) }}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.5 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 |
| IEC CURVE A |  |  |  |  |  |  |  |  |  |  |
| 0.05 | 0.860 | 0.501 | 0.315 | 0.249 | 0.214 | 0.192 | 0.176 | 0.165 | 0.156 | 0.149 |
| 0.10 | 1.719 | 1.003 | 0.630 | 0.498 | 0.428 | 0.384 | 0.353 | 0.330 | 0.312 | 0.297 |
| 0.20 | 3.439 | 2.006 | 1.260 | 0.996 | 0.856 | 0.767 | 0.706 | 0.659 | 0.623 | 0.594 |
| 0.40 | 6.878 | 4.012 | 2.521 | 1.992 | 1.712 | 1.535 | 1.411 | 1.319 | 1.247 | 1.188 |
| 0.60 | 10.317 | 6.017 | 3.781 | 2.988 | 2.568 | 2.302 | 2.117 | 1.978 | 1.870 | 1.782 |
| 0.80 | 13.755 | 8.023 | 5.042 | 3.984 | 3.424 | 3.070 | 2.822 | 2.637 | 2.493 | 2.376 |
| 1.00 | 17.194 | 10.029 | 6.302 | 4.980 | 4.280 | 3.837 | 3.528 | 3.297 | 3.116 | 2.971 |
| IEC CURVE B |  |  |  |  |  |  |  |  |  |  |
| 0.05 | 1.350 | 0.675 | 0.338 | 0.225 | 0.169 | 0.135 | 0.113 | 0.096 | 0.084 | 0.075 |
| 0.10 | 2.700 | 1.350 | 0.675 | 0.450 | 0.338 | 0.270 | 0.225 | 0.193 | 0.169 | 0.150 |
| 0.20 | 5.400 | 2.700 | 1.350 | 0.900 | 0.675 | 0.540 | 0.450 | 0.386 | 0.338 | 0.300 |
| 0.40 | 10.800 | 5.400 | 2.700 | 1.800 | 1.350 | 1.080 | 0.900 | 0.771 | 0.675 | 0.600 |
| 0.60 | 16.200 | 8.100 | 4.050 | 2.700 | 2.025 | 1.620 | 1.350 | 1.157 | 1.013 | 0.900 |
| 0.80 | 21.600 | 10.800 | 5.400 | 3.600 | 2.700 | 2.160 | 1.800 | 1.543 | 1.350 | 1.200 |
| 1.00 | 27.000 | 13.500 | 6.750 | 4.500 | 3.375 | 2.700 | 2.250 | 1.929 | 1.688 | 1.500 |
| IEC CURVE C |  |  |  |  |  |  |  |  |  |  |
| 0.05 | 3.200 | 1.333 | 0.500 | 0.267 | 0.167 | 0.114 | 0.083 | 0.063 | 0.050 | 0.040 |
| 0.10 | 6.400 | 2.667 | 1.000 | 0.533 | 0.333 | 0.229 | 0.167 | 0.127 | 0.100 | 0.081 |
| 0.20 | 12.800 | 5.333 | 2.000 | 1.067 | 0.667 | 0.457 | 0.333 | 0.254 | 0.200 | 0.162 |
| 0.40 | 25.600 | 10.667 | 4.000 | 2.133 | 1.333 | 0.914 | 0.667 | 0.508 | 0.400 | 0.323 |
| 0.60 | 38.400 | 16.000 | 6.000 | 3.200 | 2.000 | 1.371 | 1.000 | 0.762 | 0.600 | 0.485 |
| 0.80 | 51.200 | 21.333 | 8.000 | 4.267 | 2.667 | 1.829 | 1.333 | 1.016 | 0.800 | 0.646 |
| 1.00 | 64.000 | 26.667 | 10.000 | 5.333 | 3.333 | 2.286 | 1.667 | 1.270 | 1.000 | 0.808 |
| IEC SHORT TIME |  |  |  |  |  |  |  |  |  |  |
| 0.05 | 0.153 | 0.089 | 0.056 | 0.044 | 0.038 | 0.034 | 0.031 | 0.029 | 0.027 | 0.026 |
| 0.10 | 0.306 | 0.178 | 0.111 | 0.088 | 0.075 | 0.067 | 0.062 | 0.058 | 0.054 | 0.052 |
| 0.20 | 0.612 | 0.356 | 0.223 | 0.175 | 0.150 | 0.135 | 0.124 | 0.115 | 0.109 | 0.104 |
| 0.40 | 1.223 | 0.711 | 0.445 | 0.351 | 0.301 | 0.269 | 0.247 | 0.231 | 0.218 | 0.207 |
| 0.60 | 1.835 | 1.067 | 0.668 | 0.526 | 0.451 | 0.404 | 0.371 | 0.346 | 0.327 | 0.311 |
| 0.80 | 2.446 | 1.423 | 0.890 | 0.702 | 0.602 | 0.538 | 0.494 | 0.461 | 0.435 | 0.415 |
| 1.00 | 3.058 | 1.778 | 1.113 | 0.877 | 0.752 | 0.673 | 0.618 | 0.576 | 0.544 | 0.518 |

## IAC CURVES:

The curves for the General Electric type IAC relay family are derived from the formulae:

$$
T=\operatorname{TDM} \times\left(A+\frac{B}{\left(I / I_{p k p}\right)-C}+\frac{D}{\left(\left(I / I_{p k p}\right)-C\right)^{2}}+\frac{E}{\left(\left(I / I_{p k p}\right)-C\right)^{3}}\right), T_{R E S E T}=T D M \times\left[\frac{t_{r}}{\left(I / I_{p k p}\right)^{2}-1}\right]
$$

(EQ 5.31)
where: $\quad T$ = operate time (in seconds), $T D M=$ Multiplier setting, $I=$ Input current, $I_{p k p}=$ Pickup Current setting, $A$ to $E=$ constants, $t_{r}=$ characteristic constant, and $T_{\text {RESET }}=$ reset time in seconds (assuming energy capacity is $100 \%$ and RESET is "Timed")

Table 5-17: GE TYPE IAC INVERSE TIME CURVE CONSTANTS

| IAC CURVE SHAPE | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{T}_{\mathbf{R}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| IAC Extreme Inverse | 0.0040 | 0.6379 | 0.6200 | 1.7872 | 0.2461 | 6.008 |
| IAC Very Inverse | 0.0900 | 0.7955 | 0.1000 | -1.2885 | 7.9586 | 4.678 |
| IAC Inverse | 0.2078 | 0.8630 | 0.8000 | -0.4180 | 0.1947 | 0.990 |
| IAC Short Inverse | 0.0428 | 0.0609 | 0.6200 | -0.0010 | 0.0221 | 0.222 |

Table 5-18: IAC CURVE TRIP TIMES

| MULTIPLIER (TDM) | CURRENT ( I I I pickup) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.5 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 |
| IAC EXTREMELY INVERSE |  |  |  |  |  |  |  |  |  |  |
| 0.5 | 1.699 | 0.749 | 0.303 | 0.178 | 0.123 | 0.093 | 0.074 | 0.062 | 0.053 | 0.046 |
| 1.0 | 3.398 | 1.498 | 0.606 | 0.356 | 0.246 | 0.186 | 0.149 | 0.124 | 0.106 | 0.093 |
| 2.0 | 6.796 | 2.997 | 1.212 | 0.711 | 0.491 | 0.372 | 0.298 | 0.248 | 0.212 | 0.185 |
| 4.0 | 13.591 | 5.993 | 2.423 | 1.422 | 0.983 | 0.744 | 0.595 | 0.495 | 0.424 | 0.370 |
| 6.0 | 20.387 | 8.990 | 3.635 | 2.133 | 1.474 | 1.115 | 0.893 | 0.743 | 0.636 | 0.556 |
| 8.0 | 27.183 | 11.987 | 4.846 | 2.844 | 1.966 | 1.487 | 1.191 | 0.991 | 0.848 | 0.741 |
| 10.0 | 33.979 | 14.983 | 6.058 | 3.555 | 2.457 | 1.859 | 1.488 | 1.239 | 1.060 | 0.926 |
| IAC VERY INVERSE |  |  |  |  |  |  |  |  |  |  |
| 0.5 | 1.451 | 0.656 | 0.269 | 0.172 | 0.133 | 0.113 | 0.101 | 0.093 | 0.087 | 0.083 |
| 1.0 | 2.901 | 1.312 | 0.537 | 0.343 | 0.266 | 0.227 | 0.202 | 0.186 | 0.174 | 0.165 |
| 2.0 | 5.802 | 2.624 | 1.075 | 0.687 | 0.533 | 0.453 | 0.405 | 0.372 | 0.349 | 0.331 |
| 4.0 | 11.605 | 5.248 | 2.150 | 1.374 | 1.065 | 0.906 | 0.810 | 0.745 | 0.698 | 0.662 |
| 6.0 | 17.407 | 7.872 | 3.225 | 2.061 | 1.598 | 1.359 | 1.215 | 1.117 | 1.046 | 0.992 |
| 8.0 | 23.209 | 10.497 | 4.299 | 2.747 | 2.131 | 1.813 | 1.620 | 1.490 | 1.395 | 1.323 |
| 10.0 | 29.012 | 13.121 | 5.374 | 3.434 | 2.663 | 2.266 | 2.025 | 1.862 | 1.744 | 1.654 |
| IAC INVERSE |  |  |  |  |  |  |  |  |  |  |
| 0.5 | 0.578 | 0.375 | 0.266 | 0.221 | 0.196 | 0.180 | 0.168 | 0.160 | 0.154 | 0.148 |
| 1.0 | 1.155 | 0.749 | 0.532 | 0.443 | 0.392 | 0.360 | 0.337 | 0.320 | 0.307 | 0.297 |
| 2.0 | 2.310 | 1.499 | 1.064 | 0.885 | 0.784 | 0.719 | 0.674 | 0.640 | 0.614 | 0.594 |
| 4.0 | 4.621 | 2.997 | 2.128 | 1.770 | 1.569 | 1.439 | 1.348 | 1.280 | 1.229 | 1.188 |
| 6.0 | 6.931 | 4.496 | 3.192 | 2.656 | 2.353 | 2.158 | 2.022 | 1.921 | 1.843 | 1.781 |
| 8.0 | 9.242 | 5.995 | 4.256 | 3.541 | 3.138 | 2.878 | 2.695 | 2.561 | 2.457 | 2.375 |
| 10.0 | 11.552 | 7.494 | 5.320 | 4.426 | 3.922 | 3.597 | 3.369 | 3.201 | 3.072 | 2.969 |
| IAC SHORT INVERSE |  |  |  |  |  |  |  |  |  |  |
| 0.5 | 0.072 | 0.047 | 0.035 | 0.031 | 0.028 | 0.027 | 0.026 | 0.026 | 0.025 | 0.025 |
| 1.0 | 0.143 | 0.095 | 0.070 | 0.061 | 0.057 | 0.054 | 0.052 | 0.051 | 0.050 | 0.049 |
| 2.0 | 0.286 | 0.190 | 0.140 | 0.123 | 0.114 | 0.108 | 0.105 | 0.102 | 0.100 | 0.099 |
| 4.0 | 0.573 | 0.379 | 0.279 | 0.245 | 0.228 | 0.217 | 0.210 | 0.204 | 0.200 | 0.197 |
| 6.0 | 0.859 | 0.569 | 0.419 | 0.368 | 0.341 | 0.325 | 0.314 | 0.307 | 0.301 | 0.296 |
| 8.0 | 1.145 | 0.759 | 0.559 | 0.490 | 0.455 | 0.434 | 0.419 | 0.409 | 0.401 | 0.394 |
| 10.0 | 1.431 | 0.948 | 0.699 | 0.613 | 0.569 | 0.542 | 0.524 | 0.511 | 0.501 | 0.493 |

## 12t CURVES:

The curves for the $I^{2} t$ are derived from the formulae:

$$
T=\operatorname{TDM} \times\left[\frac{100}{\left(\frac{1}{I_{\text {pickup }}}\right)^{2}}\right], T_{\text {RESET }}=\operatorname{TDM} \times\left[\frac{100}{\left(\frac{1}{I_{\text {pickup }}}\right)^{-2}}\right]
$$

(EQ 5.32)
where: $\quad T=$ Operate Time (sec.); TDM = Multiplier Setting; $I=$ Input Current; $I_{\text {pickup }}=$ Pickup Current Setting; $T_{\text {RESET }}=$ Reset Time in sec. (assuming energy capacity is $100 \%$ and RESET: Timed)

Table 5-19: $\mathbf{I}^{2}$ T CURVE TRIP TIMES

| MULTIPLIER (TDM) | CURRENT ( / / I pickup) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.5 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 |
| 0.01 | 0.44 | 0.25 | 0.11 | 0.06 | 0.04 | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 |
| 0.10 | 4.44 | 2.50 | 1.11 | 0.63 | 0.40 | 0.28 | 0.20 | 0.16 | 0.12 | 0.10 |
| 1.00 | 44.44 | 25.00 | 11.11 | 6.25 | 4.00 | 2.78 | 2.04 | 1.56 | 1.23 | 1.00 |
| 10.00 | 444.44 | 250.00 | 111.11 | 62.50 | 40.00 | 27.78 | 20.41 | 15.63 | 12.35 | 10.00 |
| 100.00 | 4444.4 | 2500.0 | 1111.1 | 625.00 | 400.00 | 277.78 | 204.08 | 156.25 | 123.46 | 100.00 |
| 600.00 | 26666.7 | 15000.0 | 6666.7 | 3750.0 | 2400.0 | 1666.7 | 1224.5 | 937.50 | 740.74 | 600.00 |

## FLEXCURVES ${ }^{\text {TM }}$ :

The custom FlexCurves ${ }^{\top M}$ are described in detail in the FlexCurves ${ }^{\top M}$ section of this chapter. The curve shapes for the FlexCurves ${ }^{\text {TM }}$ are derived from the formulae:

$$
\begin{gather*}
T=\mathrm{TDM} \times\left[\text { FlexCurve Time at }\left(\frac{1}{l_{\text {pickup }}}\right)\right] \text { when }\left(\frac{1}{l_{\text {pickup }}}\right) \geq 1.00  \tag{EQ5.33}\\
T_{\text {RESET }}=\mathrm{TDM} \times\left[\text { FlexCurve Time at }\left(\frac{1}{l_{\text {pickup }}}\right)\right] \text { when }\left(\frac{1}{I_{\text {pickup }}}\right) \leq 0.98 \tag{EQ5.34}
\end{gather*}
$$

where: $\quad T=$ Operate Time (sec.), TDM = Multiplier setting
$I=$ Input Current, $I_{\text {pickup }}=$ Pickup Current setting
$T_{\text {RESET }}=$ Reset Time in seconds (assuming energy capacity is $100 \%$ and RESET: Timed)

## DEFINITE TIME CURVE:

The Definite Time curve shape operates as soon as the pickup level is exceeded for a specified period of time. The base definite time curve delay is in seconds. The curve multiplier of 0.00 to 600.00 makes this delay adjustable from instantaneous to 600.00 seconds in steps of 10 ms .

$$
\begin{gather*}
T=\text { TDM in seconds, when } I>I_{\text {pickup }}  \tag{EQ5.35}\\
T_{R E S E T}=- \text { TDM in seconds }
\end{gather*}
$$

(EQ 5.36)
where: $\quad T=$ Operate Time (sec.), TDM = Multiplier setting
$I=$ Input Current, $I_{\text {pickup }}=$ Pickup Current setting
$T_{\text {RESET }}=$ Reset Time in seconds (assuming energy capacity is $100 \%$ and RESET: Timed)

## RECLOSER CURVES:

The T60 uses the FlexCurve ${ }^{\text {TM }}$ feature to facilitate programming of 41 recloser curves. Please refer to the FlexCurve ${ }^{\text {TM }}$ section in this chapter for additional details.
c) PHASE TIME OVERCURRENT (ANSI 51P)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow$ PHASE CURRENT $\Rightarrow$ PHASE TOC1(4)


The phase time overcurrent element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple Definite Time element. The phase current input quantities may be programmed as fundamental phasor magnitude or total waveform RMS magnitude as required by the application.

Two methods of resetting operation are available: "Timed" and "Instantaneous" (refer to the Inverse TOC Curves Characteristic sub-section earlier for details on curve setup, trip times and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

The PHASE TOC1 PICKUP setting can be dynamically reduced by a voltage restraint feature (when enabled). This is accomplished via the multipliers (Mvr) corresponding to the phase-phase voltages of the voltage restraint characteristic curve (see the figure below); the pickup level is calculated as 'Mvr' times the PHASE TOC1 PICKUP setting. If the voltage restraint feature is disabled, the pickup level always remains at the setting value.


Figure 5-48: PHASE TOC VOLTAGE RESTRAINT CHARACTERISTIC


Figure 5-49: PHASE TOC1 SCHEME LOGIC

## 5 SETTINGS

d) PHASE INSTANTANEOUS OVERCURRENT (ANSI 50P)

PATH: SETTINGS $\Rightarrow \sqrt{ }{ }^{\wedge}$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP 1(6) $\Rightarrow$ PHASE CURRENT $\Rightarrow$ PHASE IOC 1(6)


The phase instantaneous overcurrent element may be used as an instantaneous element with no intentional delay or as a Definite Time element. The input current is the fundamental phasor magnitude.


Figure 5-50: PHASE IOC1 SCHEME LOGIC
e) PHASE DIRECTIONAL OVERCURRENT (ANSI 67P)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow$ PHASE CURRENT $\Rightarrow$ PHASE DIRECTIONAL 1


Phase Directional 1 target messages not used with the current version of the T60 relay. As a result, the Target settings, for phase directional only, are not applicable.

The phase directional elements (one for each of phases A, B, and C) determine the phase current flow direction for steady state and fault conditions and can be used to control the operation of the phase overcurrent elements via the block inputs of these elements.


Figure 5-51: PHASE A DIRECTIONAL POLARIZATION

This element is intended to apply a block signal to an overcurrent element to prevent an operation when current is flowing in a particular direction. The direction of current flow is determined by measuring the phase angle between the current from the phase CTs and the line-line voltage from the VTs, based on the $90^{\circ}$ or 'quadrature' connection. If there is a requirement to supervise overcurrent elements for flows in opposite directions, such as can happen through a bus-tie breaker, two phase directional elements should be programmed with opposite ECA settings.

To increase security for three phase faults very close to the VTs used to measure the polarizing voltage, a 'voltage memory' feature is incorporated. This feature stores the polarizing voltage the moment before the voltage collapses, and uses it to determine direction. The voltage memory remains valid for one second after the voltage has collapsed.

The main component of the phase directional element is the phase angle comparator with two inputs: the operating signal (phase current) and the polarizing signal (the line voltage, shifted in the leading direction by the characteristic angle, ECA).
The following table shows the operating and polarizing signals used for phase directional control:

| PHASE | OPERATING <br> SIGNAL | POLARIZING SIGNAL V $_{\text {pol }}$ |  |
| :---: | :---: | :---: | :---: |
|  | Angle of IA | ABC PHASE SEQUENCE | ACB PHASE SEQUENCE |
| A | Angle of VBC $\times(1 \angle E C A)$ | Angle of VCB $\times(1 \angle E C A)$ |  |
| B | Angle of IB | Angle of $\mathrm{VCA} \times(1 \angle E C A)$ | Angle of VAC $\times 1 \angle E C A)$ |
| C | Angle of IC | Angle of $\mathrm{VAB} \times(1 \angle \mathrm{ECA})$ | Angle of VBA $\times(1 \angle E C A)$ |

## MODE OF OPERATION:

- When the function is "Disabled", or the operating current is below $5 \% \times$ CT nominal, the element output is " 0 ".
- When the function is "Enabled", the operating current is above $5 \% \times$ CT nominal, and the polarizing voltage is above the set threshold, the element output is dependent on the phase angle between the operating and polarizing signals:
- The element output is logic " 0 " when the operating current is within polarizing voltage $\pm 90^{\circ}$.
- For all other angles, the element output is logic " 1 ".
- Once the voltage memory has expired, the phase overcurrent elements under directional control can be set to block or trip on overcurrent as follows:
- When BLOCK WHEN V MEM EXP is set to "Yes", the directional element will block the operation of any phase overcurrent element under directional control when voltage memory expires.
- When bLOCK WHEN V MEM EXP is set to "No", the directional element allows tripping of phase overcurrent elements under directional control when voltage memory expires.
In all cases, directional blocking will be permitted to resume when the polarizing voltage becomes greater than the 'polarizing voltage threshold'.


## SETTINGS:

- PHASE DIR 1 SIGNAL SOURCE: This setting is used to select the source for the operating and polarizing signals. The operating current for the phase directional element is the phase current for the selected current source. The polarizing voltage is the line voltage from the phase VTs, based on the $90^{\circ}$ or 'quadrature' connection and shifted in the leading direction by the element characteristic angle (ECA).
- PHASE DIR 1 ECA: This setting is used to select the element characteristic angle, i.e. the angle by which the polarizing voltage is shifted in the leading direction to achieve dependable operation. In the design of the UR-series elements, a block is applied to an element by asserting logic 1 at the blocking input. This element should be programmed via the ECA setting so that the output is logic 1 for current in the non-tripping direction.
- PHASE DIR 1 POL V THRESHOLD: This setting is used to establish the minimum level of voltage for which the phase angle measurement is reliable. The setting is based on VT accuracy. The default value is " 0.700 pu ".
- PHASE DIR 1 BLOCK WHEN V MEM EXP: This setting is used to select the required operation upon expiration of voltage memory. When set to "Yes", the directional element blocks the operation of any phase overcurrent element under directional control, when voltage memory expires; when set to "No", the directional element allows tripping of phase overcurrent elements under directional control.

The Phase Directional element responds to the forward load current. In the case of a following reverse fault, the element needs some time - in the order of 8 ms - to establish a blocking signal. Some protection elements such as instantaneous overcurrent may respond to reverse faults before the blocking signal is established. Therefore, a coordination time of at least 10 ms must be added to all the instantaneous protection elements under the supervision of the Phase Directional element. If current reversal is of a concern, a longer delay - in the order of 20 ms - may be needed.


Figure 5-52: PHASE DIRECTIONAL SCHEME LOGIC

## 5 SETTINGS

a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow \sqrt{ }$ NEUTRAL CURRENT


The T60 relay contains six Neutral Time Overcurrent elements, eight Neutral Instantaneous Overcurrent elements, and one Neutral Directional Overcurrent element. For additional information on the Neutral Time Overcurrent curves, refer to Inverse TOC Characteristics on page 5-96.
b) NEUTRAL TIME OVERCURRENT (ANSI 51N)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ NEUTRAL CURRENT $\Rightarrow$ NEUTRAL TOC1(6)


The Neutral Time Overcurrent element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple Definite Time element. The neutral current input value is a quantity calculated as 3lo from the phase currents and may be programmed as fundamental phasor magnitude or total waveform RMS magnitude as required by the application.

Two methods of resetting operation are available: "Timed" and "Instantaneous" (refer to the Inverse TOC Curve Characteristics section for details on curve setup, trip times and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.


Figure 5-53: NEUTRAL TOC1 SCHEME LOGIC
c) NEUTRAL INSTANTANEOUS OVERCURRENT (ANSI 50N)

PATH: SETTINGS $\Rightarrow \Omega$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP 1(6) $\Rightarrow \Omega$ NEUTRAL CURRENT $\Rightarrow \Omega$ NEUTRAL IOC1(8)


The Neutral Instantaneous Overcurrent element may be used as an instantaneous function with no intentional delay or as a Definite Time function. The element essentially responds to the magnitude of a neutral current fundamental frequency phasor calculated from the phase currents. A "positive-sequence restraint" is applied for better performance. A small portion ( $6.25 \%$ ) of the positive-sequence current magnitude is subtracted from the zero-sequence current magnitude when forming the operating quantity of the element as follows:

$$
\begin{equation*}
I_{o p}=3 \times\left(\left|I \_0\right|-K \cdot\left|I \_1\right|\right) \quad \text { where } K=1 / 16 \tag{EQ5.37}
\end{equation*}
$$

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious zero-sequence currents resulting from:

- system unbalances under heavy load conditions
- transformation errors of current transformers (CTs) during double-line and three-phase faults
- switch-off transients during double-line and three-phase faults

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on how test currents are injected into the relay (single-phase injection: $I_{o p}=0.9375 \cdot I_{\text {injected }} ;$ three-phase pure zero-sequence injection: $\left.I_{o p}=3 \times I_{\text {injected }}\right)$.


Figure 5-54: NEUTRAL IOC1 SCHEME LOGIC
d) NEUTRAL DIRECTIONAL OVERCURRENT (ANSI 67N)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow$ NEUTRAL CURRENT $\Rightarrow \sqrt{ }$ NEUTRAL DIRECTIONAL OC1


There are two Neutral Directional Overcurrent protection elements available. The element provides both forward and reverse fault direction indications the NEUTRAL DIR OC1 FWD and NEUTRAL DIR OC1 REV operands, respectively. The output operand is asserted if the magnitude of the operating current is above a pickup level (overcurrent unit) and the fault direction is seen as "forward or "reverse", respectively (directional unit).

The overcurrent unit responds to the magnitude of a fundamental frequency phasor of the either the neutral current calculated from the phase currents or the ground current. There are two separate pickup settings for the forward- and reverselooking functions, respectively. If set to use the calculated 3I_0, the element applies a "positive-sequence restraint" for better performance: a small user-programmable portion of the positive-sequence current magnitude is subtracted from the zero-sequence current magnitude when forming the operating quantity.

$$
\begin{equation*}
I_{o p}=3 \times\left(\left|I \_0\right|-K \times\left|I \_1\right|\right) \tag{EQ5.38}
\end{equation*}
$$

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious zero-sequence currents resulting from:

- System unbalances under heavy load conditions.
- Transformation errors of current transformers (CTs) during double-line and three-phase faults.
- Switch-off transients during double-line and three-phase faults.

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on the way the test currents are injected into the relay (single-phase injection: $I_{o p}=(1-K) \times I_{\text {injected }}$; three-phase pure zero-sequence injection: $\left.I_{o p}=3 \times I_{\text {injected }}\right)$.
The positive-sequence restraint is removed for low currents. If the positive-sequence current is below 0.8 pu , the restraint is removed by changing the constant $K$ to zero. This facilitates better response to high-resistance faults when the unbalance is very small and there is no danger of excessive CT errors as the current is low.
The directional unit uses the zero-sequence current (I_0) or ground current (IG) for fault direction discrimination and may be programmed to use either zero-sequence voltage ("Calculated VO" or "Measured VX"), ground current (IG), or both for polarizing. The following tables define the neutral directional overcurrent element.

Table 5-20: QUANTITIES FOR "CALCULATED 3I0" CONFIGURATION

| DIRECTIONAL UNIT |  |  |  | OVERCURRENT UNIT |
| :---: | :---: | :---: | :---: | :---: |
| POLARIZING MODE | DIRECTION | COMPARED PHASORS |  |  |
| Voltage | Forward | -V_0 + Z_offset $\times$ I_0 | I_0 $\times 1 \angle E C A$ | $\begin{gathered} \mathrm{I}_{\mathrm{op}}=3 \times\left(\left\|I_{-} 0\right\|-\mathrm{K} \times\left\|\\|_{1} 1\right\|\right) \text { if }\left\|I_{1}\right\|>0.8 \mathrm{pu} \\ \mathrm{I}_{\mathrm{op}}=3 \times\left(\mid I_{-} \text {O\| if } \mathrm{I}_{1} \mid \leq 0.8 \mathrm{pu}\right. \end{gathered}$ |
|  | Reverse | -V_0 + Z_offset × I_0 | -I - $0 \times 1 \angle \mathrm{ECA}$ |  |
| Current | Forward | IG | I_0 |  |
|  | Reverse | IG | -1_0 |  |
| Dual | Forward | -V_0 + Z_offset × I_0 | $1 \_0 \times 1 \angle E C A$ |  |
|  |  | or |  |  |
|  |  | IG | I_0 |  |
|  | Reverse | -V_0 + Z_offset × I_0 | -I_0 $\times 1 \angle E C A$ |  |
|  |  | or |  |  |
|  |  | IG | -l_0 |  |

Table 5-21: QUANTITIES FOR "MEASURED IG" CONFIGURATION

| DIRECTIONAL UNIT |  |  |  | OVERCURRENT UNIT |
| :--- | :---: | :---: | :---: | :---: |
| POLARIZING MODE | DIRECTION | COMPARED PHASORS |  |  |
| Voltage | Forward | $-\mathrm{V}-0+\mathrm{Z}$ offset $\times \mathrm{IG} / 3$ | $\mathrm{IG} \times 1 \angle \mathrm{ECA}$ | $\mathrm{I}_{\mathrm{op}}=\|\mathrm{IG}\|$ |
|  | Reverse | $-\mathrm{V} \_0+\mathrm{Z}$ offset $\times \mathrm{IG} / 3$ | $-\mathrm{IG} \times 1 \angle \mathrm{ECA}$ |  |

where: $\quad V_{-} 0=\frac{1}{3}(V A G+V B G+V C G)=$ zero sequence voltage ,
$\mathrm{I} 0=\frac{1}{3} \mathrm{IN}=\frac{1}{3}(\mathrm{IA}+\mathrm{IB}+\mathrm{IC})=$ zero sequence current,
ECA = element characteristic angle and IG = ground current
When NeUTRAL DIR OC1 POL VOLT is set to "Measured VX", one-third of this voltage is used in place of V_0. The following figure explains the usage of the voltage polarized directional unit of the element.
The figure below shows the voltage-polarized phase angle comparator characteristics for a phase A to ground fault, with:
$\mathrm{ECA}=90^{\circ}$ (element characteristic angle $=$ centerline of operating characteristic)
FWD LA $=80^{\circ}$ (forward limit angle $=$ the $\pm$ angular limit with the ECA for operation)
REV LA $=80^{\circ}$ (reverse limit angle $=$ the $\pm$ angular limit with the ECA for operation)
The above bias should be taken into account when using the neutral directional overcurrent element to directionalize other protection elements.


Figure 5-55: NEUTRAL DIRECTIONAL VOLTAGE-POLARIZED CHARACTERISTICS

- NEUTRAL DIR OC1 POLARIZING: This setting selects the polarizing mode for the directional unit.
- If "Voltage" polarizing is selected, the element uses the zero-sequence voltage angle for polarization. The user can use either the zero-sequence voltage $\mathrm{V} \_0$ calculated from the phase voltages, or the zero-sequence voltage supplied externally as the auxiliary voltage Vx , both from the NEUTRAL DIR OC1 SOURCE.
The calculated $V \_0$ can be used as polarizing voltage only if the voltage transformers are connected in Wye. The auxiliary voltage can be used as the polarizing voltage provided SYSTEM SETUP $\Rightarrow$ AC INPUTS $\Rightarrow \sqrt{ } \Rightarrow$ vOLTAGE BANK $\Rightarrow 』$ AUXILIARY VT CONNECTION is set to "Vn" and the auxiliary voltage is connected to a zero-sequence voltage source (such as open delta connected secondary of VTs).
The zero-sequence ( $\mathrm{V} \_0$ ) or auxiliary voltage ( Vx ), accordingly, must be higher than 0.02 pu nominal voltage to be validated as a polarizing signal. If the polarizing signal is invalid, neither forward nor reverse indication is given.
- If "Current" polarizing is selected, the element uses the ground current angle connected externally and configured under NEUTRAL OC1 SOURCE for polarization. The Ground CT must be connected between the ground and neutral point of an adequate local source of ground current. The ground current must be higher than 0.05 pu to be validated as a polarizing signal. If the polarizing signal is not valid, neither forward nor reverse indication is given.

For a choice of current polarizing, it is recommended that the polarizing signal be analyzed to ensure that a known direction is maintained irrespective of the fault location. For example, if using an autotransformer neutral current as a polarizing source, it should be ensured that a reversal of the ground current does not occur for a high-side fault. The low-side system impedance should be assumed minimal when checking for this condition. A similar situation arises for a Wye/Delta/Wye transformer, where current in one transformer winding neutral may reverse when faults on both sides of the transformer are considered.

- If "Dual" polarizing is selected, the element performs both directional comparisons as described above. A given direction is confirmed if either voltage or current comparators indicate so. If a conflicting (simultaneous forward and reverse) indication occurs, the forward direction overrides the reverse direction.
- NEUTRAL DIR OC1 POL VOLT: Selects the polarizing voltage used by the directional unit when "Voltage" or "Dual" polarizing mode is set. The polarizing voltage can be programmed to be either the zero-sequence voltage calculated from the phase voltages ("Calculated V0") or supplied externally as an auxiliary voltage ("Measured VX").
- NEUTRAL DIR OC1 OP CURR: This setting indicates whether the 3I_0 current calculated from the phase currents, or the ground current shall be used by this protection. This setting acts as a switch between the neutral and ground
modes of operation ( 67 N and 67 G ). If set to "Calculated 310 " the element uses the phase currents and applies the pos-itive-sequence restraint; if set to "Measured IG" the element uses ground current supplied to the ground CT of the CT bank configured as NEUTRAL DIR OC1 SOURCE. If this setting is "Measured IG", then the NEUTRAL DIR OC1 POLARIZING setting must be "Voltage", as it is not possible to use the ground current as an operating and polarizing signal simultaneously.
- NEUTRAL DIR OC1 POS-SEQ RESTRAINT: This setting controls the amount of the positive-sequence restraint. Set to 0.063 for backward compatibility with firmware revision 3.40 and older. Set to zero to remove the restraint. Set higher if large system unbalances or poor CT performance are expected.
- NEUTRAL DIR OC1 OFFSET: This setting specifies the offset impedance used by this protection. The primary application for the offset impedance is to guarantee correct identification of fault direction on series compensated lines. In regular applications, the offset impedance ensures proper operation even if the zero-sequence voltage at the relaying point is very small. If this is the intent, the offset impedance shall not be larger than the zero-sequence impedance of the protected circuit. Practically, it shall be several times smaller. The offset impedance shall be entered in secondary ohms.
- NEUTRAL DIR OC1 FWD ECA: This setting defines the characteristic angle (ECA) for the forward direction in the "Voltage" polarizing mode. The "Current" polarizing mode uses a fixed ECA of $0^{\circ}$. The ECA in the reverse direction is the angle set for the forward direction shifted by $180^{\circ}$.
- NEUTRAL DIR OC1 FWD LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit angle for the forward direction.
- NEUTRAL DIR OC1 FWD PICKUP: This setting defines the pickup level for the overcurrent unit of the element in the forward direction. When selecting this setting it must be kept in mind that the design uses a 'positive-sequence restraint' technique for the "Calculated 3I0" mode of operation.
- NEUTRAL DIR OC1 REV LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit angle for the reverse direction.
- NEUTRAL DIR OC1 REV PICKUP: This setting defines the pickup level for the overcurrent unit of the element in the reverse direction. When selecting this setting it must be kept in mind that the design uses a 'positive-sequence restraint' technique for the "Calculated 310 " mode of operation.


Figure 5-56: NEUTRAL DIRECTIONAL OVERCURRENT LOGIC

## 5 SETTINGS

a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow \sqrt{ }$ GROUND CURRENT


The T60 relay contains six Ground Time Overcurrent elements, eight Ground Instantaneous Overcurrent elements, and four Restricted Ground Fault elements. For additional information on the Ground Time Overcurrent curves, refer to Inverse TOC Characteristics on page 5-96.
b) GROUND TIME OVERCURRENT (ANSI 51G)

PATH: SETTINGS $\Rightarrow \Downarrow$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP 1(6) $\Rightarrow \Downarrow$ GROUND CURRENT $\Rightarrow$ GROUND TOC1(6)

| $\square$ GROUND TOC1 |  | (1) | GROUND TOC1 <br> FUNCTION: Disabled | Range: Disabled, Enabled |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | GROUND TOC1 SIGNAL SOURCE: SRC 1 | Range: SRC 1, SRC 2, SRC 3, SRC 4 |  |
|  | MESSAGE | - | GROUND TOC1 INPUT: Phasor | Range: Phasor, RMS |  |
|  | MESSAGE | - | $\mid$ GROUND TOC1 PICKUP: 1.000 pu | Range: 0.000 to 30.000 pu in steps of 0.001 |  |
|  | MESSAGE | - | GROUND TOC1 CURVE: IEEE Mod Inv | Range: see the Overcurrent Curve Types table |  |
|  | MESSAGE | - | $\|$GROUND TOC1 <br> TD MULTIPLIER: <br> 1.00 | Range: 0.00 to 600.00 in steps of 0.01 |  |
|  | MESSAGE | - | GROUND TOC1 RESET: Instantaneous | Range: Instantaneous, Timed |  |
|  | MESSAGE | - | $\qquad$ Off | Range: FlexLogic ${ }^{\text {TM }}$ operand |  |
|  | MESSAGE | - | GROUND TOC1 TARGET: Self-reset | Range: Self-reset, Latched, Disabled |  |
|  | MESSAGE | (4) | GROUND TOC1 EVENTS: Disabled | Range: Disabled, Enabled |  |

This element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple Definite Time element. The ground current input value is the quantity measured by the ground input CT and is the fundamental phasor or RMS magnitude. Two methods of resetting operation are available; "Timed" and "Instantaneous" (refer to the Inverse Time Overcurrent Curve Characteristics section for details). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

These elements measure the current that is connected to the ground channel of a CT/VT module. This channel may be equipped with a standard or sensitive input. The conversion range of a standard channel is from 0.02 to 46 times the CT rating. The conversion range of a sensitive channel is from 0.002 to 4.6 times the CT rating.


Figure 5-57: GROUND TOC1 SCHEME LOGIC

## c) GROUND INSTANTANEOUS OVERCURRENT (ANSI 50G)

PATH: SETTINGS $\Rightarrow \wedge$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow 』$ GROUND CURRENT $\Rightarrow \wedge$ GROUND IOC1(8)


The Ground Instantaneous Overcurrent element may be used as an instantaneous element with no intentional delay or as a Definite Time element. The ground current input is the quantity measured by the ground input CT and is the fundamental phasor magnitude.


Figure 5-58: GROUND IOC1 SCHEME LOGIC
These elements measure the current that is connected to the ground channel of a CT/VT module. This channel may be equipped with a standard or sensitive input. The conversion range of a standard channel is from 0.02 to 46 times the CT rating. The conversion range of a sensitive channel is from 0.002 to 4.6 times the CT rating.
d) RESTRICTED GROUND FAULT (ANSI 87G)

PATH: SETTINGS $\Rightarrow \Omega$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP 1(6) $\Rightarrow \Omega$ GROUND CURRENT $\Rightarrow \Omega$ RESTRICTED GROUND FAULT 1(4)

| $\square$ RESTRICTED GROUND$\square$FAULT 1 |  | (1) | RESTD GND FT1 <br> FUNCTION: Disabled | Range: Disabled, Enabled |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | RESTD GND FT1 SOURCE: SRC 1 | Range: | SRC 1, SRC 2, SRC 3, SRC 4 |
|  | MESSAGE | - | RESTD GND FT1 <br> PICKUP: 0.080 pu | Range: | 0.000 to 30.000 pu in steps of 0.001 |
|  | MESSAGE | - | RESTD GND FT1 SLOPE: 40\% | Range: | 0 to 100\% in steps of 1 |
|  | MESSAGE | - | RESTD GND FT1 PICKUP DELAY: 0.10 s | Range: | 0.00 to 600.00 s in steps of 0.01 |
|  | MESSAGE | - | RESTD GND FT1 RESET DELAY: 0.00 s | Range: | 0.00 to 600.00 s in steps of 0.01 |
|  | MESSAGE | - | RESTD GND FT1 BLOCK: Off | Range: | FlexLogic ${ }^{\text {TM }}$ operand |
|  | MESSAGE | - | RESTD GND FT1 <br> TARGET: Self-reset | Range: | Self-reset, Latched, Disabled |
|  | MESSAGE | (2) | RESTD GND FT1 <br> EVENTS: Disabled | Range: | Disabled, Enabled |

As of T60 firmware revision 3.20 , the definition of the restraining signal has been significantly changed compared to previous versions. The restraint during external faults is generally not lower, and often much higher, compared to the previous definition of the restraining signal (enhanced security). The restraint on internal faults has been greatly reduced compared to previous versions (enhanced sensitivity), particularly during low-current internal faults. Using time delay as a means of dealing with CT saturation is no longer obligatory; pickup and slope are the primary means of addressing CT saturation. Increasing the slope setting is recommended when migrating from the $3.1 x$ or earlier firmware revisions. The default value for the slope has been changed from $10 \%$ to $40 \%$.
Restricted Ground Fault (RGF) protection provides sensitive ground fault detection for low-magnitude fault currents, primarily faults close to the neutral point of a Wye-connected winding. An internal ground fault on an impedance grounded Wye winding will produce a fault current dependent on the ground impedance value and the fault position on the winding with respect to the neutral point. The resultant primary current will be negligible for faults on the lower $30 \%$ of the winding since the fault voltage is not the system voltage, but rather the result of the transformation ratio between the primary windings and the percentage of shorted turns on the secondary. Therefore, the resultant differential currents may be below the slope threshold of the main differential element and the fault could go undetected. Application of the RGF protection extends the coverage towards the neutral point (see the RGF and Percent Differential Zones of Protection diagram).


Figure 5-59: RGF AND PERCENT DIFFERENTIAL ZONES OF PROTECTION

This protection is often applied to transformers having impedance-grounded Wye windings. The element may also be applied to the stator winding of a generator having the neutral point grounded with a CT installed in the grounding path, or the ground current obtained by external summation of the neutral-side stator CTs. The Typical Applications of RGF Protection diagram explains the basic application and wiring rules.


Figure 5-60: TYPICAL APPLICATIONS OF RGF PROTECTION
The relay incorporates low-impedance RGF protection. The low-impedance form of the RGF faces potential stability problems. An external phase-to-phase fault is an ultimate case. Ideally, there is neither ground (IG) nor neutral (IN = IA + IB + IC) current present. If one or more of the phase CTs saturate, a spurious neutral current is seen by the relay. This is similar to a single infeed situation and may be mistaken for an internal fault. Similar difficulties occur in a breaker-and-a-half application of the RGF, where any through fault with a weak infeed from the winding itself may cause problems.
The UR uses a novel definition of the restraining signal to cope with the above stability problems while providing for fast and sensitive protection. Even with the improved definition of the restraining signal, the breaker-and-a-half application of the RGF must be approached with care, and is not recommended unless the settings are carefully selected to avoid maloperation due to CT saturation.

The differential current is produced as an unbalance current between the ground current of the neutral CT (IG) and the neutral current derived from the phase CTs (IN = IA + IB + IC):

$$
\begin{equation*}
\operatorname{Igd}=|\mathrm{IG}+\mathrm{IN}|=|\mathrm{IG}+\mathrm{IA}+\mathrm{IB}+\mathrm{IC}| \tag{EQ5.39}
\end{equation*}
$$

The relay automatically matches the CT ratios between the phase and ground CTs by re-scaling the ground CT to the phase CT level. The restraining signal ensures stability of protection during CT saturation conditions and is produced as a maximum value between three components related to zero, negative, and positive-sequence currents of the three phase CTs as follows:
Irest = max(IR0, IR1, IR2)

The zero-sequence component of the restraining signal (IR0) is meant to provide maximum restraint during external ground faults, and therefore is calculated as a vectorial difference of the ground and neutral currents:

$$
\begin{equation*}
I R O=|I G-I N|=|I G-(I A+I B+I C)| \tag{EQ5.41}
\end{equation*}
$$

The equation above brings an advantage of generating the restraining signal of twice the external ground fault current, while reducing the restraint below the internal ground fault current. The negative-sequence component of the restraining signal (IR2) is meant to provide maximum restraint during external phase-to-phase faults and is calculated as follows:

$$
\begin{equation*}
\text { IR2 }=\left|1 \_2\right| \text { or } \text { IR2 }=3 \times\left|I \_2\right| \tag{EQ5.42}
\end{equation*}
$$

The multiplier of 1 is used by the relay for first two cycles following complete de-energization of the winding (all three phase currents below $5 \%$ of nominal for at least five cycles). The multiplier of 3 is used during normal operation; that is, two cycles after the winding has been energized. The lower multiplier is used to ensure better sensitivity when energizing a faulty winding.
The positive-sequence component of the restraining signal (IR1) is meant to provide restraint during symmetrical conditions, either symmetrical faults or load, and is calculated according to the following algorithm:

1 If $\left|\_1\right|>1.5 \mathrm{pu}$ of phase CT , then

$$
\begin{array}{ll}
2 & \text { If }\left|I \_1\right|>\left|I \_0\right|, \text { then IR1 }=3 \times\left(\left|I \_1\right|-\left|I \_0\right|\right) \\
3 & \text { else IR1 }=0 \\
4 & \text { else IR1 }=\left|I \_1\right| / 8
\end{array}
$$

Under load-level currents (below 150\% of nominal), the positive-sequence restraint is set to $1 / 8$ th of the positive-sequence current (Line 4). This is to ensure maximum sensitivity during low-current faults under full load conditions. Under fault-level currents (above $150 \%$ of nominal), the positive-sequence restraint is removed if the zero-sequence component is greater than the positive-sequence (Line 3), or set at the net difference of the two (Line 2).

The raw restraining signal (Irest) is further post-filtered for better performance during external faults with heavy CT saturation and for better switch-off transient control:

$$
\operatorname{Igr}(k)=\max (\operatorname{Irest}(k), \alpha \times \operatorname{Igr}(k-1))
$$

(EQ 5.43)
where k represents a present sample, $\mathrm{k}-1$ represents the previous sample, and $\alpha$ is a factory constant ( $\alpha<1$ ). The equation above introduces a decaying memory to the restraining signal. Should the raw restraining signal (Irest) disappear or drop significantly, such as when an external fault gets cleared or a CT saturates heavily, the actual restraining signal (Igr(k)) will not reduce instantly but will keep decaying decreasing its value by $50 \%$ each 15.5 power system cycles.

Having the differential and restraining signals developed, the element applies a single slope differential characteristic with a minimum pickup as shown in the Restricted Ground Fault Scheme Logic diagram.


Figure 5-61: RESTRICTED GROUND FAULT SCHEME LOGIC

## 5 SETTINGS

The following examples explain how the restraining signal is created for maximum sensitivity and security. These examples clarify the operating principle and provide guidance for testing of the element.
EXAMPLE 1: EXTERNAL SINGLE-LINE-TO-GROUND FAULT
Given the following inputs: $\mathrm{IA}=1 \mathrm{pu} \angle 0^{\circ}$, $\mathrm{IB}=0, \mathrm{IC}=0$, and $\mathrm{IG}=1 \mathrm{pu} \angle 180^{\circ}$
The relay calculates the following values:

$$
\operatorname{Igd}=0, \operatorname{IR} 0=\operatorname{abs}\left(3 \times \frac{1}{3}-(-1)\right)=2 \mathrm{pu}, \operatorname{IR} 2=3 \times \frac{1}{3}=1 \mathrm{pu}, \mathrm{IR} 1=\frac{1 / 3}{8}=0.042 \mathrm{pu}, \text { and } \operatorname{Igr}=2 \mathrm{pu}
$$

The restraining signal is twice the fault current. This gives extra margin should the phase or neutral CT saturate.

## EXAMPLE 2: EXTERNAL HIGH-CURRENT SLG FAULT

Given the following inputs: $\mathrm{IA}=10 \mathrm{pu} \angle 0^{\circ}, \mathrm{IB}=0, \mathrm{IC}=0$, and $\mathrm{IG}=10 \mathrm{pu} \angle-180^{\circ}$
The relay calculates the following values:

$$
\operatorname{Igd}=0, \operatorname{IR} 0=\operatorname{abs}\left(3 \times \frac{1}{3}-(-10)\right)=20 \mathrm{pu}, \operatorname{IR} 2=3 \times \frac{10}{3}=10 \mathrm{pu}, \operatorname{IR} 1=3 \times\left(\frac{10}{3}-\frac{10}{3}\right)=0, \text { and } \operatorname{Igr}=20 \mathrm{pu}
$$

## EXAMPLE 3: EXTERNAL HIGH-CURRENT THREE-PHASE SYMMETRICAL FAULT

Given the following inputs: $\mathrm{IA}=10 \mathrm{pu} \angle 0^{\circ}$, $\mathrm{IB}=10 \mathrm{pu} \angle-120^{\circ}$, $\mathrm{IC}=10 \mathrm{pu} \angle 120^{\circ}$, and $\mathrm{IG}=0 \mathrm{pu}$ The relay calculates the following values:

$$
\operatorname{Igd}=0, \operatorname{IR} 0=\operatorname{abs}(3 \times 0-(0))=0 \mathrm{pu}, \mathrm{IR} 2=3 \times 0=0 \mathrm{pu}, \mathrm{IR} 1=3 \times\left(\frac{10}{3}-0\right)=10 \mathrm{pu}, \text { and } \operatorname{Igr}=10 \mathrm{pu}
$$

## EXAMPLE 4: INTERNAL LOW-CURRENT SINGLE-LINE-TO-GROUND FAULT UNDER FULL LOAD

Given the following inputs: $\mathrm{IA}=1.10 \mathrm{pu} \angle 0^{\circ}$, $\mathrm{IB}=1.0 \mathrm{pu} \angle-120^{\circ}$, $\mathrm{IC}=1.0 \mathrm{pu} \angle 120^{\circ}$, and $\mathrm{IG}=0.05 \mathrm{pu} \angle 0^{\circ}$ The relay calculates the following values:

$$
\begin{aligned}
& \mathrm{I} \_0=0.033 \mathrm{pu} \angle 0^{\circ}, \mathrm{I} \_2=0.033 \mathrm{pu} \angle 0^{\circ}, \text { and } \mathrm{I} \_1=1.033 \mathrm{pu} \angle 0^{\circ} \\
& \mathrm{Igd}=\operatorname{abs}(3 \times 0.0333+0.05)=0.15 \mathrm{pu}, \mathrm{IR} 0=\mathrm{abs}(3 \times 0.033-(0.05))=0.05 \mathrm{pu}, \mathrm{IR} 2=3 \times 0.033=0.10 \mathrm{pu}, \\
& \mathrm{IR} 1=1.033 / 8=0.1292 \mathrm{pu}, \text { and } \mathrm{Igr}=0.1292 \mathrm{pu}
\end{aligned}
$$

Despite very low fault current level the differential current is above 100\% of the restraining current.

## EXAMPLE 5: INTERNAL LOW-CURRENT, HIGH-LOAD SINGLE-LINE-TO-GROUND FAULT WITH NO FEED FROM THE GROUND

Given the following inputs: $\mathrm{IA}=1.10 \mathrm{pu} \angle 0^{\circ}$, $\mathrm{IB}=1.0 \mathrm{pu} \angle-120^{\circ}$, $\mathrm{IC}=1.0 \mathrm{pu} \angle 120^{\circ}$, and $\mathrm{IG}=0.0 \mathrm{pu} \angle 0^{\circ}$
The relay calculates the following values:
$\mathrm{I} \_0=0.033 \mathrm{pu} \angle 0^{\circ}, \mathrm{I} \_2=0.033 \mathrm{pu} \angle 0^{\circ}$, and $\mathrm{I} \_1=1.033 \mathrm{pu} \angle 0^{\circ}$
$\operatorname{Igd}=\operatorname{abs}(3 \times 0.0333+0.0)=0.10 \mathrm{pu}, \mathrm{IR} 0=\operatorname{abs}(3 \times 0.033-(0.0))=0.10 \mathrm{pu}, \operatorname{IR} 2=3 \times 0.033=0.10 \mathrm{pu}$,
$\operatorname{IR1}=1.033 / 8=0.1292 \mathrm{pu}$, and $\operatorname{lgr}=0.1292 \mathrm{pu}$
Despite very low fault current level the differential current is above 75\% of the restraining current.
EXAMPLE 6: INTERNAL HIGH-CURRENT SINGLE-LINE-TO-GROUND FAULT WITH NO FEED FROM THE GROUND
Given the following inputs: $\mathrm{IA}=10 \mathrm{pu} \angle 0^{\circ}, \mathrm{IB}=0 \mathrm{pu}, \mathrm{IC}=0 \mathrm{pu}$, and $\mathrm{IG}=0 \mathrm{pu}$
The relay calculates the following values:
$\mathrm{I} \_0=3.3 \mathrm{pu} \angle 0^{\circ}, \mathrm{I} \_2=3.3 \mathrm{pu} \angle 0^{\circ}$, and $\mathrm{I} \_1=3.3 \mathrm{pu} \angle 0^{\circ}$
$\operatorname{Igd}=\operatorname{abs}(3 \times 3.3+0.0)=10 \mathrm{pu}, \operatorname{IRO}=\mathrm{abs}(3 \times 3.3-(0.0))=10 \mathrm{pu}, \operatorname{IR} 2=3 \times 3.3=10 \mathrm{pu}, \operatorname{IR} 1=3 \times(3.33-3.33)=0$ pu, and $\mathrm{Igr}=10 \mathrm{pu}$

The differential current is $100 \%$ of the restraining current.
a) MAIN MENU

PATH: SETTINGS $\sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ VOLTAGE ELEMENTS

| $\square$ VOLTAGE ELEMENTS | (1) | $\square$ PHASE $\square$ UNDERVOLTAGE1 | See page 5-123. |
| :---: | :---: | :---: | :---: |
| MESSAG | - | $\square$ <br> $\square$ <br> PHASE <br> UNDERVOLTAGE2 | See page 5-123. |
| MESSAG | - | $\begin{array}{ll}\square & \text { PHASE } \\ \square & \text { OVERVOLTAGE1 }\end{array}$ | See page 5-124. |
| MESSAG | $\square$ | $\square$ NEUTRAL OV1 | See page 5-125. |
| MESSAG | - | $\square$ AUXILIARY UV1 | See page 5-126. |
| MESSAG | - | $\square$ AUXILIARY OV1 | See page 5-127. |
| MESSAG | - | $\square \mathrm{\square}$ - ${ }_{\text {■ }}$ | See page 5-128. |
| MESSAG | - | $\square$ VOLTS/HZ 2 | See page 5-128. |

These protection elements can be used for a variety of applications such as:
Undervoltage Protection: For voltage sensitive loads, such as induction motors, a drop in voltage increases the drawn current which may cause dangerous overheating in the motor. The undervoltage protection feature can be used to either cause a trip or generate an alarm when the voltage drops below a specified voltage setting for a specified time delay.

Permissive Functions: The undervoltage feature may be used to block the functioning of external devices by operating an output relay when the voltage falls below the specified voltage setting. The undervoltage feature may also be used to block the functioning of other elements through the block feature of those elements.

Source Transfer Schemes: In the event of an undervoltage, a transfer signal may be generated to transfer a load from its normal source to a standby or emergency power source.

The undervoltage elements can be programmed to have a Definite Time delay characteristic. The Definite Time curve operates when the voltage drops below the pickup level for a specified period of time. The time delay is adjustable from 0 to 600.00 seconds in steps of 10 ms . The undervoltage elements can also be programmed to have an inverse time delay characteristic. The undervoltage delay setting defines the family of curves shown below.

$$
T=\frac{D}{\left(1-\frac{V}{V_{\text {pickup }}}\right)}
$$

where: $\quad T=$ Operating Time
$D=$ Undervoltage Delay Setting ( $D=0.00$ operates instantaneously)
$V=$ Secondary Voltage applied to the relay
$V_{\text {pickup }}=$ Pickup Level
At 0\% of pickup, the operating time equals the UNDERVOLTAGE DELAY setting.


Figure 5-62: INVERSE TIME UNDERVOLTAGE CURVES

## b) PHASE UNDERVOLTAGE (ANSI 27P)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow \sqrt{ }$ VOLTAGE ELEMENTS $\Rightarrow$ PHASE UNDERVOLTAGE1(2)


This element may be used to give a desired time-delay operating characteristic versus the applied fundamental voltage (phase-to-ground or phase-to-phase for Wye VT connection, or phase-to-phase for Delta VT connection) or as a Definite Time element. The element resets instantaneously if the applied voltage exceeds the dropout voltage. The delay setting selects the minimum operating time of the phase undervoltage. The minimum voltage setting selects the operating voltage below which the element is blocked (a setting of " 0 " will allow a dead source to be considered a fault condition).


Figure 5-63: PHASE UNDERVOLTAGE1 SCHEME LOGIC
c) PHASE OVERVOLTAGE (ANSI 59P)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ VOLTAGE ELEMENTS $\Rightarrow \sqrt{ }$ PHASE OVERVOLTAGE1


The phase overvoltage element may be used as an instantaneous element with no intentional time delay or as a Definite Time element. The input voltage is the phase-to-phase voltage, either measured directly from Delta-connected VTs or as calculated from phase-to-ground (Wye) connected VTs. The specific voltages to be used for each phase are shown below.


Figure 5-64: PHASE OVERVOLTAGE SCHEME LOGIC
d) NEUTRAL OVERVOLTAGE (ANSI 59N)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ VOLTAGE ELEMENTS $\Rightarrow \sqrt{ }$ NEUTRAL OV1

| $\square$ NEUTRAL OV1 |  | (4) | NEUTRAL OV1 <br> FUNCTION: Disabled | Range: <br> Range: | Disabled, Enabled <br> SRC 1, SRC 2, SRC 3, SRC 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE |  | NEUTRAL OV1 SIGNAL SOURCE: SRC 1 |  |  |
|  | MESSAGE | - | NEUTRAL OV1 PICKUP: 0.300 pu | Range: | 0.000 to 1.250 pu in steps of 0.001 |
|  | MESSAGE | - | NEUTRAL OV1 PICKUP: DELAY: 1.00 s | Range: | 0.00 to 600.00 s in steps of 0.01 |
|  | MESSAGE | - | NEUTRAL OV1 RESET: DELAY: 1.00 s | Range: | 0.00 to 600.00 s in steps of 0.01 |
|  | MESSAGE | - | NEUTRAL OV1 BLOCK: Off | Range: | FlexLogic ${ }^{\text {TM }}$ operand |
|  | MESSAGE | - | NEUTRAL OV1 TARGET: Self-reset | Range: | Self-reset, Latched, Disabled |
|  | MESSAGE | (2) | NEUTRAL OV1 EVENTS: Disabled | Range: | Disabled, Enabled |

The Neutral Overvoltage element can be used to detect asymmetrical system voltage condition due to a ground fault or to the loss of one or two phases of the source. The element responds to the system neutral voltage ( $3 \mathrm{~V} \_0$ ), calculated from the phase voltages. The nominal secondary voltage of the phase voltage channels entered under SETTINGS $\Rightarrow \sqrt{ } \sqrt{\text { SYSTEM }}$ SETUP $\Rightarrow$ AC INPUTS $\Rightarrow \sqrt{ }$ VOLTAGE BANK $\Rightarrow$ PHASE VT SECONDARY is the p.u. base used when setting the pickup level.
VT errors and normal voltage unbalance must be considered when setting this element. This function requires the VTs to be Wye connected.


Figure 5-65: NEUTRAL OVERVOLTAGE1 SCHEME LOGIC
e) AUXILIARY UNDERVOLTAGE (ANSI 27X)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow \sqrt{ }$ VOLTAGE ELEMENTS $\Rightarrow \sqrt{ }$ AUXILIARY UV1


This element is intended for monitoring undervoltage conditions of the auxiliary voltage. The AUX UV1 PICKUP selects the voltage level at which the time undervoltage element starts timing. The nominal secondary voltage of the auxiliary voltage channel entered under SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow$ AC INPUTS $\Rightarrow \sqrt{ }$ VOLTAGE BANK X5 $\Rightarrow \sqrt{ }$ AUXILIARY VT X5 SECONDARY is the p.u. base used when setting the pickup level.

The AUX UV1 DELAY setting selects the minimum operating time of the auxiliary undervoltage element. Both AUX UV1 PICKUP and AUX UV1 DELAY settings establish the operating curve of the undervoltage element. The auxiliary undervoltage element can be programmed to use either Definite Time Delay or Inverse Time Delay characteristics. The operating characteristics and equations for both Definite and Inverse Time Delay are as for the Phase Undervoltage element.

The element resets instantaneously. The minimum voltage setting selects the operating voltage below which the element is blocked.


Figure 5-66: AUXILIARY UNDERVOLTAGE SCHEME LOGIC

## 5 SETTINGS

f) AUXILIARY OVERVOLTAGE (ANSI 59X)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ VOLTAGE ELEMENTS $\Rightarrow \sqrt{ }$ AUXILIARY OV1


This element is intended for monitoring overvoltage conditions of the auxiliary voltage. A typical application for this element is monitoring the zero-sequence voltage ( $3 \mathrm{~V} \_0$ ) supplied from an open-corner-delta VT connection. The nominal secondary voltage of the auxiliary voltage channel entered under SYSTEM SETUP $\Rightarrow$ AC INPUTS $\sqrt{ } \Rightarrow$ VOLTAGE BANK X5 $\sqrt{ } \Rightarrow$ AUXILIARY VT X5 SECONDARY is the p.u. base used when setting the pickup level.


Figure 5-67: AUXILIARY OVERVOLTAGE SCHEME LOGIC
g) VOLTS PER HERTZ (ANSI 24)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ VOLTAGE ELEMENTS $\Rightarrow \sqrt{ }$ VOLTS/HZ 1 (2)

| $\square$ VOLTS/HZ 1 |  | (1) | VOLTS/HZ 1 FUNCTION: Disabled | Range: Disabled, Enabled |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | VOLTS/HZ 1 SOURCE: SRC 1 | Range: SRC 1, SRC 2, SRC 3, SRC 4 |  |
|  | MESSAGE | - | VOLTS/HZ 1 PICKUP: <br> 1.00 pu | Range: 0.80 to 4.00 pu in steps of 0.01 |  |
|  | MESSAGE | - | VOLTS/HZ 1 CURVE: Definite Time | Range: Definite Time, Inverse A, Inverse B, Inverse C, FlexCurve $A$, FlexCurve $B$, FlexCurve $C$, FlexCurve D |  |
|  | MESSAGE | - | VOLTS/HZ 1 TD MULTIPLIER: 1.00 | Range: 0.05 to 600.00 in steps of 0.01 |  |
|  | MESSAGE | - | VOLTS/HZ 1 <br> T-RESET: 1.0 s | Range: 0.0 to 1000.0 s in steps of 0.1 |  |
|  | MESSAGE | - | VOLTS/HZ 1 BLOCK: Off | Range: FlexLogic ${ }^{\text {TM }}$ operand |  |
|  | MESSAGE | - | VOLTS/HZ 1 TARGET: Self-reset | Range: Self-reset, Latched, Disabled |  |
|  | MESSAGE | (2) | VOLTS/HZ 1 EVENTS: Disabled | Range: Disabled, Enabled |  |

The per-unit $\mathrm{V} / \mathrm{Hz}$ value is calculated using the maximum of the three-phase voltage inputs or the auxiliary voltage channel Vx input, if the Source is not configured with phase voltages. To use the $\mathrm{V} / \mathrm{Hz}$ element with auxiliary voltage, set system SETUP $\Rightarrow \sqrt{ }$ SIGNAL SOURCES $\Rightarrow$ SOURCE 1(6) $\Rightarrow \sqrt{ }$ SOURCE 1(6) PHASE VT to "None" and SOURCE 1(6) AUX VT to the corresponding voltage input bank. If there is no voltage on the relay terminals in either case, the per-unit $\mathrm{V} / \mathrm{Hz}$ value is automatically set to " 0 ". The per unit value is established as per voltage and nominal frequency power system settings as follows:

1. If the phase voltage inputs defined in the source menu are used for $\mathrm{V} / \mathrm{Hz}$ operation, then " 1 pu" is the selected SYSTEM SETUP $\Rightarrow$ AC INPUTS $\Rightarrow \sqrt{ }$ VOLTAGE BANK $N \Rightarrow \sqrt{ }$ PHASE VT $N$ SECONDARY setting, divided by the divided by the SYSTEM SETUP $\Rightarrow \sqrt{\wedge}$ POWER SYSTEM $\Rightarrow$ NOMINAL FREQUENCY setting.
2. When the auxiliary voltage Vx is used (regarding the condition for "None" phase voltage setting mentioned above), then the 1 pu value is the SYSTEM SETUP $\Rightarrow$ AC INPUTS $\Rightarrow \sqrt{ }$ VOLTAGE BANK $N \Rightarrow \sqrt{ }$ AUXILIARY VT $N$ SECONDARY setting divided by the SYSTEM SETUP $\Rightarrow \sqrt{ }$ POWER SYSTEM $\Rightarrow$ NOMINAL FREQUENCY setting.
3. If $\mathrm{V} / \mathrm{Hz}$ source is configured with both phase and auxiliary voltages, the maximum phase among the three voltage channels at any given point in time is the input voltage signal for element operation, and therefore the per-unit value will be calculated as described in Step 1 above. If the measured voltage of all three phase voltages is 0 , than the perunit value becomes automatically 0 regardless of the presence of auxiliary voltage.


Figure 5-68: VOLTS PER HERTZ SCHEME LOGIC

The element has a linear reset characteristic. The reset time can be programmed to match the cooling characteristics of the protected equipment. The element will fully reset from the trip threshold in volts/hz t-RESET seconds. The V/Hz element may be used as an instantaneous element with no intentional time delay or as a Definite or Inverse timed element.

The characteristics of the inverse curves are shown below.

- DEFINITE TIME: T(sec.) = TD Multiplier. For example, setting the TD Multiplier set to 20 means a time delay of 20 seconds to operate, when above the Volts/Hz pickup setting. Instantaneous operation can be obtained the same way by setting the TD Multiplier to " 0 ".
- INVERSE CURVE A:

The curve for the Volts/Hertz Inverse Curve A shape is derived from the formula:

$$
\begin{equation*}
T=\frac{\text { TDM }}{\left[\left(\frac{V}{F}\right) / \text { Pickup }\right]^{2}-1} \text { when } \frac{V}{F}>\text { Pickup } \tag{EQ5.44}
\end{equation*}
$$

where: $\quad T=$ Operating Time
TDM = Time Delay Multiplier (delay in sec.)
$V=$ fundamental RMS value of voltage (pu)
$F=$ frequency of voltage signal (pu)
Pickup = volts-per-hertz pickup setpoint (pu)


- INVERSE CURVE B:

The curve for the Volts/Hertz Inverse Curve B shape is derived from the formula:

$$
\begin{equation*}
T=\frac{\text { TDM }}{\left[\left(\frac{V}{F}\right) / \text { Pickup }\right]-1} \text { when } \frac{V}{F}>\text { Pickup } \tag{EQ5.45}
\end{equation*}
$$

where: $\quad T=$ Operating Time
TDM = Time Delay Multiplier (delay in sec.)
$V=$ fundamental RMS value of voltage (pu)
$F=$ frequency of voltage signal (pu)
Pickup = volts-per-hertz pickup setpoint (pu)

## - INVERSE CURVE C:

The curve for the Volts/Hertz Inverse Curve C shape is derived from the formula:
$T=\frac{\text { TDM }}{\left[\left(\frac{V}{F}\right) / \text { Pickup }\right]^{0.5}-1}$ when $\frac{V}{F}>$ Pickup
(EQ 5.46)
where: $\quad T=$ Operating Time
TDM = Time Delay Multiplier (delay in sec.)
$V=$ fundamental RMS value of voltage (pu)
$F=$ frequency of voltage signal (pu)
Pickup = volts-per-hertz pickup setpoint (pu)


Control elements are generally used for control rather than protection. See the Introduction to Elements section at the beginning of this chapter for further information.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow$ SETTINGS GROUPS


The Setting Groups menu controls the activation/deactivation of up to six possible groups of settings in the grouped eleMENTS settings menu. The faceplate 'Settings In Use' LEDs indicate which active group (with a non-flashing energized LED) is in service.

The SETTING GROUPS BLK setting prevents the active setting group from changing when the FlexLogic ${ }^{\text {™ }}$ parameter is set to "On". This can be useful in applications where it is undesirable to change the settings under certain conditions, such as the breaker being open.

Each Group n Activate on setting selects a FlexLogic ${ }^{\text {TM }}$ operand which, when set, will make the particular setting group active for use by any grouped element. A priority scheme ensures that only one group is active at a given time - the high-est-numbered group which is activated by its GROUP n ACTIVATE ON parameter takes priority over the lower-numbered groups. There is no "activate on" setting for Group 1 (the default active group), because Group 1 automatically becomes active if no other group is active.

The SETTING GROUP 1(6) NAME settings allows to user to assign a name to each of the six settings groups. Once programmed, this name will appear on the second line of the GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP 1(6) menu display.
The relay can be set up via a FlexLogic ${ }^{\text {TM }}$ equation to receive requests to activate or de-activate a particular non-default settings group. The following FlexLogic ${ }^{\text {TM }}$ equation (see the figure below) illustrates requests via remote communications (e.g. VIRTUAL INPUT 1) or from a local contact input (e.g. H7a) to initiate the use of a particular settings group, and requests from several overcurrent pickup measuring elements to inhibit the use of the particular settings group. The assigned VIRTUAL OUTPUT 1 operand is used to control the "On" state of a particular settings group.


Figure 5-69: EXAMPLE FLEXLOGIC ${ }^{\text {TM }}$ CONTROL OF A SETTINGS GROUP
5.6.3 SELECTOR SWITCH


The Selector Switch element is intended to replace a mechanical selector switch. Typical applications include setting group control or control of multiple logic sub-circuits in user-programmable logic.
The element provides for two control inputs. The step-up control allows stepping through selector position one step at a time with each pulse of the control input, such as a user-programmable pushbutton. The 3 -bit control input allows setting the selector to the position defined by a 3-bit word.

The element allows pre-selecting a new position without applying it. The pre-selected position gets applied either after timeout or upon acknowledgement via separate inputs (user setting). The selector position is stored in non-volatile memory. Upon power-up, either the previous position is restored or the relay synchronizes to the current 3-bit word (user setting). Basic alarm functionality alerts the user under abnormal conditions; e.g. the 3-bit control input being out of range.

- SELECTOR 1 FULL RANGE: This setting defines the upper position of the selector. When stepping up through available positions of the selector, the upper position wraps up to the lower position (Position 1). When using a direct 3-bit control word for programming the selector to a desired position, the change would take place only if the control word is within the range of 1 to the SELECTOR FULL RANGE. If the control word is outside the range, an alarm is established by setting the SELECTOR ALARM FlexLogic ${ }^{\text {TM }}$ operand for 3 seconds.
- SELECTOR 1 TIME-OUT: This setting defines the time-out period for the selector. This value is used by the relay in the following two ways. When the SELECTOR STEP-UP MODE is "Time-out", the setting specifies the required period of inactivity of the control input after which the pre-selected position is automatically applied. When the SELECTOR STEPUP MODE is "Acknowledge", the setting specifies the period of time for the acknowledging input to appear. The timer is re-started by any activity of the control input. The acknowledging input must come before the SELECTOR 1 time-out timer expires; otherwise, the change will not take place and an alarm will be set.
- SELECTOR 1 STEP-UP: This setting specifies a control input for the selector switch. The switch is shifted to a new position at each rising edge of this signal. The position changes incrementally, wrapping up from the last (SELECTOR 1 fULL RANGE) to the first (Position 1). Consecutive pulses of this control operand must not occur faster than every 50 ms . After each rising edge of the assigned operand, the time-out timer is restarted and the SELECTOR SWITCH 1: POS Z CHNG INITIATED target message is displayed, where $\boldsymbol{Z}$ the pre-selected position. The message is displayed for the time specified by the FLASH MESSAGE TIME setting. The pre-selected position is applied after the selector times out ("Time-out" mode), or when the acknowledging signal appears before the element times out ("Acknowledge" mode). When the new position is applied, the relay displays the SELECTOR SWITCH 1: POSITION Z IN USE message. Typically, a user-programmable pushbutton is configured as the stepping up control input.
- SELECTOR 1 STEP-UP MODE: This setting defines the selector mode of operation. When set to "Time-out", the selector will change its position after a pre-defined period of inactivity at the control input. The change is automatic and does not require any explicit confirmation of the intent to change the selector's position. When set to "Acknowledge", the selector will change its position only after the intent is confirmed through a separate acknowledging signal. If the acknowledging signal does not appear within a pre-defined period of time, the selector does not accept the change and an alarm is established by setting the SELECTOR STP ALARM output FlexLogic ${ }^{\text {TM }}$ operand for 3 seconds.
- SELECTOR 1 ACK: This setting specifies an acknowledging input for the stepping up control input. The pre-selected position is applied on the rising edge of the assigned operand. This setting is active only under "Acknowledge" mode of operation. The acknowledging signal must appear within the time defined by the SELECTOR 1 TIME-OUT setting after the last activity of the control input. A user-programmable pushbutton is typically configured as the acknowledging input.
- SELECTOR 1 3BIT A0, A1, and A2: These settings specify a 3-bit control input of the selector. The 3-bit control word pre-selects the position using the following encoding convention:

| A2 | A1 | A0 | POSITION |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | rest |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 2 |
| 0 | 1 | 1 | 3 |
| 1 | 0 | 0 | 4 |
| 1 | 0 | 1 | 5 |
| 1 | 1 | 0 | 6 |
| 1 | 1 | 1 | 7 |

The "rest" position $(0,0,0)$ does not generate an action and is intended for situations when the device generating the 3-bit control word is having a problem. When SELECTOR 1 3BIT MODE is "Time-out", the pre-selected position is applied in SELECTOR 1 TIME-OUT seconds after the last activity of the 3-bit input. When SELECTOR 1 3BIT MODE is "Acknowledge", the pre-selected position is applied on the rising edge of the SELECTOR 1 3BIT ACK acknowledging input.

The stepping up control input (SELECTOR 1 STEP-UP) and the 3-bit control inputs (SELECTOR 1 3BIT A0 through A2) lockout mutually: once the stepping up sequence is initiated, the 3-bit control input is inactive; once the 3-bit control sequence is initiated, the stepping up input is inactive.

- SELECTOR 1 3BIT MODE: This setting defines the selector mode of operation. When set to "Time-out", the selector changes its position after a pre-defined period of inactivity at the control input. The change is automatic and does not require explicit confirmation to change the selector position. When set to "Acknowledge", the selector changes its position only after confirmation via a separate acknowledging signal. If the acknowledging signal does not appear within a pre-defined period of time, the selector rejects the change and an alarm established by invoking the SELECTOR BIT ALARM FlexLogic ${ }^{\text {TM }}$ operand for 3 seconds.
- SELECTOR 1 3BIT ACK: This setting specifies an acknowledging input for the 3-bit control input. The pre-selected position is applied on the rising edge of the assigned FlexLogic ${ }^{\text {TM }}$ operand. This setting is active only under the "Acknowledge" mode of operation. The acknowledging signal must appear within the time defined by the SELECTOR TIME-OUT setting after the last activity of the 3-bit control inputs. Note that the stepping up control input and 3-bit control input have independent acknowledging signals (SELECTOR 1 ACK and SELECTOR 1 3BIT ACK, accordingly).
- SELECTOR 1 POWER-UP MODE: This setting specifies the element behavior on power up of the relay.

When set to "Restore", the last position of the selector (stored in the non-volatile memory) is restored after powering up the relay. If the position restored from memory is out of range, position 0 (no output operand selected) is applied and an alarm is set (SELECTOR 1 PWR ALARM).

When set to "Synchronize" selector switch acts as follows. For two power cycles, the selector applies position 0 to the switch and activates SELECTOR 1 PWR ALARM. After two power cycles expire, the selector synchronizes to the position dictated by the 3 -bit control input. This operation does not wait for time-out or the acknowledging input. When the synchronization attempt is unsuccessful (i.e., the 3-bit input is not available ( $0,0,0$ ) or out of range) then the selector switch output is set to position 0 (no output operand selected) and an alarm is established (SELECTOR 1 PWR ALARM).
The operation of "Synch/Restore" mode is similar to the "Synchronize" mode. The only difference is that after an unsuccessful synchronization attempt, the switch will attempt to restore the position stored in the relay memory. The "Synch/Restore" mode is useful for applications where the selector switch is employed to change the setting group in redundant (two relay) protection schemes.

- SELECTOR 1 EVENTS: If enabled, the following events are logged:

| EVENT NAME | DESCRIPTION |
| :--- | :--- |
| SELECTOR 1 POS Z | Selector 1 changed its position to Z. |
| SELECTOR 1 STP ALARM | The selector position pre-selected via the stepping up control input has not been <br> confirmed before the time out. |
| SELECTOR 1 BIT ALARM | The selector position pre-selected via the 3-bit control input has not been confirmed <br> before the time out. |

The following figures illustrate the operation of the Selector Switch. In these diagrams, "T" represents a time-out setting.


Figure 5-70: TIME-OUT MODE


Figure 5-71: ACKNOWLEDGE MODE

## APPLICATION EXAMPLE

Consider an application where the selector switch is used to control Setting Groups 1 through 4 in the relay. The setting groups are to be controlled from both User-Programmable Pushbutton 1 and from an external device via Contact Inputs 1 through 3. The active setting group shall be available as an encoded 3-bit word to the external device and SCADA via output contacts 1 through 3 . The pre-selected setting group shall be applied automatically after 5 seconds of inactivity of the control inputs. When the relay powers up, it should synchronize the setting group to the 3 -bit control input.
Make the following changes to Setting Group Control in the SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow$ SETTING GROUPS menu:

```
SETTING GROUPS FUNCTION: "Enabled"
SETTING GROUPS BLK: "Off"
GROUP 2 ACTIVATE ON: "SELECTOR 1 POS 2"
GROUP 3 ACTIVATE ON: "SELECTOR 1 POS 3"
```

```
GROUP 4 ACTIVATE ON: "SELECTOR 1 POS 4"
GROUP 5 ACTIVATE ON: "Off"
GROUP 6 ACTIVATE ON: "Off"
```

Make the following changes to Selector Switch element in the SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow \sqrt{ }$ SELECTOR SWITCH $\Rightarrow$ SELECTOR SWITCH 1 menu to assign control to User Programmable Pushbutton 1 and Contact Inputs 1 through 3:

```
SELECTOR 1 FUNCTION: "Enabled" SELECTOR 1 3bIt a0: "CONT IP 1 ON"
SELECTOR 1 FULL-RANGE: "4" SELECTOR 1 3BIT A1: "CONT IP 2 ON"
SELECTOR 1 STEP-UP MODE: "Time-out"
SELECTOR 1 TIME-OUT: "5.0 s"
SELECTOR 1 STEP-UP: "PUSHBUTTON 1 ON"
SELECTOR 1 ACK: "Off"
```

```
SELECTOR 1 3BIT A2: "CONT IP 3 ON"
```

SELECTOR 1 3BIT A2: "CONT IP 3 ON"
SELECTOR 1 3BIT MODE: "Time-out"
SELECTOR 1 3BIT MODE: "Time-out"
SELECTOR 1 3BIT ACK: "Off"
SELECTOR 1 3BIT ACK: "Off"
SELECTOR 1 POWER-UP MODE: "Synchronize"

```
SELECTOR 1 POWER-UP MODE: "Synchronize"
```

Now, assign the contact output operation (assume the H6E module) to the Selector Switch element by making the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ INPUTSIOUTPUTS $\Rightarrow \sqrt{ }$ CONTACT OUTPUTS menu:

OUTPUT H1 OPERATE: "SELECTOR 1 BIT 0"

## output h2 OPERATE: "SELECTOR 1 BIT 1"

OUTPUT H3 OPERATE: "SELECTOR 1 BIT 2"
Finally, assign configure User-Programmable Pushbutton 1 by making the following changes in the SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USER-PROGRAMMABLE PUSHBUTTONS $\Rightarrow$ USER PUSHBUTTON 1 menu:

## PUSHBUTTON 1 FUNCTION: "Self-reset" <br> PUSHBUTTON 1 DROP-OUT TIME: " 0.10 s"

The logic for the selector switch is shown below:


Figure 5-72: SELECTOR SWITCH LOGIC

PATH: SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow \sqrt{ } \Rightarrow$ UNDERFREQUENCY $\Rightarrow$ UNDERFREQUENCY 1(6)


There are six identical underfrequency elements, numbered from 1 through 6 inclusive.
The steady-state frequency of a power system is a certain indicator of the existing balance between the generated power and the load. Whenever this balance is disrupted through the loss of an important generating unit or the isolation of part of the system from the rest of the system, the effect will be a reduction in frequency. If the control systems of the system generators do not respond fast enough, the system may collapse. A reliable method to quickly restore the balance between load and generation is to automatically disconnect selected loads, based on the actual system frequency. This technique, called "load-shedding", maintains system integrity and minimize widespread outages. After the frequency returns to normal, the load may be automatically or manually restored.

The UNDERFREQ 1 SOURCE setting is used to select the source for the signal to be measured. The element first checks for a live phase voltage available from the selected Source. If voltage is not available, the element attempts to use a phase current. If neither voltage nor current is available, the element will not operate, as it will not measure a parameter above the minimum voltage/current setting.
The UNDERFREQ 1 MIN VOLTIAMP setting selects the minimum per unit voltage or current level required to allow the underfrequency element to operate. This threshold is used to prevent an incorrect operation because there is no signal to measure.
This UNDERFREQ 1 PICKUP setting is used to select the level at which the underfrequency element is to pickup. For example, if the system frequency is 60 Hz and the load shedding is required at 59.5 Hz , the setting will be 59.50 Hz .


Figure 5-73: UNDERFREQUENCY SCHEME LOGIC

PATH: SETTINGS $\Rightarrow \sqrt{ } \Rightarrow$ CONTROL ELEMENTS $\Rightarrow \sqrt{ } \Rightarrow$ OVERFREQUENCY $\Rightarrow$ OVERFREQUENCY 1(4)


There are four overfrequency elements, numbered 1 through 4.
A frequency calculation for a given source is made on the input of a voltage or current channel, depending on which is available. The channels are searched for the signal input in the following order: voltage channel A, auxiliary voltage channel, current channel A, ground current channel. The first available signal is used for frequency calculation.

The steady-state frequency of a power system is an indicator of the existing balance between the generated power and the load. Whenever this balance is disrupted through the disconnection of significant load or the isolation of a part of the system that has a surplus of generation, the effect will be an increase in frequency. If the control systems of the generators do not respond fast enough, to quickly ramp the turbine speed back to normal, the overspeed can lead to the turbine trip. The overfrequency element can be used to control the turbine frequency ramp down at a generating location. This element can also be used for feeder reclosing as part of the "after load shedding restoration".
The OVERFREQ 1 SOURCE setting selects the source for the signal to be measured. The OVERFREQ 1 PICKUP setting selects the level at which the overfrequency element is to pickup.


Figure 5-74: OVERFREQUENCY SCHEME LOGIC

PATH: SETTINGS $\Rightarrow \Omega$ CONTROL ELEMENTS $\Rightarrow \Omega$ DIGITAL ELEMENTS $\Rightarrow$ DIGITAL ELEMENT 1(48)


There are 48 identical digital elements available, numbered 1 to 48 . A digital element can monitor any FlexLogic ${ }^{\text {™ }}$ operand and present a target message and/or enable events recording depending on the output operand state. The digital element settings include a name which will be referenced in any target message, a blocking input from any selected FlexLogic ${ }^{\text {TM }}$ operand, and a timer for pickup and reset delays for the output operand.

- DIGITAL ELEMENT 1 INPUT: Selects a FlexLogic ${ }^{\text {TM }}$ operand to be monitored by the digital element.
- DIGITAL ELEMENT 1 PICKUP DELAY: Sets the time delay to pickup. If a pickup delay is not required, set to " 0 ".
- DIGITAL ELEMENT 1 RESET DELAY: Sets the time delay to reset. If a reset delay is not required, set to "0".
- DIGITAL ELEMENT 1 PICKUP LED: This setting enables or disabled the digital element pickup LED. When set to "Disabled", the operation of the pickup LED is blocked.


Figure 5-75: DIGITAL ELEMENT SCHEME LOGIC

## CIRCUIT MONITORING APPLICATIONS:

Some versions of the digital input modules include an active voltage monitor circuit connected across Form-A contacts. The voltage monitor circuit limits the trickle current through the output circuit (see technical specifications for Form-A).

As long as the current through the Voltage Monitor is above a threshold (see technical specifications for Form-A), the FlexLogic ${ }^{\text {TM }}$ operand "Cont Op \# VOn" will be set (\# represents the output contact number). If the output circuit has a high resistance or the DC current is interrupted, the trickle current will drop below the threshold and the FlexLogic ${ }^{\text {TM }}$ operand "Cont Op \# VOff" will be set. Consequently, the state of these operands can be used as indicators of the integrity of the circuits in which Form-A contacts are inserted.

## EXAMPLE 1: BREAKER TRIP CIRCUIT INTEGRITY MONITORING

In many applications it is desired to monitor the breaker trip circuit integrity so problems can be detected before a trip operation is required. The circuit is considered to be healthy when the voltage monitor connected across the trip output contact detects a low level of current, well below the operating current of the breaker trip coil. If the circuit presents a high resistance, the trickle current will fall below the monitor threshold and an alarm would be declared.
In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact which is open when the breaker is open (see diagram below). To prevent unwanted alarms in this situation, the trip circuit monitoring logic must include the breaker position.


Figure 5-76: TRIP CIRCUIT EXAMPLE 1
Assume the output contact H 1 is a trip contact. Using the contact output settings, this output will be given an ID name, e.g. "Cont Op 1". Assume a 52a breaker auxiliary contact is connected to contact input H7a to monitor breaker status. Using the contact input settings, this input will be given an ID name, e.g. "Cont Ip 1" and will be set "On" when the breaker is closed. Using Digital Element 1 to monitor the breaker trip circuit, the settings will be:


## 5 SETTINGS

The PICKUP DELAY setting should be greater than the operating time of the breaker to avoid nuisance alarms.

## EXAMPLE 2: BREAKER TRIP CIRCUIT INTEGRITY MONITORING

If it is required to monitor the trip circuit continuously, independent of the breaker position (open or closed), a method to maintain the monitoring current flow through the trip circuit when the breaker is open must be provided (as shown in the figure below). This can be achieved by connecting a suitable resistor (see figure below) across the auxiliary contact in the trip circuit. In this case, it is not required to supervise the monitoring circuit with the breaker position - the block setting is selected to "Off". In this case, the settings will be:



Figure 5-77: TRIP CIRCUIT EXAMPLE 2

PATH: SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow \sqrt{ }$ DIGITAL COUNTERS $\Rightarrow$ COUNTER 1(8)


There are 8 identical digital counters, numbered from 1 to 8 . A digital counter counts the number of state transitions from Logic 0 to Logic 1. The counter is used to count operations such as the pickups of an element, the changes of state of an external contact (e.g. breaker auxiliary switch), or pulses from a watt-hour meter.

- COUNTER 1 UNITS: Assigns a label to identify the unit of measure pertaining to the digital transitions to be counted. The units label will appear in the corresponding actual values status.
- COUNTER 1 PRESET: Sets the count to a required preset value before counting operations begin, as in the case where a substitute relay is to be installed in place of an in-service relay, or while the counter is running.
- COUNTER 1 COMPARE: Sets the value to which the accumulated count value is compared. Three FlexLogic ${ }^{\text {TM }}$ output operands are provided to indicate if the present value is 'more than (HI)', 'equal to (EQL)', or 'less than (LO)' the set value.
- COUNTER 1 UP: Selects the FlexLogic ${ }^{\text {TM }}$ operand for incrementing the counter. If an enabled UP input is received when the accumulated value is at the limit of $+2,147,483,647$ counts, the counter will rollover to $-2,147,483,648$.
- COUNTER 1 DOWN: Selects the FlexLogic ${ }^{\text {TM }}$ operand for decrementing the counter. If an enabled DOWN input is received when the accumulated value is at the limit of $-2,147,483,648$ counts, the counter will rollover to $+2,147,483,647$.
- COUNTER 1 BLOCK: Selects the FlexLogic ${ }^{\text {TM }}$ operand for blocking the counting operation. All counter operands are blocked.
- CNT1 SET TO PRESET: Selects the FlexLogic ${ }^{\text {TM }}$ operand used to set the count to the preset value. The counter will be set to the preset value in the following situations:

1. When the counter is enabled and the CNT1 SET TO PRESET operand has the value 1 (when the counter is enabled and CNT1 SET TO PRESET operand is 0 , the counter will be set to 0 ).
2. When the counter is running and the CNT1 SET TO PRESET operand changes the state from 0 to 1 (CNT1 SET TO PRESET changing from 1 to 0 while the counter is running has no effect on the count).
3. When a reset or reset/freeze command is sent to the counter and the CNT1 SET TO PRESET operand has the value 1 (when a reset or reset/freeze command is sent to the counter and the CNT1 SET TO PRESET operand has the value 0 , the counter will be set to 0 ).

- COUNTER 1 RESET: Selects the FlexLogic ${ }^{\top M}$ operand for setting the count to either " 0 " or the preset value depending on the state of the CNT1 SET TO PRESET operand.
- COUNTER 1 FREEZEIRESET: Selects the FlexLogic ${ }^{\text {™ }}$ operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and resetting the count to " 0 ".
- COUNTER 1 FREEZE/COUNT: Selects the FlexLogic ${ }^{\text {TM }}$ operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and continuing counting. The present accumulated value and captured frozen value with the associated date/time stamp are available as actual values. If control power is interrupted, the accumulated and frozen values are saved into non-volatile memory during the power down operation.


Figure 5-78: DIGITAL COUNTER SCHEME LOGIC
a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow \sqrt{ }$ MONITORING ELEMENTS


## b) BREAKER ARCING CURRENT

PATH: SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow \sqrt{ }$ MONITORING ELEMENTS $\Rightarrow$ BREAKER 1 4 (4) ARCING CURRENT

| BREAKER 1ARCING CURRENT |  | (1) | BKR 1 ARC AMP FUNCTION: Disabled | Range: Disabled, Enabled |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | BKR 1 ARC AMP SOURCE: SRC 1 | Range: | SRC 1, SRC 2, SRC 3, SRC 4 |
|  | MESSAGE | $\square$ | BKR 1 ARC AMP INT-A: Off | Range: | FlexLogic ${ }^{\text {TM }}$ operand |
|  | MESSAGE | - | BKR 1 ARC AMP INT-B: Off | Range: | FlexLogic ${ }^{\text {TM }}$ operand |
|  | MESSAGE | - | BKR 1 ARC AMP INT-C: Off | Range: | FlexLogic ${ }^{\text {TM }}$ operand |
|  | MESSAGE | 思 | BKR 1 ARC AMP DELAY: 0.000 s | Range: | 0.000 to 65.535 s in steps of 0.001 |
|  | MESSAGE | - | $\begin{aligned} & \text { BKR } 1 \text { ARC AMP LIMIT: } \\ & 1000 \text { kA2-cyc } \end{aligned}$ | Range: | 0 to $50000 k A^{2}$-cycle in steps of 1 |
|  | MESSAGE | - | BKR 1 ARC AMP BLOCK: Off | Range: | FlexLogic ${ }^{\text {™ }}$ operand |
|  | MESSAGE | - | BKR 1 ARC AMP <br> TARGET: Self-reset | Range: | Self-reset, Latched, Disabled |
|  | MESSAGE | (2) | BKR 1 ARC AMP EVENTS: Disabled | Range: | Disabled, Enabled |

There is one Breaker Arcing Current element available per CT bank, with a minimum of 2 elements. This element calculates an estimate of the per-phase wear on the breaker contacts by measuring and integrating the current squared passing through the breaker contacts as an arc. These per-phase values are added to accumulated totals for each phase and compared to a programmed threshold value. When the threshold is exceeded in any phase, the relay can set an output operand to " 1 ". The accumulated value for each phase can be displayed as an actual value.

The operation of the scheme is shown in the following logic diagram. The same output operand that is selected to operate the output relay used to trip the breaker, indicating a tripping sequence has begun, is used to initiate this feature. A time delay is introduced between initiation and the starting of integration to prevent integration of current flow through the breaker before the contacts have parted. This interval includes the operating time of the output relay, any other auxiliary relays and the breaker mechanism. For maximum measurement accuracy, the interval between change-of-state of the operand (from 0 to 1) and contact separation should be measured for the specific installation. Integration of the measured current continues for 100 ms , which is expected to include the total arcing period.

The feature is programmed to perform fault duration calculations. Fault duration is defined as a time between operation of the disturbance detector occurring before initiation of this feature, and reset of an internal low-set overcurrent function. Correction is implemented to account for a non-zero reset time of the overcurrent function.
Breaker arcing currents and fault duration values are available under the ACTUAL VALUES $\Rightarrow \sqrt{ }$ RECORDS $\Rightarrow \Omega$ MAINTENANCE $\Rightarrow$ BREAKER 1(4) menus.

- BKR 1(4) ARC AMP INT-A(C): Select the same output operands that are configured to operate the output relays used to trip the breaker. In three-pole tripping applications, the same operand should be configured to initiate arcing current calculations for poles A, B and C of the breaker. In single-pole tripping applications, per-pole tripping operands should be configured to initiate the calculations for the poles that are actually tripped.
- BKR 1(4) ARC AMP DELAY: This setting is used to program the delay interval between the time the tripping sequence is initiated and the time the breaker contacts are expected to part, starting the integration of the measured current.
- BKR 1(4) ARC AMP LIMIT: Selects the threshold value above which the output operand is set.


Figure 5-79: ARCING CURRENT MEASUREMENT


Figure 5-80: BREAKER ARCING CURRENT SCHEME LOGIC

PATH: SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow$ CONTACT INPUTS


The contact inputs menu contains configuration settings for each contact input as well as voltage thresholds for each group of four contact inputs. Upon startup, the relay processor determines (from an assessment of the installed modules) which contact inputs are available and then display settings for only those inputs.
An alphanumeric ID may be assigned to a contact input for diagnostic, setting, and event recording purposes. The CONTACT IP X On" (Logic 1) FlexLogic ${ }^{\text {TM }}$ operand corresponds to contact input " $X$ " being closed, while CONTACT IP X Off corresponds to contact input " $X$ " being open. The CONTACT INPUT DEBNCE TIME defines the time required for the contact to overcome 'contact bouncing' conditions. As this time differs for different contact types and manufacturers, set it as a maximum contact debounce time (per manufacturer specifications) plus some margin to ensure proper operation. If CONTACT INPUT EVENTS is set to "Enabled", every change in the contact input state will trigger an event.

A raw status is scanned for all Contact Inputs synchronously at the constant rate of 0.5 ms as shown in the figure below. The DC input voltage is compared to a user-settable threshold. A new contact input state must be maintained for a usersettable debounce time in order for the T60 to validate the new contact state. In the figure below, the debounce time is set at 2.5 ms ; thus the 6th sample in a row validates the change of state (mark no. 1 in the diagram). Once validated (debounced), the contact input asserts a corresponding FlexLogic ${ }^{\text {TM }}$ operand and logs an event as per user setting.
A time stamp of the first sample in the sequence that validates the new state is used when logging the change of the contact input into the Event Recorder (mark no. 2 in the diagram).

Protection and control elements, as well as FlexLogic ${ }^{T M}$ equations and timers, are executed eight times in a power system cycle. The protection pass duration is controlled by the frequency tracking mechanism. The FlexLogic ${ }^{\text {™ }}$ operand reflecting the debounced state of the contact is updated at the protection pass following the validation (marks no. 3 and 4 on the figure below). The update is performed at the beginning of the protection pass so all protection and control functions, as well as FlexLogic ${ }^{\text {TM }}$ equations, are fed with the updated states of the contact inputs.

The FlexLogic ${ }^{\text {TM }}$ operand response time to the contact input change is equal to the debounce time setting plus up to one protection pass (variable and depending on system frequency if frequency tracking enabled). If the change of state occurs just after a protection pass, the recognition is delayed until the subsequent protection pass; that is, by the entire duration of the protection pass. If the change occurs just prior to a protection pass, the state is recognized immediately. Statistically a delay of half the protection pass is expected. Owing to the 0.5 ms scan rate, the time resolution for the input contact is below 1msec.

For example, 8 protection passes per cycle on a 60 Hz system correspond to a protection pass every 2.1 ms . With a contact debounce time setting of 3.0 ms , the FlexLogic ${ }^{\text {TM }}$ operand-assert time limits are: $3.0+0.0=3.0 \mathrm{~ms}$ and $3.0+2.1=5.1$ ms. These time limits depend on how soon the protection pass runs after the debouncing time.

Regardless of the contact debounce time setting, the contact input event is time-stamped with a $1 \mu \mathrm{~s}$ accuracy using the time of the first scan corresponding to the new state (mark no. 2 below). Therefore, the time stamp reflects a change in the DC voltage across the contact input terminals that was not accidental as it was subsequently validated using the debounce timer. Keep in mind that the associated FlexLogic ${ }^{T M}$ operand is asserted/de-asserted later, after validating the change.
The debounce algorithm is symmetrical: the same procedure and debounce time are used to filter the LOW-HIGH (marks no.1, 2, 3, and 4 in the figure below) and HIGH-LOW (marks no. 5, 6, 7, and 8 below) transitions.


Figure 5-81: INPUT CONTACT DEBOUNCING MECHANISM AND TIME-STAMPING SAMPLE TIMING
Contact inputs are isolated in groups of four to allow connection of wet contacts from different voltage sources for each group. The CONTACT INPUT THRESHOLDS determine the minimum voltage required to detect a closed contact input. This value should be selected according to the following criteria: 17 for 24 V sources, 33 for 48 V sources, 84 for 110 to 125 V sources and 166 for 250 V sources.

For example, to use contact input H 5 a as a status input from the breaker 52b contact to seal-in the trip relay and record it in the Event Records menu, make the following settings changes:

```
CONTACT INPUT H5A ID: "Breaker Closed (52b)"
CONTACT INPUT H5A EVENTS: "Enabled"
```

Note that the 52 b contact is closed when the breaker is open and open when the breaker is closed.

PATH: SETTINGS $\Rightarrow \sqrt{ } \Rightarrow$ INPUTSIOUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ VIRTUAL INPUTS $\Rightarrow$ VIRTUAL INPUT 1(64)


There are 64 virtual inputs that can be individually programmed to respond to input signals from the keypad (Commands menu) and communications protocols. All virtual input operands are defaulted to OFF $=0$ unless the appropriate input signal is received. Virtual input states are preserved through a control power loss.

If the VIRTUAL INPUT x FUNCTION is to "Disabled", the input will be forced to 'Off' (Logic 0) regardless of any attempt to alter the input. If set to "Enabled", the input operates as shown on the logic diagram and generates output FlexLogic ${ }^{\text {™ }}$ operands in response to received input signals and the applied settings.

There are two types of operation: Self-Reset and Latched. If VIRTUAL INPUT x TYPE is "Self-Reset", when the input signal transits from OFF = 0 to $\mathrm{ON}=1$, the output operand will be set to $\mathrm{ON}=1$ for only one evaluation of the FlexLogic ${ }^{\text {TM }}$ equations and then return to OFF $=0$. If set to "Latched", the virtual input sets the state of the output operand to the same state as the most recent received input, $\mathrm{ON}=1$ or $\mathrm{OFF}=0$.

The "Self-Reset" operating mode generates the output operand for a single evaluation of the FlexLogic ${ }^{\text {M }}$ equations. If the operand is to be used anywhere other than internally in a FlexLogic ${ }^{\text {TM }}$ equation, it will likely have to be lengthened in time. A FlexLogic ${ }^{\text {M }}$ timer with a delayed reset can perform this function.


Figure 5-82: VIRTUAL INPUTS SCHEME LOGIC

## a) DIGITAL OUTPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTSIOUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ CONTACT OUTPUTS $\Rightarrow$ CONTACT OUTPUT H1


Upon startup of the relay, the main processor will determine from an assessment of the modules installed in the chassis which contact outputs are available and present the settings for only these outputs.
An ID may be assigned to each contact output. The signal that can OPERATE a contact output may be any FlexLogic ${ }^{\text {TM }}$ operand (virtual output, element state, contact input, or virtual input). An additional FlexLogic ${ }^{\text {TM }}$ operand may be used to SEAL-IN the relay. Any change of state of a contact output can be logged as an Event if programmed to do so.

For example, the trip circuit current is monitored by providing a current threshold detector in series with some Form-A contacts (see the trip circuit example in the Digital Elements section). The monitor will set a flag (see the specifications for Form-A). The name of the FlexLogic ${ }^{\top M}$ operand set by the monitor, consists of the output relay designation, followed by the name of the flag; e.g. 'Cont Op 1 IOn' or 'Cont Op 1 IOff'.

In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact used to interrupt current flow after the breaker has tripped, to prevent damage to the less robust initiating contact. This can be done by monitoring an auxiliary contact on the breaker which opens when the breaker has tripped, but this scheme is subject to incorrect operation caused by differences in timing between breaker auxiliary contact change-of-state and interruption of current in the trip circuit. The most dependable protection of the initiating contact is provided by directly measuring current in the tripping circuit, and using this parameter to control resetting of the initiating relay. This scheme is often called 'trip seal-in'.
This can be realized in the T60 using the 'Cont Op 1 IOn' FlexLogic ${ }^{\top M}$ operand to seal-in the contact output as follows:
CONTACT OUTPUT H1 ID: "Cont Op 1"
OUTPUT H1 OPERATE: any suitable FlexLogic ${ }^{\text {TM }}$ operand
output h1 SEAL-IN: "Cont Op 1 IOn"
CONTACT OUTPUT H1 EVENTS: "Enabled"

## b) LATCHING OUTPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ } \Rightarrow$ INPUTSIOUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ CONTACT OUTPUTS $\Rightarrow$ CONTACT OUTPUT H1a


The T60 latching output contacts are mechanically bi-stable and controlled by two separate (open and close) coils. As such they retain their position even if the relay is not powered up. The relay recognizes all latching output contact cards and populates the setting menu accordingly. On power up, the relay reads positions of the latching contacts from the hardware before executing any other functions of the relay (such as protection and control features or FlexLogic ${ }^{\text {TM }}$ ).
The latching output modules, either as a part of the relay or as individual modules, are shipped from the factory with all latching contacts opened. It is highly recommended to double-check the programming and positions of the latching contacts when replacing a module.
Since the relay asserts the output contact and reads back its position, it is possible to incorporate self-monitoring capabilities for the latching outputs. If any latching outputs exhibits a discrepancy, the LATCHING OUTPUT ERROR self-test error is declared. The error is signaled by the LATCHING OUT ERROR FlexLogic ${ }^{\text {TM }}$ operand, event, and target message.

- OUTPUT H1a OPERATE: This setting specifies a FlexLogic ${ }^{\text {TM }}$ operand to operate the 'close coil' of the contact. The relay will seal-in this input to safely close the contact. Once the contact is closed and the RESET input is logic 0 (off), any activity of the OPERATE input, such as subsequent chattering, will not have any effect. With both the OPERATE and RESET inputs active (logic 1), the response of the latching contact is specified by the OUTPUT H1A TYPE setting.
- OUTPUT H1a RESET: This setting specifies a FlexLogic ${ }^{\text {TM }}$ operand to operate the 'trip coil' of the contact. The relay will seal-in this input to safely open the contact. Once the contact is opened and the OPERATE input is logic 0 (off), any activity of the reset input, such as subsequent chattering, will not have any effect. With both the OPERATE and reset inputs active (logic 1), the response of the latching contact is specified by the OUTPUT H1A TYPE setting.
- OUTPUT H1a TYPE: This setting specifies the contact response under conflicting control inputs; that is, when both the OPERATE and RESET signals are applied. With both control inputs applied simultaneously, the contact will close if set to "Operate-dominant" and will open if set to "Reset-dominant".


## Application Example 1:

A latching output contact H 1 a is to be controlled from two user-programmable pushbuttons (buttons number 1 and 2 ). The following settings should be applied.

Program the Latching Outputs by making the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ CONTACT OUTPUTS $\Rightarrow$ CONTACT OUTPUT H1a menu (assuming an H4L module):

OUTPUT H1a OPERATE: "PUSHBUTTON 1 ON"
OUTPUT H1a RESET: "PUSHBUTTON 2 ON"
Program the pushbuttons by making the following changes in the PRODUCT SETUP $\Rightarrow \Downarrow$ USER-PROGRAMMABLE PUSHBUTTONS $\Rightarrow \sqrt{ } \sqrt{ }$ USER PUSHBUTTON 1 and USER PUSHBUTTON 2 menus:

PUSHBUTTON 1 FUNCTION: "Self-reset" PUSHBUTTON 2 FUNCTION: "Self-reset"
PUSHBTN 1 DROP-OUT TIME: "0.00 s" PUSHBTN 2 DROP-OUT TIME: " 0.00 s "

## Application Example 2:

A relay, having two latching contacts H 1 a and H 1 c , is to be programmed. The H1a contact is to be a Type-a contact, while the H1c contact is to be a Type-b contact (Type-a means closed after exercising the operate input; Type-b means closed after exercising the reset input). The relay is to be controlled from virtual outputs: VO1 to operate and VO2 to reset.

Program the Latching Outputs by making the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ CONTACT OUTPUTS $\Rightarrow$ CONTACT OUTPUT H1a and CONTACT OUTPUT H1c menus (assuming an H4L module):

```
OUTPUT H1a OPERATE: "VO1"
OUTPUT H1c OPERATE: "VO2"
```

OUTPUT H1a RESET: "VO2"
OUTPUT H1c RESET: "VO1"
Since the two physical contacts in this example are mechanically separated and have individual control inputs, they will not operate at exactly the same time. A discrepancy in the range of a fraction of a maximum operating time may occur. Therefore, a pair of contacts programmed to be a multi-contact relay will not guarantee any specific sequence of operation (such as make before break). If required, the sequence of operation must be programmed explicitly by delaying some of the control inputs as shown in the next application example.

## Application Example 3:

A make before break functionality must be added to the preceding example. An overlap of 20 ms is required to implement this functionality as described below:

Write the following FlexLogic ${ }^{\text {TM }}$ equation (EnerVista UR Setup example shown):

| FlexLogic Equation Editor // D60 with Pushbuttons.urs : Ci Prog... $-\square \mathbf{x \|}$ |  |  |
| :--- | :---: | :---: | :---: |
| FLEXLOGIC ENTRY | TYPE | SYNTAX |
| View Graphic | View | View |
| FlexLogic Entry 1 | Read Virtual Outputs On | Virt Op 1 On (VO1) |
| FlexLogic Entry 2 | TIMER | Timer 1 |
| FlexLogic Entry 3 | Write Virtual Output[Assign] | $=$ Virt Op 3 (VO3) |
| FlexLogic Entry 4 | Read Virtual Outputs On | Virt Op 2 On (VO2) |
| FlexLogic Entry 5 | TIMER | Timer 2 |
| FlexLogic Entry 6 | Write Virtual Output[Assign] | = Virt Op 4 (VO4) |
| FlexLogic Entry 7 | End of List |  |
| D60 with Pushbuttons.urs | FlexLogic |  |

Both timers (Timer 1 and Timer 2) should be set to 20 ms pickup and 0 ms dropout.
Program the Latching Outputs by making the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ CONTACT OUTPUTS $\Rightarrow$ CONTACT OUTPUT H1a and CONTACT OUTPUT H1c menus (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1" OUTPUT H1c OPERATE: "VO2"
OUTPUT H1a RESET: "VO4"

```
OUTPUT H1c RESET: "VO3"
```


## Application Example 4:

A latching contact H1a is to be controlled from a single virtual output VO1. The contact should stay closed as long as VO1 is high, and should stay opened when VO1 is low. Program the relay as follows.

Write the following FlexLogic ${ }^{\text {TM }}$ equation (EnerVista UR Setup example shown):

| FlexLogic Equation Editor // D60 with Pushbuttons.urs : Ci Mrog... | $\square$ |  |
| :--- | :---: | :---: | :---: |
| FLEXLOGIC ENTRY | TYPE | SYNTAX |
| View Graphic | View | View |
| FlexLogic Entry 1 | Read Virtual Outputs On | Virt Op 1 On (VO1) |
| FlexLogic Entry 2 | NOT | 1 Input |
| FlexLogic Entry 3 | Write Virtual Output[Assign] | $=$ Virt Op 2 (VO2) |
| FlexLogic Entry 4 | End of List |  |
| D60 with Pushbuttons.urs FlexLogic |  |  |

Program the Latching Outputs by making the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ CONTACT OUTPUTS $\Rightarrow$ CONTACT OUTPUT H1a menu (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1"
OUTPUT H1a RESET: "VO2"

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ VIRTUAL OUTPUTS $\Rightarrow$ VIRTUAL OUTPUT 1(96)


There are 96 virtual outputs that may be assigned via FlexLogic ${ }^{\text {TM }}$. If not assigned, the output will be forced to 'OFF' (Logic 0). An ID may be assigned to each virtual output. Virtual outputs are resolved in each pass through the evaluation of the FlexLogic ${ }^{\text {TM }}$ equations. Any change of state of a virtual output can be logged as an event if programmed to do so.
For example, if Virtual Output 1 is the trip signal from FlexLogic ${ }^{\text {TM }}$ and the trip relay is used to signal events, the settings would be programmed as follows:

```
VIRTUAL OUTPUT 1 ID: "Trip"
VIRTUAL OUTPUT 1 EVENTS: "Disabled"
```


## a) REMOTE INPUTS/OUTPUTS OVERVIEW

Remote inputs and outputs provide a means of exchanging digital state information between Ethernet-networked devices. The IEC 61850 GSSE (Generic Substation State Event) and GOOSE (Generic Object Oriented Substation Event) standards are used.

The IEC 61850 specification requires that communications between devices be implemented on Ethernet. For UR-series relays, Ethernet communications is provided only all CPU modules except type 9E.

The sharing of digital point state information between GSSE/GOOSE equipped relays is essentially an extension to FlexLogic ${ }^{\text {™ }}$, allowing distributed FlexLogic ${ }^{\text {TM }}$ by making operands available to/from devices on a common communications network. In addition to digital point states, GSSE/GOOSE messages identify the originator of the message and provide other information required by the communication specification. All devices listen to network messages and capture data only from messages that have originated in selected devices.

IEC 61850 GSSE messages are compatible with UCA GOOSE messages and contain a fixed set of digital points. IEC 61850 GOOSE messages can, in general, contain any configurable data items. When used by the remote input/output feature, IEC 61850 GOOSE messages contain the same data as GSSE messages.
Both GSSE and GOOSE messages are designed to be short, reliable, and high priority. GOOSE messages have additional advantages over GSSE messages due to their support of VLAN (virtual LAN) and Ethernet priority tagging functionality. The GSSE message structure contains space for 128 bit pairs representing digital point state information. The IEC 61850 specification provides 32 "DNA" bit pairs that represent the state of two pre-defined events and 30 user-defined events. All remaining bit pairs are "UserSt" bit pairs, which are status bits representing user-definable events. The T60 implementation provides 32 of the 96 available UserSt bit pairs.
The IEC 61850 specification includes features that are used to cope with the loss of communication between transmitting and receiving devices. Each transmitting device will send a GSSE/GOOSE message upon a successful power-up, when the state of any included point changes, or after a specified interval (the default update time) if a change-of-state has not occurred. The transmitting device also sends a 'hold time' which is set greater than three times the programmed default time required by the receiving device.

Receiving devices are constantly monitoring the communications network for messages they require, as recognized by the identification of the originating device carried in the message. Messages received from remote devices include the message time allowed to live. The receiving relay sets a timer assigned to the originating device to this time interval, and if it has not received another message from this device at time-out, the remote device is declared to be non-communicating, so it will use the programmed default state for all points from that specific remote device. If a message is received from a remote device before the time allowed to live expires, all points for that device are updated to the states contained in the message and the hold timer is restarted. The status of a remote device, where "Offline" indicates non-communicating, can be displayed.

The remote input/output facility provides for 32 remote inputs and 64 remote outputs.

## b) LOCAL DEVICES: ID OF DEVICE FOR TRANSMITTING GSSE MESSAGES

In a T60 relay, the device ID that identifies the originator of the message is programmed in the SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }{ }^{2}$ INSTALLATION $\Rightarrow \sqrt{ }$ RELAY NAME setting.
c) REMOTE DEVICES - ID OF DEVICE FOR RECEIVING GSSE MESSAGES

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTSIOUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ REMOTE DEVICES $\Rightarrow$ REMOTE DEVICE 1(16)


Sixteen remote devices, numbered from 1 to 16 , can be selected for setting purposes. A receiving relay must be programmed to capture messages from only those originating remote devices of interest. This setting is used to select specific remote devices by entering (bottom row) the exact identification (ID) assigned to those devices.
The Remote device 1(16) VLAN ID and remote device 1(16) etype appid settings are only used with GOOSE messages; they are not applicable to GSSE messages. The REMOTE DEVICE 1(16) VLAN ID setting identifies the virtual LAN on which the remote device is sending the GOOSE message. The REMOTE DEVICE 1(16) ETYPE APPID setting identifies the Ethernet application identification in the GOOSE message. These settings should match the corresponding settings on the sending device.
5.7.6 REMOTE INPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ REMOTE INPUTS $\Rightarrow$ REMOTE INPUT 1(32)


Remote Inputs which create FlexLogic ${ }^{\text {TM }}$ operands at the receiving relay, are extracted from GSSE/GOOSE messages originating in remote devices. The relay provides 32 remote inputs, each of which can be selected from a list consisting of 64 selections: DNA-1 through DNA-32 and UserSt-1 through UserSt-32. The function of DNA inputs is defined in the IEC 61850 specification and is presented in the IEC 61850 DNA Assignments table in the Remote Outputs section. The function of UserSt inputs is defined by the user selection of the FlexLogic ${ }^{\text {TM }}$ operand whose state is represented in the GSSE/ GOOSE message. A user must program a DNA point from the appropriate FlexLogic ${ }^{\text {TM }}$ operand.
Remote Input 1 must be programmed to replicate the logic state of a specific signal from a specific remote device for local use. This programming is performed via the three settings shown above.

The REMOTE INPUT 1 ID setting allows the user to assign descriptive text to the remote input. The REMOTE IN 1 DEVICE setting selects the number (1 to 16) of the remote device which originates the required signal, as previously assigned to the remote device via the setting remote device nn id (see the Remote Devices section). REMOTE IN 1 BIT PAIR selects the specific bits of the GSSE/GOOSE message required.

The REMOTE IN 1 default state setting selects the logic state for this point if the local relay has just completed startup or the remote device sending the point is declared to be non-communicating. The following choices are available:

- Setting remote in 1 default state to "On" value defaults the input to Logic 1.
- Setting remote in 1 default state to "Off" value defaults the input to Logic 0.
- Setting remote in 1 default state to "Latest/On" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 1. When communication resumes, the input becomes fully operational.
- Setting REMOTE IN 1 DEFAULT STATE to "Latest/Off" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 0 . When communication resumes, the input becomes fully operational.

For additional information on GSSE/GOOOSE messaging, refer to the Remote Devices section in this chapter.
a) DNA BIT PAIRS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTSIOUTPUTS $\Rightarrow \sqrt{ }$ REMOTE OUTPUTS DNA BIT PAIRS $\Rightarrow$ REMOTE OUPUTS DNA- 1(32) BIT PAIR


Remote outputs (1 to 32) are FlexLogic ${ }^{\text {TM }}$ operands inserted into GSSE/GOOSE messages that are transmitted to remote devices on a LAN. Each digital point in the message must be programmed to carry the state of a specific FlexLogic ${ }^{\text {TM }}$ operand. The above operand setting represents a specific DNA function (as shown in the following table) to be transmitted.

Table 5-23: IEC 61850 DNA ASSIGNMENTS

| DNA | IEC 61850 DEFINITION | FLEXLOGIC $^{\text {M }}$ OPERAND |
| :--- | :--- | :--- |
| 1 | Test | IEC 61850 TEST MODE |
| 2 | ConfRev | IEC 61850 CONF REV |

## b) USERST BIT PAIRS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ REMOTE OUTPUTS UserSt BIT PAIRS $\Rightarrow$ REMOTE OUTPUTS UserSt- 1(32) BIT PAIR

| $\square$ REMOTE OUTPUTS $\square$ UserSt- 1 BIT PAIR | (1) | UserSt- 1 OPERAND: Off | Range: FlexLogic ${ }^{\text {TM }}$ operand |
| :---: | :---: | :---: | :---: |
| MESSAGE | (2) | UserSt-1 EVENTS: Disabled | Range: Disabled, Enabled |

Remote outputs 1 to 32 originate as GSSE/GOOSE messages to be transmitted to remote devices. Each digital point in the message must be programmed to carry the state of a specific FlexLogic ${ }^{T M}$ operand. The setting above is used to select the operand which represents a specific UserSt function (as selected by the user) to be transmitted.

The following setting represents the time between sending GSSE/GOOSE messages when there has been no change of state of any selected digital point. This setting is located in the PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ IEC 61850 PROTOCOL $\Rightarrow \Downarrow$ GSSE/GOOSE CONFIGURATION settings menu.

| DEFAULT GSSE/GOOSE |
| :--- | :--- |
| UPDATE TIME: 60 s |

The following setting determines whether remote input/output data is transported using IEC 61850 GSSE or IEC 61850 GOOSE messages. If GOOSE is selected, the VLAN and APPID settings should be set accordingly. If GSSE is selected, the VLAN and APPID settings are not relevant. This setting is located in the PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ IEC 61850 PROTOCOL $\Rightarrow \sqrt{\wedge}$ GSSE/GOOSE CONFIGURATION menu.

| REMOTE I/O TRANSFER <br> METHOD: GSSE |
| :--- |

For more information on GSSE/GOOSE messaging, refer to Remote Inputs/Outputs Overview in the Remote Devices section.

PATH: SETTINGS $\Rightarrow \sqrt{ } \Rightarrow$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ RESETTING
$\square$ RESETTING $\quad$ (1D $\left.\begin{array}{l|l|l}\text { RESET OPERAND: } \\ \text { Off }\end{array}\right]$ Range: FlexLogic ${ }^{\text {TM } \text { operand }}$

Some events can be programmed to latch the faceplate LED event indicators and the target message on the display. Once set, the latching mechanism will hold all of the latched indicators or messages in the set state after the initiating condition has cleared until a RESET command is received to return these latches (not including FlexLogic ${ }^{\text {TM }}$ latches) to the reset state. The RESET command can be sent from the faceplate Reset button, a remote device via a communications channel, or any programmed operand.

When the RESET command is received by the relay, two FlexLogic ${ }^{T M}$ operands are created. These operands, which are stored as events, reset the latches if the initiating condition has cleared. The three sources of RESET commands each create the RESET OP FlexLogic ${ }^{\text {™ }}$ operand. Each individual source of a RESET command also creates its individual operand RESET OP (PUSHBUTTON), RESET OP (COMMS) or RESET OP (OPERAND) to identify the source of the command. The setting shown above selects the operand that will create the RESET OP (OPERAND) operand.

### 5.7.9 DIRECT INPUTS/OUTPUTS

## a) DIRECT INPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTSIOUTPUTS $\Rightarrow \sqrt{ }$ DIRECT INPUTS $\Rightarrow$ DIRECT INPUT 1(32)


These settings specify how the direct input information is processed. The DIRECT INPUT 1 NAME setting allows the user to assign a descriptive name to the direct input. The DIRECT INPUT DEVICE ID represents the source of this direct input. The specified direct input is driven by the device identified here.

The DIRECT INPUT 1 bit NUMBER is the bit number to extract the state for this direct input. Direct Input $x$ is driven by the bit identified here as DIRECT INPUT 1 BIT NUMBER. This corresponds to the direct output number of the sending device.
The DIRECT input 1 default state represents the state of the direct input when the associated direct device is offline. The following choices are available:

- Setting direct input 1 default state to "On" value defaults the input to Logic 1.
- Setting direct input 1 default state to "Off" value defaults the input to Logic 0.
- Setting direct input 1 default state to "Latest/On" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 1 . When communication resumes, the input becomes fully operational.
- Setting DIRECT INPUT 1 default state to "Latest/Off" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 0 . When communication resumes, the input becomes fully operational.


## b) DIRECT OUTPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ DIRECT OUTPUTS $\Rightarrow$ DIRECT OUTPUT 1(32)


The DIRECT OUT 1 NAME setting allows the user to assign a descriptive name to the direct output. The DIR OUT 1 OPERAND is the FlexLogic ${ }^{\text {TM }}$ operand that determines the state of this direct output.

## c) APPLICATION EXAMPLES

The examples introduced in the earlier Direct Inputs/Outputs section (part of the Product Setup section) direct inputs/outputs are continued below to illustrate usage of the direct inputs and outputs.

## EXAMPLE 1: EXTENDING INPUT/OUTPUT CAPABILITIES OF A T60 RELAY

Consider an application that requires additional quantities of digital inputs and/or output contacts and/or lines of programmable logic that exceed the capabilities of a single UR-series chassis. The problem is solved by adding an extra UR-series IED, such as the C30, to satisfy the additional inputs/outputs and programmable logic requirements. The two IEDs are connected via single-channel digital communication cards as shown below.


Figure 5-83: INPUT/OUTPUT EXTENSION VIA DIRECT INPUTS/OUTPUTS
Assume Contact Input 1 from UR IED 2 is to be used by UR IED 1. The following settings should be applied (Direct Input 5 and bit number 12 are used, as an example):

```
UR IED 1: DIRECT INPUT 5 DEVICE ID = "2"
    DIRECT INPUT 5 BIT NUMBER = "12"
UR IED 2: DIRECT OUT 12 OPERAND = "Cont Ip 1 On" DIRECT INPUT 5 BIT NUMBER \(=\) " 12 "
```

The Cont Ip 1 On operand of UR IED 2 is now available in UR IED 1 as DIRECT INPUT 5 ON.

## EXAMPLE 2: INTERLOCKING BUSBAR PROTECTION

A simple interlocking busbar protection scheme can be accomplished by sending a blocking signal from downstream devices, say 2,3 and 4 , to the upstream device that monitors a single incomer of the busbar, as shown in the figure below.


Figure 5-84: SAMPLE INTERLOCKING BUSBAR PROTECTION SCHEME

## 5 SETTINGS

Assume that Phase Instantaneous Overcurrent 1 is used by Devices 2, 3, and 4 to block Device 1. If not blocked, Device 1 would trip the bus upon detecting a fault and applying a short coordination time delay.
The following settings should be applied (assume Bit 3 is used by all 3 devices to sent the blocking signal and Direct Inputs 7,8 , and 9 are used by the receiving device to monitor the three blocking signals):

UR IED 2: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"
UR IED 3: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"
UR IED 4: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"
UR IED 1: DIRECT INPUT 7 DEVICE ID: "2"
DIRECT INPUT 7 BIT NUMBER: "3"
DIRECT INPUT 7 DEFAULT STATE: select "On" for security, select "Off" for dependability
DIRECT INPUT 8 DEVICE ID: "3"
DIRECT INPUT 8 BIT NUMBER: "3"
DIRECT INPUT 8 DEFAULT STATE: select "On" for security, select "Off" for dependability
DIRECT INPUT 9 DEVICE ID: "4"
DIRECT INPUT 9 BIT NUMBER: "3"
DIRECT INPUT 9 DEFAULT STATE: select "On" for security, select "Off" for dependability
Now the three blocking signals are available in UR IED 1 as DIRECT INPUT 7 ON, DIRECT INPUT 8 ON, and DIRECT INPUT 9 ON. Upon losing communications or a device, the scheme is inclined to block (if any default state is set to "On"), or to trip the bus on any overcurrent condition (all default states set to "Off").

## EXAMPLE 2: PILOT-AIDED SCHEMES

Consider a three-terminal line protection application shown in the figure below.


Figure 5-85: THREE-TERMINAL LINE APPLICATION
Assume the Hybrid Permissive Overreaching Transfer Trip (Hybrid POTT) scheme is applied using the architecture shown below. The scheme output operand HYB POTT TX1 is used to key the permission.


Figure 5-86: SINGLE-CHANNEL OPEN-LOOP CONFIGURATION

In the above architecture, Devices 1 and 3 do not communicate directly. Therefore, Device 2 must act as a 'bridge'. The following settings should be applied:
UR IED 1: DIRECT OUT 2 OPERAND: "HYB POTT TX1"
DIRECT INPUT 5 DEVICE ID: "2"
DIRECT INPUT 5 BIT NUMBER: "2" (this is a message from IED 2)
DIRECT INPUT 6 DEVICE ID: "2"
DIRECT INPUT 6 BIT NUMBER: "4" (effectively, this is a message from IED 3)
UR IED 3: DIRECT OUT 2 OPERAND: "HYB POTT TX1"
DIRECT INPUT 5 DEVICE ID: "2"
DIRECT INPUT 5 BIT NUMBER: "2" (this is a message from IED 2)
DIRECT INPUT 6 DEVICE ID: "2"
DIRECT INPUT 6 BIT NUMBER: "3" (effectively, this is a message from IED 1)
UR IED 2: DIRECT INPUT 5 DEVICE ID: "1"
DIRECT INPUT 5 BIT NUMBER: "2"
DIRECT INPUT 6 DEVICE ID: "3"
DIRECT INPUT 6 BIT NUMBER: "2"
DIRECT OUT 2 OPERAND: "HYB POTT TX1"
DIRECT OUT 3 OPERAND: "DIRECT INPUT 5" (forward a message from 1 to 3 )
DIRECT OUT 4 OPERAND: "DIRECT INPUT 6" (forward a message from 3 to 1 )
Signal flow between the three IEDs is shown in the figure below:


Figure 5-87: SIGNAL FLOW FOR DIRECT INPUTIOUTPUT EXAMPLE 3
In three-terminal applications, both the remote terminals must grant permission to trip. Therefore, at each terminal, Direct Inputs 5 and 6 should be ANDed in FlexLogic ${ }^{T M}$ and the resulting operand configured as the permission to trip (HYB POTT RX1 setting).

## a) OVERVIEW

The relay provides sixteen teleprotection inputs on communications channel 1 (numbered 1-1 through 1-16) and sixteen teleprotection inputs on communications channel 2 (on two-terminals two-channel and three-terminal systems only, numbered 2-1 through 2-16). The remote relay connected to channels 1 and 2 of the local relay is programmed by assigning FlexLogic ${ }^{\text {TM }}$ operands to be sent via the selected communications channel. This allows the user to create distributed protection and control schemes via dedicated communications channels. Some examples are directional comparison pilot schemes and direct transfer tripping. It should be noted that failures of communications channels will affect teleprotection functionality. The teleprotection function must be enabled to utilize the inputs.

## b) TELEPROTECTION INPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ TELEPROTECTION $\Rightarrow$ TELEPROT INPUTS


Setting the TELEPROT INPUT ~~ DEFAULT setting to "On" defaults the input to logic 1 when the channel fails. A value of "Off" defaults the input to logic 0 when the channel fails.

The "Latest/On" and "Latest/Off" values freeze the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, then the input defaults to logic 1 for "Latest/On" and logic 0 for "Latest/Off".

## c) TELEPROTECTION OUTPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ TELEPROTECTION $\Rightarrow \sqrt{ }$ TELEPROT OUTPUTS


As the following figure demonstrates, processing of the teleprotection inputs/outputs is dependent on the number of communication channels and terminals. On two-terminal two-channel systems, they are processed continuously on each channel and mapped separately per channel. Therefore, to achieve redundancy, the user must assign the same operand on both channels (teleprotection outputs at the sending end or corresponding teleprotection inputs at the receiving end). On three-terminal two-channel systems, redundancy is achieved by programming signal re-transmittal in the case of channel failure between any pair of relays.


Figure 5-88: TELEPROTECTION INPUT/OUTPUT PROCESSING

PATH: SETTINGS $\Rightarrow \sqrt{ }$ TRANSDUCER I/O $\Rightarrow \sqrt{ }$ DCMA INPUTS $\Rightarrow$ DCMA INPUT F1(W8)

| $\square$ DCMA INPUT F1 |  | (1) | DCMA INPUT F1 FUNCTION: Disabled | Range: Disabled, Enabled |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | DCMA INPUT F1 ID: DCMA Ip 1 | Range | up to 20 alphanumeric characters |
|  | MESSAGE | - | DCMA INPUT F1 UNITS: $\mu \mathrm{A}$ | Range | 6 alphanumeric characters |
|  | MESSAGE | - | DCMA INPUT F1 RANGE: 0 to -1 mA | Range | 0 to $-1 \mathrm{~mA}, 0$ to $+1 \mathrm{~mA},-1$ to $+1 \mathrm{~mA}, 0$ to 5 mA , 0 to $10 \mathrm{~mA}, 0$ to $20 \mathrm{~mA}, 4$ to 20 mA |
|  | MESSAGE | - | DCMA INPUT F1 MIN  <br> VALUE: 0.000 | Range | -9999.999 to +9999.999 in steps of 0.001 |
|  | MESSAGE | (2) | DCMA INPUT F1 MAX  <br> VALUE: 0.000 | Range | -9999.999 to +9999.999 in steps of 0.001 |

Hardware and software is provided to receive signals from external transducers and convert these signals into a digital format for use as required. The relay will accept inputs in the range of -1 to $+20 \mathrm{~mA} D C$, suitable for use with most common transducer output ranges; all inputs are assumed to be linear over the complete range. Specific hardware details are contained in Chapter 3.
Before the dcmA input signal can be used, the value of the signal measured by the relay must be converted to the range and quantity of the external transducer primary input parameter, such as DC voltage or temperature. The relay simplifies this process by internally scaling the output from the external transducer and displaying the actual primary parameter.
dcmA input channels are arranged in a manner similar to CT and VT channels. The user configures individual channels with the settings shown here.
The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.
Settings are automatically generated for every channel available in the specific relay as shown above for the first channel of a type 5F transducer module installed in slot $F$.
The function of the channel may be either "Enabled" or "Disabled". If "Disabled", no actual values are created for the channel. An alphanumeric "ID" is assigned to each channel; this ID will be included in the channel actual value, along with the programmed units associated with the parameter measured by the transducer, such as volts, ${ }^{\circ} \mathrm{C}$, megawatts, etc. This ID is also used to reference the channel as the input parameter to features designed to measure this type of parameter. The DCMA INPUT F1 RANGE setting specifies the mA DC range of the transducer connected to the input channel.
The dCmA input fi min value and dCma input f1 max value settings are used to program the span of the transducer in primary units. For example, a temperature transducer might have a span from 0 to $250^{\circ} \mathrm{C}$; in this case the DCMA INPUT F1 MIN VALUE value is " 0 " and the DCMA INPUT F1 MAX VALUE value is " 250 ". Another example would be a watts transducer with a span from -20 to +180 MW ; in this case the dCmA InPUT F1 MIN VALUE value would be "-20" and the dCmA input f1 max VALUE value " 180 ". Intermediate values between the min and max values are scaled linearly.

PATH: SETTINGS $\Rightarrow \sqrt{ } \Rightarrow$ TRANSDUCER IIO $\Rightarrow \sqrt{ }$ RTD INPUTS $\Rightarrow$ RTD INPUT F1(W8)

| $\square$ RTD INPUT F1 |  | (1) | RTD INPUT F1 <br> FUNCTION: Disabled | Range: Disabled, Enabled |
| :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | - | $\begin{aligned} & \text { RTD INPUT F1 ID: } \\ & \text { RTD Ip } 1 \end{aligned}$ | Range: Up to 20 alphanumeric characters |
|  | MESSAGE | (2) | RTD INPUT F1 TYPE: $100 \Omega$ Nickel | Range: $100 \Omega$ Nickel, $10 \Omega$ Copper, $100 \Omega$ Platinum, 120 2 Nickel |

Hardware and software is provided to receive signals from external resistance temperature detectors and convert these signals into a digital format for use as required. These channels are intended to be connected to any of the RTD types in common use. Specific hardware details are contained in Chapter 3.
RTD input channels are arranged in a manner similar to $C T$ and VT channels. The user configures individual channels with the settings shown here.

The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.

Settings are automatically generated for every channel available in the specific relay as shown above for the first channel of a type 5C transducer module installed in slot $F$.
5
The function of the channel may be either "Enabled" or "Disabled". If "Disabled", there will not be an actual value created for the channel. An alphanumeric ID is assigned to the channel; this ID will be included in the channel actual values. It is also used to reference the channel as the input parameter to features designed to measure this type of parameter. Selecting the type of RTD connected to the channel configures the channel.

Actions based on RTD overtemperature, such as trips or alarms, are done in conjunction with the FlexElements ${ }^{\text {TM }}$ feature. In FlexElements ${ }^{\top M}$, the operate level is scaled to a base of $100^{\circ} \mathrm{C}$. For example, a trip level of $150^{\circ} \mathrm{C}$ is achieved by setting the operate level at 1.5 pu . FlexElement ${ }^{\top \mathrm{M}}$ operands are available to FlexLogic ${ }^{\top \mathrm{TM}}$ for further interlocking or to operate an output contact directly.
5.8.3 DCMA OUTPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ TRANSDUCER I/O $\Rightarrow \sqrt{ }$ DCMA OUTPUTS $\Rightarrow$ DCMA OUTPUT F1(W8)


Hardware and software is provided to generate dcmA signals that allow interfacing with external equipment. Specific hardware details are contained in Chapter 3. The dcmA output channels are arranged in a manner similar to transducer input or CT and VT channels. The user configures individual channels with the settings shown below.

The channels are arranged in sub-modules of two channels, numbered 1 through 8 from top to bottom. On power-up, the relay automatically generates configuration settings for every channel, based on the order code, in the same manner used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number.
Both the output range and a signal driving a given output are user-programmable via the following settings menu (an example for channel M5 is shown).

The relay checks the driving signal ( $x$ in equations below) for the minimum and maximum limits, and subsequently rescales so the limits defined as MIN VAL and MAX VAL match the output range of the hardware defined as RANGE. The following equation is applied:

$$
I_{\text {out }}=\left\{\begin{array}{l}
I_{\min }  \tag{EQ5.47}\\
I_{\max } \\
\text { if } x<\operatorname{MIN} \operatorname{VAL} \\
k(x-\operatorname{MIN} \mathrm{VAL})+I_{\min }
\end{array}\right. \text { otherwise }
$$

where: $x$ is a driving signal specified by the source setting
$I_{\text {min }}$ and $I_{\text {max }}$ are defined by the RANGE setting
$k$ is a scaling constant calculated as:

$$
\begin{equation*}
k=\frac{I_{\max }-I_{\min }}{\operatorname{MAXVAL}-\operatorname{MIN} \text { VAL }} \tag{EQ5.48}
\end{equation*}
$$

The feature is intentionally inhibited if the MAX VAL and mIN VAL settings are entered incorrectly, e.g. when MAX VAL - MIN VAL $<0.1 \mathrm{pu}$. The resulting characteristic is illustrated in the following figure.


Figure 5-89: DCMA OUTPUT CHARACTERISTIC
The dcmA output settings are described below.

- DCMA OUTPUT F1 SOURCE: This setting specifies an internal analog value to drive the analog output. Actual values (FlexAnalog parameters) such as power, current amplitude, voltage amplitude, power factor, etc. can be configured as sources driving dcmA outputs. Refer to Appendix A for a complete list of FlexAnalog parameters.
- DCMA OUTPUT F1 RANGE: This setting allows selection of the output range. Each dcmA channel may be set independently to work with different ranges. The three most commonly used output ranges are available.
- DCMA OUTPUT F1 MIN VAL: This setting allows setting the minimum limit for the signal that drives the output. This setting is used to control the mapping between an internal analog value and the output current (see the following examples). The setting is entered in per-unit values. The base units are defined in the same manner as the FlexElement ${ }^{\text {TM }}$ base units.
- DCMA OUTPUT F1 MAX VAL: This setting allows setting the maximum limit for the signal that drives the output. This setting is used to control the mapping between an internal analog value and the output current (see the following examples). The setting is entered in per-unit values. The base units are defined in the same manner as the FlexElement ${ }^{\text {TM }}$ base units.
Three application examples are described below.


## EXAMPLE 1:

A three phase active power on a 13.8 kV system measured via UR-series relay source 1 is to be monitored by the dcmA H 1 output of the range of -1 to 1 mA . The following settings are applied on the relay: CT ratio $=1200: 5, \mathrm{VT}$ secondary 115 , VT connection is delta, and VT ratio $=120$. The nominal current is 800 A primary and the nominal power factor is 0.90 . The power is to be monitored in both importing and exporting directions and allow for $20 \%$ overload compared to the nominal.

The nominal three-phase power is:

$$
P=\sqrt{3} \times 13.8 \mathrm{kV} \times 0.8 \mathrm{kA} \times 0.9=17.21 \mathrm{MW}
$$

(EQ 5.49)
The three-phase power with $20 \%$ overload margin is:

$$
\begin{equation*}
P_{\max }=1.2 \times 17.21 \mathrm{MW}=20.65 \mathrm{MW} \tag{EQ5.50}
\end{equation*}
$$

The base unit for power (refer to the FlexElements section in this chapter for additional details) is:

$$
\begin{equation*}
P_{B A S E}=115 \mathrm{~V} \times 120 \times 1.2 \mathrm{kA}=16.56 \mathrm{MW} \tag{EQ5.51}
\end{equation*}
$$

The minimum and maximum power values to be monitored (in pu) are:

$$
\begin{equation*}
\text { minimum power }=\frac{-20.65 \mathrm{MW}}{16.56 \mathrm{MW}}=-1.247 \mathrm{pu}, \quad \text { maximum power }=\frac{20.65 \mathrm{MW}}{16.56 \mathrm{MW}}=1.247 \mathrm{pu} \tag{EQ5.52}
\end{equation*}
$$

The following settings should be entered:

```
DCMA OUTPUT H1 SOURCE: "SRC 1 P"
DCMA OUTPUT H1 RANGE: "-1 to 1 mA"
DCMA OUTPUT H1 MIN VAL: "-1.247 pu"
DCMA OUTPUT H1 MAX VAL: "1.247 pu"
```

With the above settings, the output will represent the power with the scale of 1 mA per 20.65 MW . The worst-case error for this application can be calculated by superimposing the following two sources of error:

- $\pm 0.5 \%$ of the full scale for the analog output module, or $\pm 0.005 \times(1-(-1)) \times 20.65 \mathrm{MW}= \pm 0.207 \mathrm{MW}$
- $\quad \pm 1 \%$ of reading error for the active power at power factor of 0.9

For example at the reading of 20 MW , the worst-case error is $0.01 \times 20 \mathrm{MW}+0.207 \mathrm{MW}=0.407 \mathrm{MW}$.

## EXAMPLE 2:

The phase A current (true RMS value) is to be monitored via the H 2 current output working with the range from 4 to 20 mA . The CT ratio is 5000:5 and the maximum load current is 4200 A. The current should be monitored from 0 A upwards, allowing for 50\% overload.
The phase current with the $50 \%$ overload margin is:

$$
\begin{equation*}
I_{\max }=1.5 \times 4.2 \mathrm{kA}=6.3 \mathrm{kA} \tag{EQ5.53}
\end{equation*}
$$

The base unit for current (refer to the FlexElements section in this chapter for additional details) is:

$$
\begin{equation*}
I_{B A S E}=5 \mathrm{kA} \tag{EQ5.54}
\end{equation*}
$$

The minimum and maximum power values to be monitored (in pu) are:

$$
\begin{equation*}
\text { minimum current }=\frac{0 \mathrm{kA}}{5 \mathrm{kA}}=0 \mathrm{pu}, \quad \text { maximum current }=\frac{6.3 \mathrm{kA}}{5 \mathrm{kA}}=1.26 \mathrm{pu} \tag{EQ5.55}
\end{equation*}
$$

The following settings should be entered:

```
DCMA OUTPUT H2 SOURCE: "SRC 1 la RMS"
DCMA OUTPUT H2 RANGE: "4 to 20 mA"
DCMA OUTPUT H2 MIN VAL: "O.000 pu"
DCMA OUTPUT H2 MAX VAL: "1.260 pu"
```

The worst-case error for this application could be calculated by superimposing the following two sources of error:

- $\pm 0.5 \%$ of the full scale for the analog output module, or $\pm 0.005 \times(20-4) \times 6.3 \mathrm{kA}= \pm 0.504 \mathrm{kA}$
- $\pm 0.25 \%$ of reading or $\pm 0.1 \%$ of rated (whichever is greater) for currents between 0.1 and 2.0 of nominal

For example, at the reading of 4.2 kA , the worst-case error is $\max (0.0025 \times 4.2 \mathrm{kA}, 0.001 \times 5 \mathrm{kA})+0.504 \mathrm{kA}=0.515 \mathrm{kA}$.
EXAMPLE 3:
A positive-sequence voltage on a 400 kV system measured via Source 2 is to be monitored by the dcmA H 3 output with a range of 0 to 1 mA . The VT secondary setting is 66.4 V , the VT ratio setting is 6024 , and the VT connection setting is "Delta". The voltage should be monitored in the range from $70 \%$ to $110 \%$ of nominal.

The minimum and maximum positive-sequence voltages to be monitored are:

$$
\begin{equation*}
V_{\min }=0.7 \times \frac{400 \mathrm{kV}}{\sqrt{3}}=161.66 \mathrm{kV}, \quad V_{\max }=1.1 \times \frac{400 \mathrm{kV}}{\sqrt{3}}=254.03 \mathrm{kV} \tag{EQ5.56}
\end{equation*}
$$

The base unit for voltage (refer to the FlexElements section in this chapter for additional details) is:

$$
\begin{equation*}
V_{B A S E}=0.0664 \mathrm{kV} \times 6024=400 \mathrm{kV} \tag{EQ5.57}
\end{equation*}
$$

The minimum and maximum voltage values to be monitored (in pu) are:

$$
\begin{equation*}
\text { minimum voltage }=\frac{161.66 \mathrm{kV}}{400 \mathrm{kV}}=0.404 \mathrm{pu}, \quad \text { maximum voltage }=\frac{254.03 \mathrm{kV}}{400 \mathrm{kV}}=0.635 \mathrm{pu} \tag{EQ5.58}
\end{equation*}
$$

The following settings should be entered:
DCMA OUTPUT H3 SOURCE: "SRC 2 V_1 mag"
DCMA OUTPUT H3 RANGE: " 0 to 1 mA "
DCMA OUTPUT H3 MIN VAL: "0.404 pu"
DCMA OUTPUT H3 MAX VAL: "0.635 pu"
The limit settings differ from the expected 0.7 pu and 1.1 pu because the relay calculates the positive-sequence quantities scaled to the phase-to-ground voltages, even if the VTs are connected in "Delta" (refer to the Metering Conventions section in Chapter 6), while at the same time the VT nominal voltage is 1 pu for the settings. Consequently the settings required in this example differ from naturally expected by the factor of $\sqrt{3}$.
The worst-case error for this application could be calculated by superimposing the following two sources of error:

- $\pm 0.5 \%$ of the full scale for the analog output module, or $\pm 0.005 \times(1-0) \times 254.03 \mathrm{kV}= \pm 1.27 \mathrm{kV}$
- $\pm 0.5 \%$ of reading

For example, under nominal conditions, the positive-sequence reads 230.94 kV and the worst-case error is $0.005 \times 230.94 \mathrm{kV}+1.27 \mathrm{kV}=2.42 \mathrm{kV}$.

PATH: SETTINGS $\Rightarrow \sqrt{2}$ TESTING $\Rightarrow$ TEST MODE

| $\square \square$ SETTINGS <br> $\square \square$ TESTING |  | (1) | TEST MODE FUNCTION: Disabled | Range: Disabled, Enabled |
| :---: | :---: | :---: | :---: | :---: |
|  | MESSAGE | (4) | TEST MODE INITIATE: On | Range: FlexLogic ${ }^{\text {TM }}$ operand |

The relay provides test settings to verify that functionality using simulated conditions for contact inputs and outputs. The Test Mode is indicated on the relay faceplate by a flashing Test Mode LED indicator.
To initiate the Test mode, the test mode function setting must be "Enabled" and the test mode initiate setting must be set to Logic 1. In particular:

- To initiate Test Mode through relay settings, set test mode initiate to "On". The Test Mode starts when the test mode FUNCTION setting is changed from "Disabled" to "Enabled".
- To initiate Test Mode through a user-programmable condition, such as FlexLogic ${ }^{\text {TM }}$ operand (pushbutton, digital input, communication-based input, or a combination of these), set TEST MODE FUNCTION to "Enabled" and set TEST MODE INITIATE to the desired operand. The Test Mode starts when the selected operand assumes a Logic 1 state.
When in Test Mode, the T60 remains fully operational, allowing for various testing procedures. In particular, the protection and control elements, FlexLogic ${ }^{\text {TM }}$, and communication-based inputs and outputs function normally.
The only difference between the normal operation and the Test Mode is the behavior of the input and output contacts. The former can be forced to report as open or closed or remain fully operational; the latter can be forced to open, close, freeze, or remain fully operational. The response of the digital input and output contacts to the Test Mode is programmed individually for each input and output using the Force Contact Inputs and Force Contact Outputs test functions described in the following sections.
5.9.2 FORCE CONTACT INPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ TESTING $\Rightarrow \sqrt{ }$ FORCE CONTACT INPUTS


The relay digital inputs (contact inputs) could be pre-programmed to respond to the Test Mode in the following ways:

- If set to "Disabled", the input remains fully operational. It is controlled by the voltage across its input terminals and can be turned on and off by external circuitry. This value should be selected if a given input must be operational during the test. This includes, for example, an input initiating the test, or being a part of a user pre-programmed test sequence.
- If set to "Open", the input is forced to report as opened (Logic 0 ) for the entire duration of the Test Mode regardless of the voltage across the input terminals.
- If set to "Closed", the input is forced to report as closed (Logic 1) for the entire duration of the Test Mode regardless of the voltage across the input terminals.

The Force Contact Inputs feature provides a method of performing checks on the function of all contact inputs. Once enabled, the relay is placed into Test Mode, allowing this feature to override the normal function of contact inputs. The Test Mode LED will be On, indicating that the relay is in Test Mode. The state of each contact input may be programmed as "Disabled", "Open", or "Closed". All contact input operations return to normal when all settings for this feature are disabled.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ TESTING $\Rightarrow \sqrt{ }$ FORCE CONTACT OUTPUTS


The relay contact outputs can be pre-programmed to respond to the Test Mode.
If set to "Disabled", the contact output remains fully operational. If operates when its control operand is Logic 1 and will resets when its control operand is Logic 0 . If set to "Energize", the output will close and remain closed for the entire duration of the Test Mode, regardless of the status of the operand configured to control the output contact. If set to "De-energize", the output will open and remain opened for the entire duration of the Test Mode regardless of the status of the operand configured to control the output contact. If set to "Freeze", the output retains its position from before entering the Test Mode, regardless of the status of the operand configured to control the output contact.

These settings are applied two ways. First, external circuits may be tested by energizing or de-energizing contacts. Second, by controlling the output contact state, relay logic may be tested and undesirable effects on external circuits avoided.

## Example 1: Initiating a Test from User-Programmable Pushbutton 1

The Test Mode should be initiated from User-Programmable Pushbutton 1. The pushbutton will be programmed as "Latched" (pushbutton pressed to initiate the test, and pressed again to terminate the test). During the test, Digital Input 1 should remain operational, Digital Inputs 2 and 3 should open, and Digital Input 4 should close. Also, Contact Output 1 should freeze, Contact Output 2 should open, Contact Output 3 should close, and Contact Output 4 should remain fully operational. The required settings are shown below.
To enable User-Programmable Pushbutton 1 to initiate the Test mode, make the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ TESTING $\Rightarrow$ TEST MODE menu:

TEST MODE FUNCTION: "Enabled" and TEST MODE INITIATE: "PUSHBUTTON 1 ON"
Make the following changes to configure the Contact I/Os. In the SETtings $\Rightarrow \sqrt{ }$ TESTING $\Rightarrow \sqrt{ }$ FORCE CONTACT INPUTS and FORCE CONTACT INPUTS menus, set:

FORCE Cont Ip 1: "Disabled", FORCE Cont Ip 2: "Open", FORCE Cont Ip 3: "Open", and FORCE Cont Ip 4: "Closed"
FORCE Cont Op 1: "Freeze", FORCE Cont Op 2: "De-energized", fORCE Cont Op 3: "Open", and FORCE Cont Op 4: "Disabled"

## Example 2: Initiating a Test from User-Programmable Pushbutton 1 or through Remote Input 1

The Test should be initiated locally from User-Programmable Pushbutton 1 or remotely through Remote Input 1. Both the pushbutton and the remote input will be programmed as "Latched". The required settings are shown below.

Write the following FlexLogic ${ }^{\text {TM }}$ equation (EnerVista UR Setup example shown):

| FFlexLogic Equatio | Editor // D60 with P | 1s.urs : Ci Pro... | $\times$ |
| :---: | :---: | :---: | :---: |
| FLEXLOGIC ENTRY | TYPE | SYNTAX | - |
| View Graphic | View | View |  |
| FlexLogic Entry 1 | Remote Inputs On | Remote I/P 1 ON |  |
| FlexLogic Entry 2 | Protection Element | PUSHBUTTON 1 ON |  |
| FlexLogic Entry 3 | OR | 2 Input |  |
| FlexLogic Entry 4 | Write Virtual Output[Assign] | $=$ Virt Op 1 (VO1) |  |
| FlexLogic Entry 5 | End of List |  | $\checkmark$ |
| D60 with Pushbuttons.urs FlexLogic |  |  | 11. |

Set the User Programmable Pushbutton as latching by changing SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USER-PROGRAMMABLE PUSHBUTTONS $\Rightarrow$ USER PUSHBUTTON $1 \Rightarrow$ PUSHBUTTON 1 FUNCTION to "Latched". To enable either Pushbutton 1 or Remote Input 1 to initiate the Test mode, make the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ TESTING $\Rightarrow$ TEST MODE menu:

TEST MODE FUNCTION: "Enabled" and TEST MODE INITIATE: "VO1"


(1)

-


- EVENT RECORDS

- MAINTENANCE


See page 6-17.

See page 6-17.

See page 6-17.

See page 6-17.

See page 6-18.

See page 6-18.

See page 6-18.

See page 6-19.

See page 6-19.

See page 6-19.

See page 6-20.

See page 6-20.

See page 6-21.

See page 6-21.


For status reporting, 'On' represents Logic 1 and 'Off' represents Logic 0.

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow$ CONTACT INPUTS


The present status of the contact inputs is shown here. The first line of a message display indicates the ID of the contact input. For example, 'Cont Ip 1' refers to the contact input in terms of the default name-array index. The second line of the display indicates the logic state of the contact input.
6.2.2 VIRTUAL INPUTS

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt{ }$ VIRTUAL INPUTS


The present status of the 64 virtual inputs is shown here. The first line of a message display indicates the ID of the virtual input. For example, 'Virt Ip 1' refers to the virtual input in terms of the default name. The second line of the display indicates the logic state of the virtual input.

### 6.2.3 REMOTE INPUTS

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt{ } \Rightarrow$ REMOTE INPUTS


The present state of the 32 remote inputs is shown here.
The state displayed will be that of the remote point unless the remote device has been established to be "Offline" in which case the value shown is the programmed default state for the remote input.

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \Omega$ TELEPROTECTION INPUTS

| TELEPROTECTION INPUTS |  | (1) | TELEPROTECTION INPUT 1-1: Off | Range: Off, On <br> Range: Off, On |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MESSAGE |  |  | TELEPROTECTION INPUT 1-2: Off |  |  |
|  |  |  | $\downarrow$ |  |  |
| MESSAGE |  | - | TELEPROTECTION INPUT 1-16: Off | Range: | Off, On |
| MESSAGE |  |  | TELEPROTECTION <br> INPUT 2-1: Off | Range: | Off, On |
| MESSAGE |  | 者 | TELEPROTECTION INPUT 2-2: Off | Range: | Off, On |
|  |  |  | $\downarrow$ |  |  |
| MESSAGE |  |  | TELEPROTECTION INPUT 2-16: Off | Range: | Off, On |

The present state of teleprotection inputs from communication channels 1 and 2 are shown here. The state displayed will be that of corresponding remote output unless the channel is declared failed.
6.2.5 CONTACT OUTPUTS

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt{ }$ CONTACT OUTPUTS


The present state of the contact outputs is shown here. The first line of a message display indicates the ID of the contact output. For example, 'Cont Op 1' refers to the contact output in terms of the default name-array index. The second line of the display indicates the logic state of the contact output.

For Form-A outputs, the state of the voltage(V) and/or current(I) detectors will show as: Off, VOff, IOff, On, VOn, and/or IOn. For Form-C outputs, the state will show as Off or On.

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt{ }$ VIRTUAL OUTPUTS

MESSAGE
Virt Op 96
Virt Op 96
Off
Off

The present state of up to 96 virtual outputs is shown here. The first line of a message display indicates the ID of the virtual output. For example, 'Virt Op 1' refers to the virtual output in terms of the default name-array index. The second line of the display indicates the logic state of the virtual output, as calculated by the FlexLogic ${ }^{\text {TM }}$ equation for that output.
a) STATUS

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt{ } \Rightarrow$ REMOTE DEVICES STATUS

| $\square$ REMOTE DEVICES STATUS | (1) | All REMOTE DEVICES ONLINE: No | Range: Yes, No |
| :---: | :---: | :---: | :---: |
| MESSAGE | 8 | REMOTE DEVICE 1 STATUS: Offline | Range: Online, Offline |
|  |  | $\downarrow$ |  |
| MESSAGE | (2) | REMOTE DEVICE 16 STATUS: Offline | Range: Online, Offline |

The present state of up to 16 programmed Remote Devices is shown here. The ALL REMOTE DEVICES ONLINE message indicates whether or not all programmed Remote Devices are online. If the corresponding state is "No", then at least one required Remote Device is not online.

## b) STATISTICS

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt{ } \Rightarrow$ REMOTE DEVICES STATISTICS $\Rightarrow$ REMOTE DEVICE 1(16)

| $\square$ REMOTE DEVICE 1 | (1) | REMOTE DEVICE 1 <br> StNum: 0 |
| :---: | :---: | :---: |
| MESSAGE | - | REMOTE DEVICE 1 <br> SqNum: 0 |

Statistical data (2 types) for up to 16 programmed Remote Devices is shown here.
The StNum number is obtained from the indicated Remote Device and is incremented whenever a change of state of at least one DNA or UserSt bit occurs. The SqNum number is obtained from the indicated Remote Device and is incremented whenever a GSSE message is sent. This number will rollover to zero when a count of $4,294,967,295$ is incremented.
6.2.8 DIGITAL COUNTERS

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt{ }{ }^{\Omega}$ DIGITAL COUNTERS $\Rightarrow$ DIGITAL COUNTERS Counter 1(8)


The present status of the 8 digital counters is shown here. The status of each counter, with the user-defined counter name, includes the accumulated and frozen counts (the count units label will also appear). Also included, is the date/time stamp for the frozen count. The Counter n micros value refers to the microsecond portion of the time stamp.

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt{ }$ SELECTOR SWITCHES


MESSAGE

(

The display shows both the current position and the full range. The current position only (an integer from 0 through 7 ) is the actual value.

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt{ }$ FLEX STATES


There are 256 FlexState bits available. The second line value indicates the state of the given FlexState bit.

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt{ } \Rightarrow$ ETHERNET


These values indicate the status of the primary and secondary Ethernet links.

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt{ } \Rightarrow$ DIRECT INPUTS


The average msg return time is the time taken for direct output messages to return to the sender in a direct input/output ring configuration (this value is not applicable for non-ring configurations). This is a rolling average calculated for the last 10 messages. There are two return times for dual-channel communications modules.

The UNRETURNED MSG COUNT values (one per communications channel) count the direct output messages that do not make the trip around the communications ring. The CRC FAIL COUNT values (one per communications channel) count the direct output messages that have been received but fail the CRC check. High values for either of these counts may indicate on a problem with wiring, the communication channel, or the relay(s). The UNRETURNED MSG COUNT and CRC FAIL COUNT values can be cleared using the CLEAR DIRECT I/O COUNTERS command.

The DIRECT INPUT $x$ values represent the state of the $x$-th direct input.

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt{ }$ DIRECT DEVICES STATUS

| $\square$ DIRECT DEVICES STATUS | (1) | DIRECT DEVICE 1 STATUS: Offline |
| :---: | :---: | :---: |
| MESSAGE | - | DIRECT DEVICE 2 STATUS: Offline |
|  |  | $\downarrow$ |
| MESSAGE | (4) | $\begin{aligned} & \text { DIRECT DEVICE } 16 \\ & \text { STATUS: Offline } \end{aligned}$ |

These actual values represent the state of direct devices 1 through 16.
a) FAST EXCHANGE

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \Downarrow$ EGD PROTOCOL STATUS $\Rightarrow$ PRODUCER STATUS $\Rightarrow$ FAST EXCHANGE 1


These values provide information that may be useful for debugging an EGD network. The EGD signature and packet size for the fast EGD exchange is displayed.

## b) SLOW EXCHANGE

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt{ }$ EGD PROTOCOL STATUS $\Rightarrow$ PRODUCER STATUS $\Rightarrow \sqrt{ }$ SLOW EXCHANGE 1(2)


These values provide information that may be useful for debugging an EGD network. The EGD signature and packet size for the slow EGD exchanges are displayed.
6.2.15 TELEPROTECTION CHANNEL TESTS

PATH: ACTUAL VALUES $\Rightarrow$ STATUS $\Rightarrow \sqrt{ }$ TELEPROT CH TESTS


The status information for two channels is shown here.

- CHANNEL $\mathbf{1 ( 2 )}$ STATUS: This represents the receiver status of each channel. If the value is "OK", teleprotection is enabled and data is being received from the remote terminal; If the value is "FAIL", teleprotection enabled and data is not being received from the remote terminal. If " $\mathrm{n} / \mathrm{a}$ ", teleprotection is disabled.
- CHANNEL 1(2) LOST PACKETS: Data is transmitted to the remote terminals in data packets at a rate of 2 packets per cycle. The number of lost packets represents data packets lost in transmission; this count can be reset to 0 through the COMMANDS $\Rightarrow \sqrt{ }$ CLEAR RECORDS menu.
- VALIDITY OF CHANNEL CONFIGURATION: This value displays the current state of the communications channel identification check, and hence validity. If a remote relay ID does not match the programmed ID at the local relay, the "FAIL" message will be displayed. The "N/A" value appears if the local relay ID is set to a default value of " 0 ", the channel is failed, or if the teleprotection inputs/outputs are not enabled.


## a) POWER AND ENERGY

The following figure illustrates the conventions established for use in UR-series relays.


Figure 6-1: FLOW DIRECTION OF SIGNED VALUES FOR WATTS AND VARS

## b) PHASE ANGLES

All phasors calculated by UR-series relays and used for protection, control and metering functions are rotating phasors that maintain the correct phase angle relationships with each other at all times.

For display and oscillography purposes, all phasor angles in a given relay are referred to an AC input channel pre-selected by the SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ POWER SYSTEM $\Rightarrow \sqrt{ }$ FREQUENCY AND PHASE REFERENCE setting. This setting defines a particular source to be used as the reference.

The relay will first determine if any "Phase VT" bank is indicated in the Source. If it is, voltage channel VA of that bank is used as the angle reference. Otherwise, the relay determines if any "Aux VT" bank is indicated; if it is, the auxiliary voltage channel of that bank is used as the angle reference. If neither of the two conditions is satisfied, then two more steps of this hierarchical procedure to determine the reference signal include "Phase CT" bank and "Ground CT" bank.

If the AC signal pre-selected by the relay upon configuration is not measurable, the phase angles are not referenced. The phase angles are assigned as positive in the leading direction, and are presented as negative in the lagging direction, to more closely align with power system metering conventions. This is illustrated below.


827845A1.CDR
Figure 6-2: UR PHASE ANGLE MEASUREMENT CONVENTION

## c) SYMMETRICAL COMPONENTS

The UR-series of relays calculate voltage symmetrical components for the power system phase A line-to-neutral voltage, and symmetrical components of the currents for the power system phase A current. Owing to the above definition, phase angle relations between the symmetrical currents and voltages stay the same irrespective of the connection of instrument transformers. This is important for setting directional protection elements that use symmetrical voltages.

For display and oscillography purposes the phase angles of symmetrical components are referenced to a common reference as described in the previous sub-section.

## WYE-CONNECTED INSTRUMENT TRANSFORMERS:

- ABC phase rotation:

$$
\begin{aligned}
& V_{-} 0=\frac{1}{3}\left(V_{A G}+V_{B G}+V_{C G}\right) \\
& V_{-} 1=\frac{1}{3}\left(V_{A G}+a V_{B G}+a^{2} V_{C G}\right) \\
& V_{-} 2=\frac{1}{3}\left(V_{A G}+a^{2} V_{B G}+a V_{C G}\right)
\end{aligned}
$$

- ACB phase rotation:

$$
\begin{aligned}
& V_{-} 0=\frac{1}{3}\left(V_{A G}+V_{B G}+V_{C G}\right) \\
& V_{-} 1=\frac{1}{3}\left(V_{A G}+a^{2} V_{B G}+a V_{C G}\right) \\
& V_{-} 2=\frac{1}{3}\left(V_{A G}+a V_{B G}+a^{2} V_{C G}\right)
\end{aligned}
$$

The above equations apply to currents as well.

## DELTA-CONNECTED INSTRUMENT TRANSFORMERS:

- ABC phase rotation:

$$
\begin{aligned}
& V_{-} 0=\mathrm{N} / \mathrm{A} \\
& \mathrm{~V}_{-} 1=\frac{1 \angle-30^{\circ}}{3 \sqrt{3}}\left(V_{A B}+a V_{B C}+\mathrm{a}^{2} V_{C A}\right) \\
& V_{-}=\frac{1 \angle 30^{\circ}}{3 \sqrt{3}}\left(V_{A B}+\mathrm{a}^{2} V_{B C}+a V_{C A}\right)
\end{aligned}
$$

- ACB phase rotation:

$$
\begin{aligned}
& \mathrm{V}_{-} 0=\mathrm{N} / \mathrm{A} \\
& \mathrm{~V}_{-} 1=\frac{1 \angle 30^{\circ}}{3 \sqrt{3}}\left(V_{A B}+\mathrm{a}^{2} V_{B C}+a V_{C A}\right) \\
& \mathrm{V}_{-} 2=\frac{1 \angle-30^{\circ}}{3 \sqrt{3}}\left(V_{A B}+a V_{B C}+a^{2} V_{C A}\right)
\end{aligned}
$$

The zero-sequence voltage is not measurable under the Delta connection of instrument transformers and is defaulted to zero. The table below shows an example of symmetrical components calculations for the ABC phase rotation.
Table 6-1: SYMMETRICAL COMPONENTS CALCULATION EXAMPLE

| SYSTEM VOLTAGES, SEC. V * |  |  |  |  |  | VT CONN. | RELAY INPUTS, SEC. V |  |  | SYMM. COMP, SEC. V |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {AG }}$ | $\mathrm{V}_{\text {BG }}$ | $\mathrm{V}_{\text {CG }}$ | $\mathrm{V}_{\text {AB }}$ | $\mathrm{V}_{\mathrm{BC}}$ | $\mathrm{V}_{\mathrm{CA}}$ |  | F5AC | F6AC | F7AC | $\mathrm{V}_{0}$ | $\mathrm{V}_{1}$ | $\mathrm{V}_{2}$ |
| $\begin{aligned} & \hline 13.9 \\ & \angle 0^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 76.2 \\ & \angle-125^{\circ} \end{aligned}$ | $\begin{aligned} & \hline \hline 79.7 \\ & \angle-250^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 84.9 \\ & \angle-313^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 138.3 \\ & \angle-97^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 85.4 \\ & \angle-241^{\circ} \end{aligned}$ | WYE | $\begin{aligned} & 13.9 \\ & \angle 0^{\circ} \end{aligned}$ | $\begin{aligned} & 76.2 \\ & \angle-125^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 79.7 \\ & \angle-250^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 19.5 \\ & \angle-192^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 56.5 \\ & \angle-7^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 23.3 \\ & \angle-187^{\circ} \end{aligned}$ |
| UNKNOWN (only $V_{1}$ and $V_{2}$ can be determined) |  |  | $\begin{aligned} & 84.9 \\ & \angle 0^{\circ} \end{aligned}$ | $\begin{aligned} & 138.3 \\ & \angle-144^{\circ} \end{aligned}$ | $\begin{aligned} & 85.4 \\ & \angle-288^{\circ} \end{aligned}$ | DELTA | $\begin{aligned} & 84.9 \\ & \angle 0^{\circ} \end{aligned}$ | $\begin{aligned} & 138.3 \\ & \angle-144^{\circ} \end{aligned}$ | $\begin{aligned} & 85.4 \\ & \angle-288^{\circ} \end{aligned}$ | N/A | $\begin{aligned} & 56.5 \\ & \angle-54^{\circ} \end{aligned}$ | $\begin{aligned} & 23.3 \\ & \angle-234^{\circ} \end{aligned}$ |

* The power system voltages are phase-referenced - for simplicity - to VAG and VAB, respectively. This, however, is a relative matter. It is important to remember that the T60 displays are always referenced as specified under SETtings $\Rightarrow \sqrt{3}$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ POWER SYSTEM $\Rightarrow \sqrt{ }$ FREQUENCY AND PHASE REFERENCE.

The example above is illustrated in the following figure.


Figure 6-3: MEASUREMENT CONVENTION FOR SYMMETRICAL COMPONENTS
a) DIFFERENTIAL AND RESTRAINT CURRENTS

b) THERMAL ELEMENTS

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ } \sqrt{ }$ METERING $\Rightarrow$ TRANSFORMER $\Rightarrow$ THERMAL ELEMENTS


The daily rate loss of life is summarized at 00:00 h, and displayed for the next 24 hour period. The transformer accumulated loss of life in hours is also available. It can be reset by either changing the XFMR INITIAL LOSS OF LIFE setting or through the COMMANDS $\Rightarrow \sqrt{ }$ CLEAR RECORDS $\Rightarrow \sqrt{ }$ CLEAR LOSS OF LIFE RECORDS command.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{b}$ METERING $\Rightarrow$ SOURCE SRC $1 \Rightarrow$
Because energy values are accumulated, these values should be recorded and then reset immediately prior to changing CT or VT characteristics.


MESSAGE


| SRC 1 | PHASOR | Vbg: |
| :---: | :---: | :---: |
| 0.000 | V | $0.0^{\circ}$ |

MESSAGE

6


SRC 1 PHASOR Vcg: 0.000 V $0.0^{\circ}$

SRC 1 RMS Vab:
0.00 V

SRC 1 RMS Vbc: 0.00 V

SRC 1 RMS Vca: 0.00 V

SRC 1 PHASOR Vab: $0.000 \mathrm{~V} 0.0^{\circ}$

SRC 1 PHASOR Vbc: 0.000 V $0.0^{\circ}$

SRC 1 PHASOR Vca: 0.000 V $0.0^{\circ}$

SRC 1 ZERO SEQ V0: 0.000 V $0.0^{\circ}$

SRC 1 POS SEQ V1: $0.000 \mathrm{~V} \quad 0.0^{\circ}$

SRC 1 NEG SEQ V2: 0.000 V $0.0^{\circ}$
(1)

| SRC 1 | RMS Vx: |
| ---: | :--- |
| 0.00 | V |

SRC 1 PHASOR Vx:
$0.0^{\circ}$


SRC 1 REAL POWER
фа: 0.000 W
SRC 1 REAL POWER
$\phi$ : 0.000 W

| SRC $1 \quad$ REAL POWER |
| :--- |
| $\phi \mathbf{c :} \quad 0.000 \quad \mathrm{~W}$ |

SRC 1 REACTIVE PWR
3申: 0.000 var
SRC 1 REACTIVE PWR
фа: 0.000 var


| SRC 1 REACTIVE PWR |
| :--- |
| $\phi \mathbf{b}: ~$ |
| 0.000 var |

SRC 1 REACTIVE PWR
$\phi$ C: 0.000 var



Four identical Source menus are available. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ SIGNAL SOURCES).

The relay measures (absolute values only) SOURCE DEMAND on each phase and average three phase demand for real, reactive, and apparent power. These parameters can be monitored to reduce supplier demand penalties or for statistical metering purposes. Demand calculations are based on the measurement type selected in the SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{ }$ DEMAND menu. For each quantity, the relay displays the demand over the most recent demand time interval, the maximum demand since the last maximum demand reset, and the time and date stamp of this maximum demand value. Maximum demand quantities can be reset to zero with the CLEAR RECORDS $\Rightarrow \sqrt{ }$ CLEAR DEMAND RECORDS command.

SOURCE FREQUENCY is measured via software-implemented zero-crossing detection of an AC signal. The signal is either a Clarke transformation of three-phase voltages or currents, auxiliary voltage, or ground current as per source configuration (see the SYSTEM SETUP $\Rightarrow \sqrt{ }$ POWER SYSTEM settings). The signal used for frequency estimation is low-pass filtered. The final frequency measurement is passed through a validation filter that eliminates false readings due to signal distortions and transients.

CURRENT HARMONICS are measured for each Source for the THD and 2nd to 25th harmonics per phase.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ METERING $\Rightarrow \sqrt{ }$ TRACKING FREQUENCY


TRACKING FREQUENCY:
60.00 Hz

The tracking frequency is displayed here. The frequency is tracked based on configuration of the reference source. The TRACKING FREQUENCY is based upon positive sequence current phasors from all line terminals and is synchronously adjusted at all terminals. If currents are below 0.125 pu , then the NOMINAL FREQUENCY is used.
6.3.5 FLEXELEMENTS $^{\text {M }}$

PATH: ACTUAL VALUES $\Rightarrow$ 约 METERING $\Rightarrow \sqrt{ }$ FLEXELEMENTS $\Rightarrow$ FLEXELEMENT 1(16)


The operating signals for the FlexElements ${ }^{\text {TM }}$ are displayed in pu values using the following definitions of the base units.
Table 6-2: FLEXELEMENT ${ }^{\text {M }}$ BASE UNITS

| dcmA | BASE = maximum value of the DCMA INPUT MAX setting for the two transducers configured under the +IN and -IN inputs. |
| :---: | :---: |
| FREQUENCY | $\mathrm{f}_{\text {BASE }}=1 \mathrm{~Hz}$ |
| PHASE ANGLE | $\varphi_{\text {BASE }}=360$ degrees (see the UR angle referencing convention) |
| POWER FACTOR | PF ${ }_{\text {BASE }}=1.00$ |
| RTDs | BASE $=100^{\circ} \mathrm{C}$ |
| SOURCE CURRENT | $\mathrm{I}_{\text {BASE }}=$ maximum nominal primary RMS value of the +IN and -IN inputs |
| SOURCE ENERGY (SRC X Positive and Negative Watthours); (SRC X Positive and Negative Varhours) | $\mathrm{E}_{\text {BASE }}=10000 \mathrm{MWh}$ or MVAh, respectively |
| SOURCE POWER | $\mathrm{P}_{\text {BASE }}=$ maximum value of $\mathrm{V}_{\text {BASE }} \times \mathrm{I}_{\text {BASE }}$ for the +IN and -IN inputs |
| SOURCE THD \& HARMONICS | BASE $=100 \%$ of fundamental frequency component |
| SOURCE VOLTAGE | $\mathrm{V}_{\text {BASE }}=$ maximum nominal primary RMS value of the +IN and -IN inputs |
| VOLTS PER HERTZ | BASE $=1.00 \mathrm{pu}$ |
| XFMR DIFFERENTIAL CURRENT <br> (Xfmr Iad, Ibd, and Icd Mag) | $\mathrm{I}_{\text {BASE }}=$ maximum primary RMS value of the +IN and -IN inputs (CT primary for source currents, and transformer reference primary current for transformer differential currents) |
| XFMR DIFFERENTIAL HARMONIC CONTENT (Xfmr Harm2 Iad, Ibd, and Icd Mag) (Xfmr Harm5 Iad, Ibd, and Icd Mag) | BASE = 100\% |
| XFMR RESTRAINING CURRENT <br> (Xfmr Iar, Ibr, and Icr Mag) | $\mathrm{I}_{\text {BASE }}=$ maximum primary RMS value of the +IN and -IN inputs (CT primary for source currents, and transformer reference primary current for transformer differential currents) |

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ METERING $\Rightarrow \sqrt{ }$ VOLTS PER HERTZ 1 ( 2 )


The $\mathrm{V} / \mathrm{Hz}$ actual values are displayed in this menu.

PATH: ACTUAL VALUES $\Rightarrow \Downarrow$ METERING $\Rightarrow \Omega$ RESTRICTED GROUND FAULT CURRENTS $\Rightarrow$ RESTRICTED GROUND FAULT 1(4)


The differential and restraint current values for the Restricted Ground Fault Element are displayed in this menu.

### 6.3.8 TRANSDUCER INPUTS/OUTPUTS

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ METERING $\Rightarrow \sqrt{ }$ TRANSDUCER I/O DCMA INPUTS $\Rightarrow$ DCMA INPUT $x x$


Actual values for each dcmA input channel that is enabled are displayed with the top line as the programmed Channel ID and the bottom line as the value followed by the programmed units.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ METERING $\Rightarrow \sqrt{ }$ TRANSDUCER I/O RTD INPUTS $\Rightarrow$ RTD INPUT $x x$


Actual values for each RTD input channel that is enabled are displayed with the top line as the programmed Channel ID and the bottom line as the value.

PATH: ACTUAL VALUES $\Rightarrow 』$ RECORDS $\Rightarrow$ USER-PROGRAMMABLE FAULT REPORT


This menu displays the User-Programmable Fault Report actual values. See the User-Programmable Fault Report section in Chapter 5 for additional information on this feature.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ RECORDS $\Rightarrow \sqrt{ }$ EVENT RECORDS


The Event Records menu shows the contextual data associated with up to the last 1024 events, listed in chronological order from most recent to oldest. If all 1024 event records have been filled, the oldest record will be removed as a new record is added. Each event record shows the event identifier/sequence number, cause, and date/time stamp associated with the event trigger. Refer to the COMmANDS $\sqrt{ }$ CLEAR RECORDS menu for clearing event records.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ RECORDS $\Rightarrow \sqrt{ }$ OSCILLOGRAPHY


This menu allows the user to view the number of triggers involved and number of oscillography traces available. The 'cycles per record' value is calculated to account for the fixed amount of data storage for oscillography. See the Oscillography section of Chapter 5 for further details.
A trigger can be forced here at any time by setting "Yes" to the FORCE TRIGGER? command. Refer to the COMmANDS $\Rightarrow \sqrt{ }$ CLEAR RECORDS menu for clearing the oscillography records.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{2}$ RECORDS $\Rightarrow \sqrt{ }$ DATA LOGGER


MESSAGE

OLDEST SAMPLE TIME:
2000/01/14 13:45:51
NEWEST SAMPLE TIME:
2000/01/14 15:21:19

The OLDEST SAMPLE TIME is the time at which the oldest available samples were taken. It will be static until the log gets full, at which time it will start counting at the defined sampling rate. The NEWEST SAMPLE TIME is the time the most recent samples were taken. It counts up at the defined sampling rate. If Data Logger channels are defined, then both values are static.

Refer to the COMMANDS $\Rightarrow \sqrt{ }$ CLEAR RECORDS menu for clearing data logger records.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ RECORDS $\Rightarrow \sqrt{ }$ MAINTENANCE $\Rightarrow$ BREAKER 1(4)


There is an identical menu for each of the breakers. The BKR 1 ARCING AMP values are in units of $k A^{2}$-cycles. Refer to the COMMANDS $\Rightarrow \sqrt{ }$ CLEAR RECORDS menu for clearing breaker arcing current records. The BREAKER OPERATING time is defined as the slowest operating time of breaker poles that were initiated to open.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ } \sqrt{ }$ PRODUCT INFO $\Rightarrow$ MODEL INFORMATION


The product order code, serial number, Ethernet MAC address, date/time of manufacture, and operating time are shown here.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ } \sqrt{ }$ PRODUCT INFO $\Rightarrow \sqrt{ } \sqrt{ }$ FIRMWARE REVISIONS

| $\square$ FIRMWARE REVISIONS | (1) | T60 TransformerRelay REVISION: <br> 4.40 | Range: | $0.00 \text { to } 655.35$ <br> Revision number of the application firmware. |
| :---: | :---: | :---: | :---: | :---: |
| MESSAG | - | MODIFICATION FILE NUMBER: 0 | Range: | 0 to 65535 (ID of the MOD FILE) <br> Value is 0 for each standard firmware release. |
| MESSAG | Q | BOOT PROGRAM REVISION: $1.13$ | Range: | $0.00 \text { to } 655.35$ <br> Revision number of the boot program firmware. |
| MESSAG | - | FRONT PANEL PROGRAM  <br> REVISION: 0.08 | Range: | $0.00 \text { to } 655.35$ <br> Revision number of faceplate program firmware. |
| MESSAG | Q | COMPILE DATE: <br> 2004/09/15 04:55:16 | Range: | Any valid date and time. <br> Date and time when product firmware was built. |
| MESSAG | (2) | $\begin{aligned} & \text { BOOT DATE: } \\ & \text { 2004/09/15 16:41:32 } \end{aligned}$ | Range: | Any valid date and time. <br> Date and time when the boot program was built. |

The shown data is illustrative only. A modification file number of 0 indicates that, currently, no modifications have been installed.


The Commands menu contains relay directives intended for operations personnel. All commands can be protected from unauthorized access via the Command Password; see the Password Security section of Chapter 5. The following flash message appears after successfully command entry:


PATH: COMMANDS $\Rightarrow$ VIRTUAL INPUTS


The states of up to 64 virtual inputs are changed here. The first line of the display indicates the ID of the virtual input. The second line indicates the current or selected status of the virtual input. This status will be a logical state 'Off' (0) or 'On' (1).

PATH: COMMANDS $\Rightarrow \sqrt{ } \rightarrow$ CLEAR RECORDS

| ■ COMMANDS | (4) | CLEAR USER FAULT REPORTS? No | Range: No, Yes |
| :---: | :---: | :---: | :---: |
|  | $\stackrel{\rightharpoonup}{\nabla}$ | CLEAR EVENT RECORDS? No | Range: No, Yes |
|  | $\stackrel{\rightharpoonup}{\nabla}$ | CLEAR OSCILLOGRAPHY? No | Range: No, Yes |
|  | 㽣 | CLEAR DATA LOGGER? No | Range: No, Yes |



This menu contains commands for clearing historical data such as the Event Records. Data is cleared by changing a command setting to "Yes" and pressing the ENTER key. After clearing data, the command setting automatically reverts to "No".

The clear all relay records command does not clear the XFMR LIFE LOST (transformer loss of life) value.
7.1.4 SET DATE AND TIME

PATH: COMMANDS $\Rightarrow \sqrt{ } \Rightarrow$ SET DATE AND TIME


The date and time can be entered here via the faceplate keypad only if the IRIG-B or SNTP signal is not in use. The time setting is based on the 24 -hour clock. The complete date, as a minimum, must be entered to allow execution of this command. The new time will take effect at the moment the ENTER key is clicked.
7.1.5 RELAY MAINTENANCE

PATH: COMMANDS $\Rightarrow \sqrt{ } \sqrt{ }$ RELAY MAINTENANCE


This menu contains commands for relay maintenance purposes. Commands are activated by changing a command setting to "Yes" and pressing the ENTER key. The command setting will then automatically revert to "No".

The PERFORM LAMPTEST command turns on all faceplate LEDs and display pixels for a short duration. The UPDATE ORDER CODE command causes the relay to scan the backplane for the hardware modules and update the order code to match. If an update occurs, the following message is shown.

| UPDATING... |
| :--- |
| PLEASE WAIT |

There is no impact if there have been no changes to the hardware modules. When an update does not occur, the ORDER CODE NOT UPDATED message will be shown.


The status of any active targets will be displayed in the Targets menu. If no targets are active, the display will read No Active Targets:

### 7.2.2 TARGET MESSAGES

When there are no active targets, the first target to become active will cause the display to immediately default to that message. If there are active targets and the user is navigating through other messages, and when the default message timer times out (i.e. the keypad has not been used for a determined period of time), the display will again default back to the target message.
The range of variables for the target messages is described below. Phase information will be included if applicable. If a target message status changes, the status with the highest priority will be displayed.

Table 7-1: TARGET MESSAGE PRIORITY STATUS

| PRIORITY | ACTIVE STATUS | DESCRIPTION |
| :---: | :--- | :--- |
| 1 | OP | element operated and still picked up |
| 2 | PKP | element picked up and timed out |
| 3 | LATCHED | element had operated but has dropped out |

If a self test error is detected, a message appears indicating the cause of the error. For example UNIT NOT PROGRAMMED indicates that the minimal relay settings have not been programmed.
7.2.3 RELAY SELF-TESTS

The relay performs a number of self-test diagnostic checks to ensure device integrity. The two types of self-tests (major and minor) are listed in the tables below. When either type of self-test error occurs, the Trouble LED Indicator will turn on and a target message displayed. All errors record an event in the event recorder. Latched errors can be cleared by pressing the RESET key, providing the condition is no longer present.
Major self-test errors also result in the following:

- the critical fail relay on the power supply module is de-energized
- all other output relays are de-energized and are prevented from further operation
- the faceplate In Service LED indicator is turned off
- a RELAY OUT OF SERVICE event is recorded

Most of the minor self-test errors can be disabled. Refer to the settings in the User-Programmable Self-Tests section in Chapter 5 for additional details.

Table 7-2: MAJOR SELF-TEST ERROR MESSAGES

| SELF-TEST ERROR <br> MESSAGE | LATCHED <br> TARGET <br> MESSAGE? | DESCRIPTION OF PROBLEM | HOW OFTEN THE <br> TEST IS PERFORMED | WHAT TO DO |
| :--- | :--- | :--- | :--- | :--- |
| DSP ERRORS: <br> A/D Calibration, A/D <br> Interrupt, A/D Reset, Inter <br> DSP Rx, Sample Int, Rx <br> Interrupt, Tx Interrupt, Rx <br> Sample Index, Invalid <br> Settings, Rx Checksum | Yes | CT/VT module with digital signal <br> processor may have a problem. | Every 1/8th of a cycle. | Cycle the control power (if the problem <br> recurs, contact the factory). |
| DSP ERROR: <br> INVALID REVISION | Yes | One or more DSP modules in a <br> multiple DSP unit has Rev. C <br> hardware | Rev. C DSP needs to be replaced <br> with a Rev. D DSP. | Contact the factory |
| EQUIPMENT MISMATCH <br> with 2nd-line detail | No | Configuration of modules does not <br> match the order code stored in the <br> CPU. | On power up; thereafter, the <br> backplane is checked for missing <br> cards every 5 seconds. | Check all modules against the order <br> code, ensure they are inserted <br> properly, and cycle control power (if <br> problem persists, contact factory). |
| FLEXLOGIC ERR TOKEN <br> with 2nd-line detail | No | FlexLogicTM equations do not <br> compile properly. | Event driven; whenever Flex- <br> Logic ${ }^{\text {TM }}$ equations are modified. | Finish all equation editing and use self <br> test to debug any errors. |
| LATCHING OUTPUT <br> ERROR | No | Discrepancy in the position of a <br> latching contact between firmware <br> and hardware has been detected. | Every 1/8th of a cycle. | The latching output module failed. <br> Replace the Module. |
| PROGRAM MEMORY <br> Test Failed | Yes | Error was found while checking <br> Flash memory. | Once flash is uploaded with new <br> firmware. | Contact the factory. |
| UNIT NOT CALIBRATED | No | Settings indicate the unit is not <br> calibrated. | On power up. | Contact the factory. |

Table 7-3: MINOR SELF-TEST ERROR MESSAGES

| SELF-TEST ERROR MESSAGE | LATCHED TARGET MESSAGE | DESCRIPTION OF PROBLEM | HOW OFTEN THE TEST IS PERFORMED | WHAT TO DO |
| :---: | :---: | :---: | :---: | :---: |
| BATTERY FAIL | Yes | Battery is not functioning. | Monitored every 5 seconds. Reported after 1 minute if problem persists. | Replace the battery located in the power supply module ( 1 H or 1 L ). |
| DIRECT RING BREAK | No | Direct input/output settings configured for a ring, but the connection is not in a ring. | Every second. | Check direct input/output configuration and/or wiring. |
| DIRECT DEVICE OFF | No | A direct device is configured but not connected. | Every second. | Check direct input/output configuration and/or wiring. |
| $\begin{aligned} & \hline \text { EEPROM DATA } \\ & \text { ERROR } \end{aligned}$ | Yes | The non-volatile memory has been corrupted. | On power up only. | If this message appears after an order code update is preformed, press the RESET key to clear target message. In other cases, contact the factory. |
| IRIG-B FAILURE | No | A bad IRIG-B input signal has been detected | Monitored whenever an IRIG-B signal is received. | Ensure the IRIG-B cable is connected, check cable functionality (i.e. look for physical damage or perform continuity test), ensure IRIG-B receiver is functioning, and check input signal level (it may be less than specification). If none of these apply, contact the factory. |
| LATCHING OUT ERROR | Yes | Latching output failure. | Event driven. | Contact the factory. |
| LOW ON MEMORY | Yes | Memory is close to 100\% capacity. | Monitored every 5 seconds. | Contact the factory. |
| PRI ETHERNET FAIL | Yes | Primary Ethernet connection failed. | Monitored every 2 seconds | Check connections. |
| PROTOTYPE FIRMWARE | Yes | A prototype version of the firmware is loaded. | On power up only. | Contact the factory. |
| REMOTE DEVICE OFF | No | One or more GOOSE devices are not responding. | Event driven - occurs when a device programmed to receive GOOSE messages stops receiving. Every 1 to 60 s , depending on GOOSE packets. | Check GOOSE setup. |
| SEC ETHERNET FAIL | Yes | Sec. Ethernet connection failed. | Monitored every 2 seconds | Check connections. |
| SNTP FAILURE | No | SNTP server not responding. | 10 to 60 seconds. | Check SNTP configuration and/or network connections. |
| SYSTEM EXCEPTION | Yes | Abnormal restart from modules being removed/inserted when powered-up, abnormal DC supply, or internal relay failure. | Event driven. | Contact the factory. |
| WATCHDOG ERROR | No | Some tasks are behind schedule. | Event driven. | Contact the factory. |

## a) OVERVIEW

The following commissioning tests are organized in two parts: general procedures for testing points of the differentialrestraint characteristics, and examples of the percent differential element response, based on different transformer configurations and fault current distribution. The following tests can be performed by using either 2 or 3 individually adjustable currents, and do not require additional specialized equipment.

## PREPARATION:

1. Select a $0^{\circ}$ or $180^{\circ}$ transformer phase shift and identical winding connection type into the relay.
2. Select the "Not Within Zone" setting value for each winding grounding setting.
3. Select and set the CT ratios for each winding.
4. Calculate the magnitude compensation factors $M[1]$ and $\mathrm{M}[2]$ for each winding.
5. Enable the Transformer Percent Differential element, and enter the required test settings to shape the differential restraint characteristic.
6. Connect the relay test set to inject $x$ current $\left(I_{X}\right)$ into the Winding 1 Phase A CT input, and $y$ current $\left(I_{Y}\right)$ into the Winding 2 Phase A CT input.

## TESTING:

The tests of the differential restraint characteristic verify the minimum pickup point, the intersection point of Breakpoint 1 and Slope 1, and the intersection point of Breakpoint 2 and Slope 2.
For simplicity, enter the following settings for each winding:

```
SYSTEM SETUP }=>\sqrt{\Omega}{\mp@code{TRANSFORMER }=>\sqrt{}{}\mathrm{ WINDING 1(4) }=>\sqrt{}{}\mathrm{ WINDING 1(4) CONNECTION: "Wye"}
SYSTEM SETUP }=>\sqrt{\Omega}{\prime}\mathrm{ TRANSFORMER }=>\sqrt{}{\prime}\mathrm{ WINDING 1(4) }=>\sqrt{}{\prime}\mathrm{ WINDING 1(4) GROUNDING: "Not Within Zone"
SYSTEM SETUP }=>\sqrt{}{
```

If the power transformer phase shift is $0^{\circ}$, the two currents to be injected to the relay should be $180^{\circ}$ apart. The $180^{\circ}$ phase shift results from the inversion of the field CT, as their positive marks are away from the protected transformer terminals and are connected to the positively marked terminals on the relay.

## b) MINIMUM PICKUP

Inject current $\left(I_{x}\right)$ into Winding 1 Phase A and monitor the per-unit Phase A differential current until it exceeds the minimum pickup setting. The theoretical injected current for minimum pickup verification can be computed as follows:

$$
\begin{equation*}
I_{x}=\text { minimum pickup } \times \frac{\mathrm{CT}}{\mathrm{M}[1]} \tag{EQ8.1}
\end{equation*}
$$

where CT is the 1 A or 5 A tap, and M[1] is the calculated magnitude compensation factor (see the Transformer section in Chapter 5 for details on calculating the $\mathrm{M}[1]$ and $\mathrm{M}[2]$ factors).

## c) SLOPE 1 / BREAKPOINT 1

The point of Slope 1 and Breakpoint 1 is tested as follows. Refer to the Differential Restraint Characteristic diagram below for details.

1. Inject current $\left(I_{y}\right)$ into Winding 2 Phase $A$ as follows:

$$
\begin{equation*}
I_{Y B 1}=\text { Breakpoint } 1 \times \frac{\mathrm{CT}}{\mathrm{M}[2]} \tag{EQ8.2}
\end{equation*}
$$

2. At Breakpoint 1, the injected current $I_{X O P 1}$ is determined by:

$$
\begin{equation*}
I_{X O P 1}=\text { Breakpoint } 1 \times(1-\text { Slope } 1) \times \frac{\mathrm{CT}}{\mathrm{M}[1]} \tag{EQ8.3}
\end{equation*}
$$

and the differential current should be equal to:

$$
\begin{equation*}
I_{d}=\text { Slope } 1(\text { in } \%) \times \text { Breakpoint } 1 \text { (in pu) } \tag{EQ8.4}
\end{equation*}
$$

3. Preset the $I_{X}$ current to $1.05 \times I_{X O P 1}$. Switch on the test set. The relay should restraint, as the differential to restraint ratio will become less than the Slope 1 setting. Switch off the current.
4. Preset the $I_{X}$ current to $0.95 \times I_{X O P 1}$. Switch on the test set. The relay should operate. Switch off the current.

To test any other point from the Slope 1 section of the curve, inject a per-unit restraint current smaller than the Breakpoint 1 current and repeat the steps above by substituting the Breakpoint 1 value with the new per-unit restraint current value into the equations above.

## d) SLOPE 2 I BREAKPOINT 2

The point of Slope 2 and Breakpoint 2 is tested as follows. Refer to the diagram below for details.

1. Preset the $I_{y}$ current to a magnitude that results in the restraint current being equal to Breakpoint 2. Use the following calculation to define the magnitude of the injected current:

$$
\begin{equation*}
I_{Y B 2}=\text { Breakpoint } 2 \times \frac{\mathrm{CT}}{\mathrm{M}[2]} \tag{EQ8.5}
\end{equation*}
$$

2. At the above current (restraint), the $I_{X O P 2}$ current required to operate the element is calculated as:

$$
\begin{equation*}
I_{X O P 2}=\text { Breakpoint } 2 \times(1-\text { Slope } 2) \times \frac{\mathrm{CT}}{\mathrm{M}[1]} \tag{EQ8.6}
\end{equation*}
$$

3. Preset the $I_{X}$ current to $1.05 \times I_{X O P 1}$ and switch on the test set. The relay should restrain, as the differential to restraint ratio will become less than the Slope 2 setting. Switch off the current.
4. Preset the $I_{X}$ current to $0.95 \times I_{X O P 1}$. Switch on the test set and verify relay operation. Switch off the current.

To test any point from the Slope 2 portion of the characteristic, inject a per-unit restraint current greater than the Breakpoint 2 current as restraint and repeat the steps above by substituting the Breakpoint 2 value in the equations above with the new per-unit restraint current value.
The above two tests can be repeated for Phases B and C.


Figure 8-1: DIFFERENTIAL RESTRAINT CHARACTERISTIC

The T60 commissioning tests are based on secondary current injections, where two or three individually adjustable currents are required. The differential protection compares the magnitudes of the varying HV and LV currents in real time. Therefore, the test set currents and their angles must be an exact replica of the HV and LV currents and angles shown on the diagrams, along with the correct CT polarity and orientation.
Ensure that the thermal rating of the relay current inputs is not exceeded. Stopping the injection of the currents to the relay by using contact outputs triggered by protection operation can prevent this from occurring.
Due to the complexity of the mathematics defining the operating characteristic of the region between Breakpoint 1 and 2 , the use of a factory-supplied Microsoft Excel simulation utility is highly recommended. This utility indicates graphically whether the relay should operate, based on the settings and winding current injection. This allows the tester to define and confirm various points on the operating characteristic. The spreadsheet can be found at GE Multilin website at http:// www.GEindustrial.com/multilin.
$\mathrm{Y} / \mathrm{y} 0^{\circ}$


Figure 8-2: CURRENT DISTRIBUTION ON A Y/YG0 ${ }^{\circ}$ TRANSFORMER WITH b-c FAULT ON LV SIDE
Consider the above system, which illustrates the importance of CT orientation, polarity and relay connection. These factors will also apply when performing the tests outlined in the next examples.
The transformer high voltage (HV) and low voltage (LV) side fault currents, and angles are all related. More specifically, the HV and LV primary fault currents are displaced by $180^{\circ}$. The CT polarity marks point away from the protected zone and are connected to the $\boldsymbol{\sim} \mathbf{a}$ terminals of the relay. The displayed current is what is reported by the relay.

The $\sim \mathbf{a}$ and $\sim \mathbf{b}$ terminal identifications are illustrative only. Refer to CT/VT Modules section in Chapter 3 for specific terminal identification.

## a) OVERVIEW

## TRANSFORMER DATA:

- $20 \mathrm{MVA}, 115 / 12.47 \mathrm{kV}, \mathrm{CT}(\mathrm{HV})=200: 1, \mathrm{CT}(\mathrm{LV})=1000: 1, \mathrm{Y} / \mathrm{y} 0^{\circ}$ with a grounded LV neutral


## TEST SET CONFIGURATION:

The fault current distribution for an external b-c fault is identical for the HV and LV transformer sides and can be simulated easily with two current sources. Connect the first current source to the relay Phase " $B$ " and " $C$ " terminals, corresponding to the HV winding CTs in series, and the second source to the Phase "b" and "c" relay terminals, corresponding to the LV CTs. Ensure the polarity is correct and the relative phase angles are similar to the shown in the figure; that is, $180^{\circ}$ between IB and IC, $180^{\circ}$ between Ib and Ic, $180^{\circ}$ between IB and Ib, and $180^{\circ}$ between IC and Ic. Follow the magnitudes and angles of the injected currents from the tables below to ensure the test will be performed correctly

## OPERATING CRITERIA:

The differential element operates if the differential current $\left(I_{d}\right)$ exceeds the characteristic defined by the relay settings for restraint current magnitude $\left(I_{r}\right)$. The differential current $I_{d}$ is the vector sum of the compensated currents, and $I_{r}$ is the largest compensated current. Compensation refers to vector and magnitude corrections applied to the currents from the HV and LV transformer sides.

The tests verify the operation and no-operation response for points from all regions of the percentage differential characteristic. These tests are:

- Test for zero differential current
- Minimum Pickup
- $\quad$ Slope 1
- The region between Slope 1 and Slope 2
- Slope 2


## RELAY CONFIGURATION:

The AC Inputs and Source are configured as follows:

| AC INPUTS SETTING | CT F1 | CT M1 |
| :--- | :---: | :---: |
| Phase CT Primary | 200 | 1000 |
| Phase CT Secondary | 1 | 1 |
| Ground CT Primary | X | X |
| Ground CT Secondary | X | X |


| SOURCE SETTING | SOURCE 1 | SOURCE 2 |
| :--- | :---: | :---: |
| Name | SRC 1 | SRC 2 |
| Phase CT | F1 | M 1 |
| Ground CT | X | X |
| Phase VT | X | X |
| Aux VT | X | X |

TWO WINDING TRANSFORMER CONFIGURATION:

| WINDING 1 SETTINGS | VALUE |
| :--- | :---: |
| Source | SRC 1 |
| Rated MVA | 20 MVA |
| Nom Ph-Ph Voltage | 115 kV |
| Connection | Wye |
| Grounding | Not within zone |
| Angle WRT | $0^{\circ}$ |
| Resistance 3Ph | 10.000 ohms |


| WINDING 2 SETTINGS | VALUE |
| :--- | :---: |
| Source | SRC 2 |
| Rated MVA | 20 MVA |
| Nom Ph-Ph Voltage | 12.47 kV |
| Connection | Wye |
| Grounding | Within zone |
| Angle WRT | $0^{\circ}$ |
| Resistance 3Ph | 10.000 ohms |


| PERCENT DIFF | VALUE |
| :--- | :---: |
| Minimum PKP | 0.1 pu |
| Slope 1 | $15 \%$ |
| Breakpoint 1 | 2 pu |
| Breakpoint 2 | 8 pu |
| Slope 2 | $95 \%$ |

APPLICATION OF EXCESSIVE CURRENT (> $3 \times \ln$ ) FOR EXTENTED PERIODS WILL CAUSE DAMAGE TO THE RELAY!

## b) TEST FOR ZERO DIFFERENTIAL CURRENT

1. Inject the following currents into the relay:

| WINDING 1 |  |
| :--- | :--- |
| PHASE | SINGLE CURRENT ( $\mathbf{I}_{\mathbf{1}}$ ) |
| A | $0 \mathrm{~A} \angle 0^{\circ}$ |
| B | $0.434 \mathrm{~A} \angle 0^{\circ}$ |
| C | $0.434 \mathrm{~A} \angle-180^{\circ}$ |


| WINDING 2 |  |
| :--- | :--- |
| PHASE | SINGLE CURRENT $\left(\mathbf{I}_{2}\right)$ |
| A | $0 \mathrm{~A} \angle 0^{\circ}$ |
| B | $0.8 \mathrm{~A} \angle-180^{\circ}$ |
| C | $0.8 \mathrm{~A} \angle 0^{\circ}$ |

2. These are determined as follows:

$$
\begin{equation*}
I_{n}\left(w_{1}\right)=\frac{20 \times 10^{6} \mathrm{VA}}{\sqrt{3} \times 115 \times 10^{3} \mathrm{~V}}=100.4 \mathrm{~A}, \quad I_{n}\left(w_{2}\right)=\frac{20 \times 10^{6} \mathrm{VA}}{\sqrt{3} \times 12.47 \times 10^{3} \mathrm{~V}}=925.98 \mathrm{~A} \tag{EQ8.7}
\end{equation*}
$$

From the Current Distribution diagram above, there is a $0.866 \mathrm{pu} \times 100.4 \mathrm{~A} / 200=0.434 \mathrm{~A}$ secondary current for HV phases B and C, and a 0.866 pu $\times 925.98 \mathrm{~A} / 1000=0.8 \mathrm{~A}$ secondary current for LV phases b and c.
3. The relay should display the following differential and restraint currents and the element should not operate:

| PHASE | DIFFERENTIAL CURRENT $\left(\mathbf{I}_{\mathrm{d}}\right)$ |
| :--- | :--- |
| A | $0 \angle 0^{\circ}$ |
| B | $0 \angle 0^{\circ}$ |
| C | $0 \angle 0^{\circ}$ |


| PHASE | RESTRAINT CURRENT $\left(\mathbf{I}_{\mathbf{r}}\right)$ |
| :--- | :--- |
| A | $0 \angle 0^{\circ}$ |
| B | $0.801 \mathrm{pu} \angle-180^{\circ}$ |
| C | $0.801 \mathrm{pu} \angle 0^{\circ}$ |

c) MINIMUM PICKUP TEST

Reduce the restraint current $I_{r}$ to a value lower than 0.67 pu (the restraint corresponding to the intersection of Slope 1 and the pickup). This is obtained from $I_{r}=0.1 / 0.15=0.67 \mathrm{pu}$, where 0.1 is the differential setting of minimum pickup, and 0.15 is the setting of Slope 1 . Note that

$$
0<I_{r}<I_{r}(\text { intersection of Minimum PKP and Slope 1) }
$$

4. Change the current magnitude as follows:

| WINDING $\mathbf{1}$ |  |
| :--- | :--- |
| PHASE | SINGLE CURRENT $\left(\mathbf{I}_{\mathbf{1}}\right)$ |
| A | $0 \mathrm{~A} \angle 0^{\circ}$ |
| B | $0.15 \mathrm{~A} \angle 0^{\circ}$ |
| C | $0.15 \mathrm{~A} \angle-180^{\circ}$ |


| WINDING 2 |  |
| :--- | :--- |
| PHASE | SINGLE CURRENT $\left(\mathbf{I}_{\mathbf{2}}\right)$ |
| A | $0 \mathrm{~A} \angle 0^{\circ}$ |
| B | $0.23 \mathrm{~A} \angle-180^{\circ}$ |
| C | $0.23 \mathrm{~A} \angle 0^{\circ}$ |

5. The following differential and restraint current should be read from the T60 actual values menu:

| PHASE | DIFFERENTIAL CURRENT $\left(\mathbf{I}_{\mathrm{d}}\right)$ |
| :--- | :--- |
| A | $0 \angle 0^{\circ}$ |
| B | $0.044 \mathrm{pu} \angle 0^{\circ}$ |
| C | $0.044 \mathrm{pu} \angle 0^{\circ}$ |


| PHASE | RESTRAINT CURRENT $\left(\mathbf{I}_{\mathbf{r}}\right)$ |
| :--- | :--- |
| A | $0 \angle 0^{\circ}$ |
| B | $0.275 \mathrm{pu} \angle-180^{\circ}$ |
| C | $0.275 \mathrm{pu} \angle 0^{\circ}$ |

The relay will not operate since $I_{d}$ is still lower that the 0.1 pu MINIMUM PICKUP setting.
6. Increase $I_{1}$ to 0.2 A . The differential current increases to $I_{d}=0.136 \mathrm{pu}>\operatorname{Min}$ PKP and $I_{r}<0.67 \mathrm{pu}$.
7. Verify that the Percent Differential element operates and the following are displayed in the actual values menu:

| PHASE | DIFFERENTIAL CURRENT $\left(\mathbf{I}_{\mathbf{d}}\right)$ |
| :--- | :--- |
| A | $0 \angle 0^{\circ}$ |
| B | $0.136 \angle 0^{\circ}$ |
| C | $0.136 \angle 0^{\circ}$ |


| PHASE | RESTRAINT CURRENT $\left(\mathbf{I}_{\mathbf{r}}\right)$ |
| :--- | :--- |
| A | $0 \angle 0^{\circ}$ |
| B | $0.367 \mathrm{pu} \angle-180^{\circ}$ |
| C | $0.367 \mathrm{pu} \angle 0^{\circ}$ |

## d) SLOPE 1 TEST

Inject current in such a manner that the magnitude of $I_{r}$ is larger than the restraint current of 0.67 pu , corresponding to the intersection of the minimum PKP and Slope 1 and smaller than the Breakpoint 1 setting; that is,

$$
\begin{equation*}
I_{r}(\text { intersection of Min PKP and Slope } 1)<I_{r}(\text { actual })<I_{r}(\text { Break 1 }) \tag{EQ8.9}
\end{equation*}
$$

1. Change the current magnitudes as follows:

| WINDING $\mathbf{1}$ |  |
| :--- | :--- |
| PHASE | SINGLE CURRENT $\left(\mathbf{I}_{\mathbf{1}}\right)$ |
| A | $0 \mathrm{~A} \angle 0^{\circ}$ |
| B | $0.48 \mathrm{~A} \angle 0^{\circ}$ |
| C | $0.48 \mathrm{~A} \angle-180^{\circ}$ |


| WINDING 2 |  |
| :--- | :--- |
| PHASE | SINGLE CURRENT (12) |
| A | $0 \mathrm{~A} \angle 0^{\circ}$ |
| B | $1 \mathrm{~A} \angle-180^{\circ}$ |
| C | $1 \mathrm{~A} \angle 0^{\circ}$ |

2. The following differential and restraint current should be read from the T60 actual values menu:

| PHASE | DIFFERENTIAL CURRENT $\left(\mathbf{I}_{\mathbf{d}}\right)$ |
| :--- | :--- |
| A | $0 \angle 0^{\circ}$ |
| B | $0.113 \mathrm{pu} \angle 0^{\circ}$ |
| C | $0.113 \mathrm{pu} \angle 0^{\circ}$ |


| PHASE | RESTRAINT CURRENT $\left(\mathbf{I}_{\mathbf{r}}\right)$ |
| :--- | :--- |
| A | $0 \angle 0^{\circ}$ |
| B | $1 \mathrm{pu} \angle-180^{\circ}$ |
| C | $1 \mathrm{pu} \angle 0^{\circ}$ |

The Percent Differential element will not operate even though $I_{d}$ is larger than the Minimum Pickup, because $I_{d}$ is not large enough to make the $I_{d} / I_{r}$ ratio larger than the Slope 1 setting of $15 \%$. The actual ratio is $11.3 \%$.
3. Adjust the $I_{1}$ current as shown below (thereby increasing $I_{d}$ ) and verify that the element operates.

| WINDING $\mathbf{1}$ |  |
| :--- | :--- |
| PHASE | SINGLE CURRENT $\left(\mathbf{I}_{\mathbf{1}}\right)$ |
| A | $0 \mathrm{~A} \angle 0^{\circ}$ |
| B | $0.45 \mathrm{~A} \angle 0^{\circ}$ |
| C | $0.45 \mathrm{~A} \angle-180^{\circ}$ |


| WINDING 2 |  |
| :--- | :--- |
| PHASE | SINGLE CURRENT $\left(\mathbf{I}_{2}\right)$ |
| A | $0 \mathrm{~A} \angle 0^{\circ}$ |
| B | $1 \mathrm{~A} \angle-180^{\circ}$ |
| C | $1 \mathrm{~A} \angle 0^{\circ}$ |

4. The following differential and restraint current should appear in the T60 actual values menu:

| PHASE | DIFFERENTIAL CURRENT $\left(\mathbf{I}_{\mathbf{d}}\right)$ |  | PHASE RESTRAINT CURRENT $\left(\mathbf{I}_{\mathbf{r}}\right)$  <br> A $0 \angle 0^{\circ}$  <br> A $0 \angle 0^{\circ}$  <br> B $0.170 \mathrm{pu} \angle 0^{\circ}$  <br> C $0.170 \mathrm{pu} \angle 0^{\circ}$ $1 \mathrm{pu} \angle-180^{\circ}$ <br> C $1 \mathrm{pu} \angle 0^{\circ}$  lnnn |
| :--- | :--- | :--- | :--- |

5. The actual $I_{d} / I_{r}$ ratio is now $17 \%$. Verify that the element operates correctly.

## e) INTERMEDIATE CURVE BETWEEN BREAKPOINT 1 AND BREAKPOINT 2

This procedure tests the intermediate section of the differential characteristic curve that lies between the Breakpoint 1 and Breakpoint 2 points (points $B_{1}$ and $B_{2}$ on the Differential Restraint Characteristic diagram).

1. Inject currents so that the magnitude of $I_{r}$ is between the restraint magnitudes defined by Breakpoint 1 and Breakpoint 2 ; that is:

$$
\begin{equation*}
I_{r}(\text { at Breakpoint } 1)<I_{r}<I_{r}(\text { at Breakpoint 2 }) \tag{EQ8.10}
\end{equation*}
$$

For this example, $2 \mathrm{pu}<I_{r}<8 \mathrm{pu}$. Remember that the maximum current is the restraint current $I_{r}=3.5 \mathrm{pu}$.

| WINDING 1 |  |
| :--- | :--- |
| PHASE | SINGLE CURRENT ( $\mathbf{I}_{\mathbf{1}}$ ) |
| A | $0 \mathrm{~A} \angle 0^{\circ}$ |
| B | $1.2 \mathrm{~A} \angle 0^{\circ}$ |
| C | $1.2 \mathrm{~A} \angle-180^{\circ}$ |


| WINDING $\mathbf{2}$ |  |
| :--- | :--- |
| PHASE | SINGLE CURRENT $\left(\mathbf{I}_{\mathbf{2}}\right)$ |
| A | $0 \mathrm{~A} \angle 0^{\circ}$ |
| B | $3.5 \mathrm{~A} \angle-180^{\circ}$ |
| C | $3.5 \mathrm{~A} \angle 0^{\circ}$ |

2. The following differential and restraint current should be read from the T60 actual values menu:

| PHASE | DIFFERENTIAL CURRENT $\left(\mathbf{I}_{\mathbf{d}}\right)$ |
| :--- | :--- |
| A | $0 \angle 0^{\circ}$ |
| B | $1.287 \mathrm{pu} \angle-180^{\circ}$ |
| C | $1.287 \mathrm{pu} \angle 0^{\circ}$ |


| PHASE | RESTRAINT CURRENT $\left(\mathbf{I}_{\mathbf{r}}\right)$ |
| :--- | :--- |
| A | $0 \angle 0^{\circ}$ |
| B | $3.5 \mathrm{pu} \angle-180^{\circ}$ |
| C | $3.5 \mathrm{pu} \angle 0^{\circ}$ |

The $I_{d} / I_{r}$ ratio is $36.77 \%$ and the Differential element does not operate because the actual $I_{d}=1.287 \mathrm{pu}$ is still too low at $I_{r}=3.5 \mathrm{pu}$.


Due to the mathematical complexity involved in shaping the curve between Breakpoint 1 and Breakpoint 2, an Excel-based simulation tool is available from the GE Multilin website at http://www.GEindustrial.com/multilin. With this tool, the user can see the preset $I_{d} / I_{r}$ curve point ratios and the actual $I_{d} / I_{r}$ ratio as per the entered test currents. The tool graphically indicates differential and restraint current magnitudes and indicates whether the relay should operate.
3. In this example, a ratio of $I_{d} / I_{r}>38 \%$ causes the element to trip. Decreasing $I_{1}$ as shown in the table below increases the differential current $I_{d}$, causing the element to operate.

| WINDING $\mathbf{1}$ |  |
| :--- | :--- |
| PHASE | SINGLE CURRENT $\left(\mathbf{I}_{\mathbf{1}}\right)$ |
| A | $0 \mathrm{~A} \angle 0^{\circ}$ |
| B | $1.1 \mathrm{~A} \angle 0^{\circ}$ |
| C | $1.1 \mathrm{~A} \angle-180^{\circ}$ |


| WINDING 2 |  |
| :--- | :--- |
| PHASE | SINGLE CURRENT (1 $\mathbf{2})$ |
| A | $0 \mathrm{~A} \angle 0^{\circ}$ |
| B | $3.5 \mathrm{~A} \angle-180^{\circ}$ |
| C | $3.5 \mathrm{~A} \angle 0^{\circ}$ |

4. The following differential and restraint current should be read from the T60 actual values menu:

| PHASE | DIFFERENTIAL CURRENT $\left(\mathbf{I}_{\mathbf{d}}\right)$ |
| :--- | :--- |
| A | $0 \angle 0^{\circ}$ |
| B | $1.471 \mathrm{pu} \angle-180^{\circ}$ |
| C | $1.471 \mathrm{pu} \angle 0^{\circ}$ |


| PHASE | RESTRAINT CURRENT $\left(\mathbf{I}_{\mathbf{r}}\right)$ |
| :--- | :--- |
| A | $0 \angle 0^{\circ}$ |
| B | $3.5 \mathrm{pu} \angle-180^{\circ}$ |
| C | $3.5 \mathrm{pu} \angle 0^{\circ}$ |

## f) SLOPE 2 TEST

Inject currents in such a manner that the magnitude of $I_{r}$ is larger than the restraint current at Breakpoint 2 ; that is,

$$
\begin{equation*}
I_{r}>I_{r}(\text { Break 2) }=8 \mathrm{pu} \tag{EQ8.11}
\end{equation*}
$$

1. Change the current magnitudes as follows:

| WINDING 1 |  | WINDING 2 |  |
| :---: | :---: | :---: | :---: |
| PHASE | SINGLE CURRENT ( $\mathrm{I}_{1}$ ) | PHASE | SINGLE CURRENT ( $\mathrm{I}_{2}$ ) |
| A | $0 \mathrm{~A} \angle 0^{\circ}$ | A | $0 \mathrm{~A} \angle 0^{\circ}$ |
| B | $0.5 \mathrm{~A} \angle 0^{\circ}$ | B | $9 \mathrm{~A} \angle-180^{\circ}$ |
| C | 0.5 A $\angle-180^{\circ}$ | C | $9 \mathrm{~A} \angle 0^{\circ}$ |

2. The following differential and restraint current should be read from the T60 actual values menu:

| PHASE | DIFFERENTIAL CURRENT $\left(\mathbf{I}_{\mathbf{d}}\right)$ |
| :--- | :--- |
| A | $0 \angle 0^{\circ}$ |
| B | $8.078 \mathrm{pu} \angle-180^{\circ}$ |
| C | $8.078 \mathrm{pu} \angle 0^{\circ}$ |


| PHASE | RESTRAINT CURRENT $\left(\mathbf{I}_{\mathbf{r}}\right)$ |
| :--- | :--- |
| A | $0 \angle 0^{\circ}$ |
| B | $9 \mathrm{pu} \angle-180^{\circ}$ |
| C | $9 \mathrm{pu} \angle 0^{\circ}$ |

Since $I_{d} / I_{r}=89.8 \%$ and lower than the required $95 \%$, the Percent Differential element will not operate.
3. Adjust the $I_{1}$ current as shown below (thereby increasing $I_{d}$ ) and verify that the relay operates.

| WINDING $\mathbf{1}$ |  |
| :--- | :--- |
| PHASE | SINGLE CURRENT $\left(\mathbf{I}_{\mathbf{1}}\right)$ |
| A | $0 \mathrm{~A} \angle 0^{\circ}$ |
| B | $0.2 \mathrm{~A} \angle 0^{\circ}$ |
| C | $0.2 \mathrm{~A} \angle-180^{\circ}$ |


| WINDING $\mathbf{2}$ |  |
| :--- | :--- |
| PHASE | SINGLE CURRENT $\left(\mathbf{I}_{\mathbf{2}}\right)$ |
| A | $0 \mathrm{~A} \angle 0^{\circ}$ |
| B | $9 \mathrm{~A} \angle-180^{\circ}$ |
| C | $9 \mathrm{~A} \angle 0^{\circ}$ |

4. The following differential and restraint current should appear in the T60 actual values menu:

| PHASE | DIFFERENTIAL CURRENT ( $\mathrm{I}_{\mathrm{d}}$ ) | PHASE | RESTRAINT CURRENT ( $\mathbf{I}_{\mathbf{r}}$ ) |
| :---: | :---: | :---: | :---: |
| A | $0 \angle 0^{\circ}$ | A | $0 \angle 0^{\circ}$ |
| B | $8.631 \mathrm{pu} \angle-180^{\circ}$ | B | $9 \mathrm{pu} \angle-180^{\circ}$ |
| C | $8.631 \mathrm{pu} \angle 0^{\circ}$ | C | $9 \mathrm{pu} \angle 0^{\circ}$ |

5. The actual $I_{d} / I_{r}$ ratio is now $95.9 \%$. Verify that the element operates correctly.

## g) SUMMARY

The above tests describe the principles of testing the differential element for all regions from the operating characteristic. For verification of more points, one should consider adjusting the magnitude of the restraint current $I_{r}$ to the desired portion of the characteristic and change the other current to vary $I_{d}$ until the relay operates. Use the Excel tool to compare the actual and expected operating values.

A blank Result Table is provided at the end of this chapter for convenience.

## D/YG30 ${ }^{\circ}$ TRANSFORMER WITH PHASE A TO GROUND FAULT ON THE GROUNDED WYE.

Transformer: D/y30º 20 MVA, 115/12.47 kv, CT1 (200:1), CT2 (1000:1)
D/y $30^{\circ}$ Transformer


Figure 8-3: CURRENT DISTRIBUTION ON A D/YG30 TRANSFORMER WITH A LV-SIDE GROUND FAULT

| TEST | PHASE | INJECTED CURRENT |  | DISPLAYED CURRENT |  | STATUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | W1 CURRENT | W2 CURRENT | DIFFERENTIAL | RESTRAINT |  |
| Balanced Condition | A | $0.29 \angle 0^{\circ}$ | $0.926 \angle-180^{\circ}$ | $0 \angle 0^{\circ}$ | $0.5349 \angle-180^{\circ}$ | Not Applicable |
|  | B | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ |  |
|  | C | $0.29 \angle-180^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0.5349 \angle 0^{\circ}$ |  |
| Minimum Pickup | A | $0.137 \angle 0^{\circ}$ | $0.521 \angle-180^{\circ}$ | $0.048 \angle 0^{\circ}$ | $0.3 \angle-180^{\circ}$ | Block$I_{d}=0.048<\operatorname{Min} \mathrm{PKP}$ |
|  | B | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ |  |
|  | C | $0.137 \angle-180^{\circ}$ | $0 \angle 0^{\circ}$ | $0.048 \angle 0^{\circ}$ | $0.3 \angle 0^{\circ}$ |  |
| Minimum Pickup | A | $0.108 \angle 0^{\circ}$ | $0.521 \angle-180^{\circ}$ | $0.102 \angle 0^{\circ}$ | $0.3 \angle-180^{\circ}$ | Operate$I_{d}=0.102>\operatorname{Min~PKP}$ |
|  | B | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ |  |
|  | C | $0.108 \angle-180^{\circ}$ | $0 \angle 0^{\circ}$ | $0.102 \angle 0^{\circ}$ | $0.3 \angle 0^{\circ}$ |  |
| Slope 1 | A | $0.4435 \angle 0^{\circ}$ | $1.6 \angle-180^{\circ}$ | $0.110 \angle 0^{\circ}$ | $0.9026 \angle-180^{\circ}$ | Block$I_{d} I_{r}=11.9 \%$ |
|  | B | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ |  |
|  | C | $0.4435 \angle-180^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ |  |
| Slope 1 | A | $0.4425 \angle 0^{\circ}$ | $1.7 \angle-180^{\circ}$ | $0.165 \angle 0^{\circ}$ | $0.979 \angle-180^{\circ}$ | Operate$I_{d} I_{r}=16.8 \%$ |
|  | B | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ |  |
|  | C | $0.4425 \angle-180^{\circ}$ | $0 \angle 0^{\circ}$ | $0.165 \angle 0^{\circ}$ | $0.979 \angle 0^{\circ}$ |  |
| Intermediate Slope 1 \& 2 | A | $1.2 \angle 0^{\circ}$ | $5 \angle-180^{\circ}$ | $0.675 \angle-180^{\circ}$ | $2.882 \angle-180^{\circ}$ | $\begin{aligned} & \text { Block } \\ & I_{d} I_{r}=23.4 \% \end{aligned}$ |
|  | B | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ |  |
|  | C | $1.2 \angle-180^{\circ}$ | $0 \angle 0^{\circ}$ | $0.675 \angle 0^{\circ}$ | $2.882 \angle 0^{\circ}$ |  |
| Intermediate Slope 1 \& 2 | A | $1.1 \angle 0^{\circ}$ | $5 \angle-180^{\circ}$ | $0.860 \angle-180^{\circ}$ | $2.882 \angle-180^{\circ}$ | Operate$I_{d} / I_{r}=29.8 \%$ |
|  | B | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ |  |
|  | C | $1.1 \angle-180^{\circ}$ | $0 \angle 0^{\circ}$ | $0.860 \angle 0^{\circ}$ | $2.882 \angle 0^{\circ}$ |  |
| Slope 2 | A | $0.4 \angle 0^{\circ}$ | $15 \angle-180^{\circ}$ | $7.915 \angle-180^{\circ}$ | $8.646 \angle-180^{\circ}$ | $\begin{aligned} & \text { Block } \\ & I_{d} I_{r}=91.5 \% \end{aligned}$ |
|  | B | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ |  |
|  | C | $0.4 \angle-180^{\circ}$ | $0 \angle 0^{\circ}$ | $7.915 \angle 0^{\circ}$ | $8.646 \angle 0^{\circ}$ |  |
| Slope 2 | A | $0.2 \angle 0^{\circ}$ | $15 \angle-180^{\circ}$ | $7.918 \angle-180^{\circ}$ | $8.650 \angle-180^{\circ}$ | Operate$I_{d} / I_{r}=95.7 \%$ |
|  | B | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ |  |
|  | C | $0.2 \angle-180^{\circ}$ | $0 \angle 0^{\circ}$ | $7.916 \angle 0^{\circ}$ | $8.650 \angle 0^{\circ}$ |  |

## YgID30 ${ }^{\circ}$ TRANSFORMER WITH PHASE B TO C FAULT ON THE DELTA SIDE.

Transformer: Y/D30, 20 MVA, 115/12.47 kv, CT1 (200:1), CT2 (1000:1)
$\mathrm{I}_{\mathrm{A}}(\mathrm{f})=0.5 \mathrm{pu} \angle-270^{\circ}$

$I_{c}(f)=0.5 \mathrm{pu} \angle-270^{\circ}$

Y/d30 ${ }^{\circ}$ Transformer
$l_{a}(f)=0$

$I_{c}(f)=0.866 \mathrm{pu} \angle-270^{\circ}$

Figure 8-4: CURRENT DISTRIBUTION ON A YG/D30 TRANSFORMER WITH AN a TO b FAULT ON THE LV SIDE
Three adjustable currents are required in this case. The Phase A and C Wye-side line currents, identical in magnitude but displaced by $180^{\circ}$, can be simulated with one current source passed through these relay terminals in series. The second current source simulates the Phase B primary current. The third source simulates the delta "b" and "c" phase currents, also equal in magnitude but displaced by $180^{\circ}$.

| TEST | PHASE | INJECTED CURRENT |  | DISPLAYED CURRENT |  | STATUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | W1 CURRENT | W2 CURRENT | DIFFERENTIAL | RESTRAINT |  |
| Balanced Condition | A | $0.25 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | Not Applicable |
|  | B | $0.5 \angle-180^{\circ}$ | $0.8 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0.8 \angle 0^{\circ}$ |  |
|  | C | $0.25 \angle 0^{\circ}$ | $0.8 \angle-180^{\circ}$ | $0 \angle 0^{\circ}$ | $0.8 \angle-180^{\circ}$ |  |
| Min Pickup change the Min PKP to 0.2 pu | A | $0.25 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | Block$l_{d}=0.051<\operatorname{Min} \mathrm{PKP}$ |
|  | B | $0.5 \angle-180^{\circ}$ | $0.95 \angle 0^{\circ}$ | $0.154 \angle 0^{\circ}$ | $0.948 \angle 0^{\circ}$ |  |
|  | C | $0.25 \angle 0^{\circ}$ | $0.95 \angle-180^{\circ}$ | $0.155 \angle 0^{\circ}$ | $0.950 \angle-180^{\circ}$ |  |
| Minimum Pickup | A | $0.25 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | Operate$I_{d}=0.102>\operatorname{Min~PKP}$ |
|  | B | $0.5 \angle-180^{\circ}$ | $1.05 \angle 0^{\circ}$ | $0.253 \angle 0^{\circ}$ | $1.049 \angle 0^{\circ}$ |  |
|  | C | $0.25 \angle 0^{\circ}$ | $1.05 \angle-180^{\circ}$ | $0.255 \angle 0^{\circ}$ | $1.050 \angle-180^{\circ}$ |  |
| Slope 1 return the Min PKP to 0.1 pu | A | $0.25 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | Block$I_{d} / I_{r}=13.2 \%$ |
|  | B | $0.5 \angle-180^{\circ}$ | $0.92 \angle 0^{\circ}$ | $0.123 \angle 0^{\circ}$ | $0.919 \angle 0^{\circ}$ |  |
|  | C | $0.25 \angle 0^{\circ}$ | $0.92 \angle-180^{\circ}$ | $0.123 \angle 0^{\circ}$ | $0.919 \angle-180^{\circ}$ |  |
| Slope 1 | A | $0.25 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | Operate$I_{d} I_{r}=15.9 \%$ |
|  | B | $0.5 \angle-180^{\circ}$ | $0.95 \angle 0^{\circ}$ | $0.153 \angle 0^{\circ}$ | $0.948 \angle 0^{\circ}$ |  |
|  | C | $0.25 \angle 0^{\circ}$ | $0.95 \angle-180^{\circ}$ | $0.153 \angle 0^{\circ}$ | $0.948 \angle-180^{\circ}$ |  |
| Intermediate Slope 1 \& 2 | A | $2 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $\begin{aligned} & \text { Block } \\ & I_{d} / I_{r}=84.3 \% \\ & <86.6 \% \text { computed } \end{aligned}$ |
|  | B | $4 \angle-180^{\circ}$ | $1 \angle 0^{\circ}$ | $5.37 \angle-180^{\circ}$ | $6.37 \angle 0^{\circ}$ |  |
|  | C | $2 \angle 0^{\circ}$ | $1 \angle-180^{\circ}$ | $5.37 \angle 0^{\circ}$ | $6.37 \angle-180^{\circ}$ |  |
| Intermediate Slope 1 \& 2 | A | $2 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $\begin{aligned} & \text { Operate } \\ & I_{d} I_{r}=87.5 \% \\ & \quad>86.6 \% \text { computed } \end{aligned}$ |
|  | B | $4 \angle-180^{\circ}$ | $0.8 \angle 0^{\circ}$ | $5.57 \angle-180^{\circ}$ | $6.37 \angle 0^{\circ}$ |  |
|  | C | $2 \angle 0^{\circ}$ | $0.8 \angle-180^{\circ}$ | $5.57 \angle 0^{\circ}$ | $6.37 \angle-180^{\circ}$ |  |
| Slope 2 | A | $4 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $\begin{aligned} & \text { Block } \\ & I_{d} I_{r}=93.7 \% \\ & \quad<\text { Slope } 2=95 \% \end{aligned}$ |
|  | B | $8 \angle-180^{\circ}$ | $0.8 \angle 0^{\circ}$ | $11.93 \angle-180^{\circ}$ | $12.73 \angle 0^{\circ}$ |  |
|  | C | $4 \angle 0^{\circ}$ | $0.8 \angle-180^{\circ}$ | $11.93 \angle 0^{\circ}$ | $12.73 \angle-180^{\circ}$ |  |
| Slope 2 | A | $4 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $\begin{aligned} & \text { Operate } \\ & \begin{aligned} I_{d} / I_{r} & =95.7 \% \\ & >\text { Slope } 2=95 \% \end{aligned} \end{aligned}$ |
|  | B | $8 \angle-180^{\circ}$ | $0.6 \angle 0^{\circ}$ | $12.13 \angle-180^{\circ}$ | $12.73 \angle 0^{\circ}$ |  |
|  | C | $4 \angle 0^{\circ}$ | $0.6 \angle-180^{\circ}$ | $12.13 \angle 0^{\circ}$ | $12.73 \angle-180^{\circ}$ |  |

DIDO ${ }^{\circ}$ TRANSFORMER WITH PHASE B TO C FAULT ON THE SECONDARY DELTA WINDING.
Transformer: D/DOº, 20 MVA, 115/12.47 kv, CT1 (200:1), CT2 (1000:1)


Figure 8-5: CURRENT DISTRIBUTION OF DID TRANSFORMER WITH AN a TO b FAULT ON THE LV SIDE

| TEST | PHASE | INJECTED CURRENT |  | DISPLAYED CURRENT |  | STATUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | W1 CURRENT | W2 CURRENT | DIFFERENTIAL | RESTRAINT |  |
| Balanced Condition | A | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | Not Applicable |
|  | B | $0.435 \angle-90^{\circ}$ | $0.8 \angle-270^{\circ}$ | $0 \angle 0^{\circ}$ | $0.8 \angle-270^{\circ}$ |  |
|  | C | $0.435 \angle-270^{\circ}$ | $0.8 \angle-90^{\circ}$ | $0 \angle 0^{\circ}$ | $0.8 \angle-90^{\circ}$ |  |
| Min Pickup | A | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | Block$I_{d}=0.065<\operatorname{Min} \mathrm{PKP}$ |
|  | B | $0.09 \angle-90^{\circ}$ | $0.23 \angle-270^{\circ}$ | $0.065 \angle 0^{\circ}$ | $0.230 \angle-270^{\circ}$ |  |
|  | C | $0.09 \angle-270^{\circ}$ | $0.23 \angle-90^{\circ}$ | $0.065 \angle 0^{\circ}$ | $0.230 \angle-90^{\circ}$ |  |
| Min Pickup | A | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | Operate$I_{d}=0.101>\operatorname{Min} \operatorname{PKP}$ |
|  | B | $0.21 \angle-90^{\circ}$ | $0.486 \angle-270^{\circ}$ | $0.102 \angle 0^{\circ}$ | $0.486 \angle-270^{\circ}$ |  |
|  | C | $0.21 \angle-270^{\circ}$ | $0.486 \angle-90^{\circ}$ | $0.101 \angle 0^{\circ}$ | $0.486 \angle-90^{\circ}$ |  |
| Slope 1 | A | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | Block$l_{d} / I_{r}=14 \%<15 \%$ |
|  | B | $0.651 \angle-90^{\circ}$ | $1.39 \angle-270^{\circ}$ | $0.195 \angle 0^{\circ}$ | $1.39 \angle-270^{\circ}$ |  |
|  | C | $0.651 \angle-270^{\circ}$ | $1.39 \angle-90^{\circ}$ | $0.195 \angle 0^{\circ}$ | $1.39 \angle-90^{\circ}$ |  |
| Slope 1 | A | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | Operate$I_{d} / I_{r}=16.8 \%>15 \%$ |
|  | B | $0.63 \angle-90^{\circ}$ | $1.39 \angle-270^{\circ}$ | $0.233 \angle 0^{\circ}$ | $1.39 \angle-270^{\circ}$ |  |
|  | C | $0.63 \angle-270^{\circ}$ | $1.39 \angle-90^{\circ}$ | $0.233 \angle 0^{\circ}$ | $1.39 \angle-90^{\circ}$ |  |
| Intermediate Slope 1 \& 2 | A | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | Block$\begin{aligned} I_{d} / I_{r} & =52.6 \% \\ & <60 \% \text { computed } \end{aligned}$ |
|  | B | $1.2 \angle-90^{\circ}$ | $4.63 \angle-270^{\circ}$ | $2.44 \angle-270^{\circ}$ | $4.63 \angle-270^{\circ}$ |  |
|  | C | $1.2 \angle-270^{\circ}$ | $4.63 \angle-90^{\circ}$ | $2.44 \angle-90^{\circ}$ | $4.63 \angle-90^{\circ}$ |  |
| Intermediate Slope 1 \& 2 | A | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | Operate$\begin{aligned} I_{d} I_{r} & =68.8 \% \\ & >60 \% \text { computed } \end{aligned}$ |
|  | B | $0.8 \angle-90^{\circ}$ | $4.63 \angle-270^{\circ}$ | $3.18 \angle-270^{\circ}$ | $4.63 \angle-270^{\circ}$ |  |
|  | C | $0.8 \angle-270^{\circ}$ | $4.63 \angle-90^{\circ}$ | $3.18 \angle-90^{\circ}$ | $4.63 \angle-90^{\circ}$ |  |
| Slope 2 | A | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | Block$\begin{aligned} I_{d} I_{r} & =93.2 \% \\ & <\text { Slope } 2=95 \% \end{aligned}$ |
|  | B | $0.315 \angle-90^{\circ}$ | $8.33 \angle-270^{\circ}$ | $7.77 \angle-270^{\circ}$ | $8.33 \angle-270^{\circ}$ |  |
|  | C | $0.315 \angle-270^{\circ}$ | $8.33 \angle-90^{\circ}$ | $7.77 \angle-90^{\circ}$ | $8.33 \angle-90^{\circ}$ |  |
| Slope 2 | A | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $0 \angle 0^{\circ}$ | $\begin{aligned} & \text { Operate } \\ & I_{d} / I_{r}=96 \% \\ & \quad>\text { Slope } 2=95 \% \end{aligned}$ |
|  | B | $0.18 \angle-90^{\circ}$ | $8.33 \angle-270^{\circ}$ | $8 \angle-270^{\circ}$ | $8.33 \angle-270^{\circ}$ |  |
|  | C | $0.18 \angle-270^{\circ}$ | $8.33 \angle-90^{\circ}$ | $8 \angle-90^{\circ}$ | $8.33 \angle-90^{\circ}$ |  |

The Inrush Inhibit Test requires a secondary injection test capable of producing a current with an adjustable second harmonic component. Use the appropriate commissioning tables at the end of this chapter to record values.

This procedure is based upon the example provided in the Differential Characteristic Test Example section. The transformer parameters are as follows:

Transformer: $\mathrm{Y} / \mathrm{yO}{ }^{\circ}, 230 / 69 \mathrm{kV}$, CT1 (300:1), CT2 (1000:1) 2nd Harmonic Setting $=\mathbf{2 0 \%}$

1. Connect the relay test set to inject current into the Winding 1 Phase A CT input.
2. Inject currents into the relay as shown in the table below until the biased differential element picks up.
3. Confirm that only the percent differential element has operated.
4. Increase the harmonic content until the element drops out. Record this value as the Inrush Inhibit Level Pickup.
5. Gradually decrease the harmonic content level until the element picks up. Record this value as the Inrush Inhibit Level Dropout.
6. Switch off the current.
7. Repeat steps 1 through 6 for phases B and C.
8. Repeat steps 1 through 7 for Winding 2 (and Windings 3 and 4 if necessary).

Table 8-1: INRUSH INHIBIT TEST SUMMARY

| PHASE | INECTED |  |  |  | DISPLAYED |  |  | STATUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W1 <br> CURRENT | $\begin{gathered} \text { W1 2ND } \\ \text { HARMONIC } \end{gathered}$ | W2 CURRENT | $\begin{gathered} \text { W2 2ND } \\ \text { HARMONIC } \end{gathered}$ | $\mathrm{I}_{\text {d }}$ | $\begin{gathered} \text { 2ND } \\ \text { HARMONIC } \end{gathered}$ | $I_{r}$ |  |
| A | $1 \mathrm{~A} \angle 0^{\circ}$ | 18.01\% | $0 \mathrm{~A} \angle 0^{\circ}$ | 0 | 0.997 pu | 18\% | 0.997 pu | Operate |
|  | $1 \mathrm{~A} \angle 0^{\circ}$ | 19.97\% | $0 \mathrm{~A} \angle 0^{\circ}$ | 0 | 0.997 pu | 20\% | 0.997 pu | Block |
| B | $4 \mathrm{~A} \angle 0^{\circ}$ | 16.72\% | $2 \mathrm{~A} \angle-180^{\circ}$ | 15\% | 2 pu | 18\% | 4 pu | Operate |
|  | $4 \mathrm{~A} \angle 0^{\circ}$ | 17.60\% | $2 \mathrm{~A} \angle-180^{\circ}$ | 15\% | 2 pu | 20\% | 4 pu | Block |
| C | $2 \mathrm{~A} \angle 0^{\circ}$ | 15\% | $4 \mathrm{~A} \angle-180^{\circ}$ | 16.3\% | 2 pu | 18\% | 4 pu | Operate |
|  | $2 \mathrm{~A} \angle 0^{\circ}$ | 15\% | $4 \mathrm{~A} \angle-180^{\circ}$ | 17.3\% | 2 pu | 20\% | 4 pu | Block |

The second harmonic inhibit feature can be verified by setting the INRUSH INHIBIT MODE setting as follows:
For InRUSH InHibit mode set to "2-out-of-3":

1. Set the inrush inhibit function to "Trad. 2nd" and the inrush inhibit level to "20\%".
2. Inject currents into one CT bank (one winding only) until the biased differential operates for all three phases.
3. Apply a second harmonic to Phase A higher than the set threshold and monitor operation of Phases A, B, and C. The element should stay operated on all three phases.
4. Apply a second harmonic to Phase B with a level less than the set threshold.
5. Increase the second harmonic level in Phase B. When it passes the set threshold, all three phases of differential protection should drop out.

For INRUSH INHIBIT MODE set to "Average":

1. Set the INRUSH INHIBIT FUNCTION to "Trad. 2nd" and the INRUSH INHIBIT LEVEL to "20\%".
2. Inject currents into one CT bank (one winding only) until the biased differential operates for all three phases.
3. Apply a second harmonic to Phase A with a level greater than the set threshold and monitor the operation of the Percent Differential element. The element should drop out when the injected second harmonic level becomes three times larger than the set threshold.

The Overexcitation Inhibit Test requires a secondary injection from a source capable of producing an adjustable 5th harmonic component. Use the appropriate commissioning tables at the end of this chapter to record values.

This procedure is based upon the example provided in the Differential Characteristic Test Example section. The transformer parameters are as follows:

Transformer: $\mathrm{Y} / \mathrm{yO}^{\circ}, 230 / 69 \mathrm{kV}$, CT1 (300:1), CT2 (1000:1)
5th Harmonic Setting $=10 \%$

1. Connect the relay test set to inject current into the Winding 1 Phase A CT input.
2. Inject a current into the relay until the biased Differential element operates.
3. Confirm that ONLY the differential element has operated.
4. Increase the 5th harmonic content level until the element drops out. Record this value as the Overexcitation Inhibit Level Pickup.
5. Gradually decrease the harmonic content level until the element picks up. Record this value as the Overexcitation Inhibit Level Dropout.
6. Switch off the current.
7. Repeat steps 1 through 6 for Phases B and C.
8. Repeat steps 1 through 7 for Winding 2 (and Windings 3 and 4 if necessary).

Table 8-2: OVEREXCITATION INHIBIT TEST SUMMARY

| PHASE | INECTED |  |  |  | DISPLAYED |  |  | STATUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { W1 } \\ \text { CURRENT } \end{gathered}$ | $\begin{gathered} \text { W1 5TH } \\ \text { HARMONIC } \end{gathered}$ | W2 <br> CURRENT | $\begin{gathered} \text { W2 5TH } \\ \text { HARMONIC } \end{gathered}$ | $I_{\text {d }}$ | 5TH HARMONIC | $I_{r}$ |  |
| A | $1 \mathrm{~A} \angle 0^{\circ}$ | 8\% | $0 \mathrm{~A} \angle 0^{\circ}$ | 0 | 1 pu | 8\% | 1 pu | Operate |
|  | $1 \mathrm{~A} \angle 0^{\circ}$ | 10\% | $0 \mathrm{~A} \angle 0^{\circ}$ | 0 | 1 pu | 10\% | 1 pu | Block |
| B | $4 \mathrm{~A} \angle 0^{\circ}$ | 8.5\% | $2 \mathrm{~A} \angle-180^{\circ}$ | 9\% | 2 pu | 8\% | 4 pu | Operate |
|  | $4 \mathrm{~A} \angle 0^{\circ}$ | 9.5\% | $2 \mathrm{~A} \angle-180^{\circ}$ | 9\% | 2 pu | 10\% | 4 pu | Block |
| C | $2 \mathrm{~A} \angle 0^{\circ}$ | 9\% | $4 \mathrm{~A} \angle-180^{\circ}$ | 8.5\% | 2 pu | 8\% | 4 pu | Operate |
|  | $2 \mathrm{~A} \angle 0^{\circ}$ | 9\% | $4 \mathrm{~A} \angle-180^{\circ}$ | 9.5\% | 2 pu | 10\% | 4 pu | Block |

Table 8-3: DIFFERENTIAL CHARACTERISTIC TEST TABLE

| TEST | PHASE | INJECTED CURRENT |  | DISPLAYED CURRENT |  | STATUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | W1 CURRENT | W2 CURRENT | DIFFERENTIAL | RESTRAINT |  |
| BalancedCondition | A |  |  |  |  | Not Applicable |
|  | B |  |  |  |  |  |
|  | C |  |  |  |  |  |
| Min Pickup | A |  |  |  |  | Status:$I_{d}=$ |
|  | B |  |  |  |  |  |
|  | C |  |  |  |  |  |
| Min Pickup | A |  |  |  |  | Status:$I_{d}=$ |
|  | B |  |  |  |  |  |
|  | C |  |  |  |  |  |
| Slope 1 | A |  |  |  |  | Status:$I_{d} I_{r}=$ |
|  | B |  |  |  |  |  |
|  | C |  |  |  |  |  |
| Slope 1 | A |  |  |  |  | Status:$I_{d} I_{r}=$ |
|  | B |  |  |  |  |  |
|  | C |  |  |  |  |  |
| Intermediate Slope 1 \& 2 | A |  |  |  |  | Status:$I_{d} / I_{r}=$ |
|  | B |  |  |  |  |  |
|  | C |  |  |  |  |  |
| Intermediate Slope 1 \& 2 | A |  |  |  |  | Status:$I_{d} I_{r}=$ |
|  | B |  |  |  |  |  |
|  | C |  |  |  |  |  |
| Slope 2 | A |  |  |  |  | Status: $\qquad$$I_{d} I_{r}=$$\qquad$ |
|  | B |  |  |  |  |  |
|  | C |  |  |  |  |  |
| Slope 2 | A |  |  |  |  | Status:$I_{d} I_{r}=$ |
|  | B |  |  |  |  |  |
|  | C |  |  |  |  |  |

8.5.2 INRUSH INHIBIT TESTS

Table 8-4: INRUSH INHIBIT TEST TABLE

| PHASE | INECTED |  |  |  | DISPLAYED |  |  | STATUS (BLOCKI OPERATE) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { W1 } \\ \text { CURRENT } \\ \text { (A) } \end{gathered}$ | $\begin{aligned} & \text { W1 2ND } \\ & \text { HARMONIC } \\ & \text { (\%) } \end{aligned}$ | $\begin{gathered} \text { W2 } \\ \text { CURRENT } \\ \text { (A) } \end{gathered}$ | W2 2ND HARMONIC (\%) | $\mathrm{I}_{\mathrm{d}}$ (PU) | 2ND HARMONIC $(\%)$ | $\mathrm{I}_{\mathrm{r}}(\mathrm{PU})$ |  |
| A |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| B |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| C |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

Table 8-5: OVEREXCITATION INHIBIT TEST RESULTS

| PHASE | INECTED |  |  |  | DISPLAYED |  |  | STATUS <br> (BLOCKI OPERATE) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { W1 } \\ \text { CURRENT } \\ \text { (A) } \end{gathered}$ | $\begin{gathered} \text { W1 5TH } \\ \text { HARMONIC } \\ (\%) \\ \hline \end{gathered}$ | $\begin{gathered} \text { W2 } \\ \text { CURRENT } \\ \text { (A) } \end{gathered}$ | $\begin{gathered} \text { W2 5TH } \\ \text { HARMONIC } \\ (\%) \\ \hline \end{gathered}$ | $\mathrm{I}_{\mathrm{d}}(\mathrm{PU})$ | 5TH HARMONIC (\%) | $\mathrm{I}_{\mathrm{r}}(\mathrm{PU})$ |  |
| A |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| B |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| C |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 1 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 5792 | RGF 1 Differential Gnd Current Mag. | RGF 1 Igd Mag |
| 5794 | RGF 1 Restricted Gnd Current Mag. | RGF 1 Igr Mag |
| 5796 | RGF 2 Differential Gnd Current Mag. | RGF 2 Igd Mag |
| 5798 | RGF 2 Restricted Gnd Current Mag. | RGF 2 Igr Mag |
| 5800 | RGF 3 Differential Gnd Current Mag. | RGF 3 Igd Mag |
| 5802 | RGF 3 Restricted Gnd Current Mag. | RGF 3 Igr Mag |
| 5804 | RGF 4 Differential Gnd Current Mag. | RGF 4 Igd Mag |
| 5806 | RGF 4 Restricted Gnd Current Mag. | RGF 4 Igr Mag |
| 5808 | RGF 5 Differential Gnd Current Mag. | RGF 5 Igd Mag |
| 5810 | RGF 5 Restricted Gnd Current Mag. | RGF 5 Igr Mag |
| 5812 | RGF 6 Differential Gnd Current Mag. | RGF 6 Igd Mag |
| 5814 | RGF 6 Restricted Gnd Current Mag. | RGF 6 Igr Mag |
| 6144 | SRC 1 Phase A Current RMS | SRC 1 la RMS |
| 6146 | SRC 1 Phase B Current RMS | SRC 1 lb RMS |
| 6148 | SRC 1 Phase C Current RMS | SRC 1 Ic RMS |
| 6150 | SRC 1 Neutral Current RMS | SRC 1 In RMS |
| 6152 | SRC 1 Phase A Current Magnitude | SRC 1 la Mag |
| 6154 | SRC 1 Phase A Current Angle | SRC 1 la Angle |
| 6155 | SRC 1 Phase B Current Magnitude | SRC 1 lb Mag |
| 6157 | SRC 1 Phase B Current Angle | SRC 1 lb Angle |
| 6158 | SRC 1 Phase C Current Magnitude | SRC 1 Ic Mag |
| 6160 | SRC 1 Phase C Current Angle | SRC 1 Ic Angle |
| 6161 | SRC 1 Neutral Current Magnitude | SRC 1 In Mag |
| 6163 | SRC 1 Neutral Current Angle | SRC 1 In Angle |
| 6164 | SRC 1 Ground Current RMS | SRC 1 Ig RMS |
| 6166 | SRC 1 Ground Current Magnitude | SRC 1 Ig Mag |
| 6168 | SRC 1 Ground Current Angle | SRC 1 Ig Angle |
| 6169 | SRC 1 Zero Seq. Current Magnitude | SRC 1 I_0 Mag |
| 6171 | SRC 1 Zero Sequence Current Angle | SRC 1 I_0 Angle |
| 6172 | SRC 1 Pos. Seq. Current Magnitude | SRC 1 I_1 Mag |
| 6174 | SRC 1 Pos. Seq. Current Angle | SRC 1 I_1 Angle |
| 6175 | SRC 1 Neg. Seq. Current Magnitude | SRC 1 I_2 Mag |
| 6177 | SRC 1 Neg. Seq. Current Angle | SRC 1 I_2 Angle |
| 6178 | SRC 1 Differential Gnd Current Mag. | SRC 1 Igd Mag |
| 6180 | SRC 1 Diff. Gnd. Current Angle | SRC 1 Igd Angle |
| 6208 | SRC 2 Phase A Current RMS | SRC 2 la RMS |
| 6210 | SRC 2 Phase B Current RMS | SRC 2 lb RMS |
| 6212 | SRC 2 Phase C Current RMS | SRC 2 Ic RMS |
| 6214 | SRC 2 Neutral Current RMS | SRC 2 In RMS |
| 6216 | SRC 2 Phase A Current Magnitude | SRC 2 la Mag |
| 6218 | SRC 2 Phase A Current Angle | SRC 2 la Angle |
| 6219 | SRC 2 Phase B Current Magnitude | SRC 2 lb Mag |
| 6221 | SRC 2 Phase B Current Angle | SRC 2 lb Angle |
| 6222 | SRC 2 Phase C Current Magnitude | SRC 2 Ic Mag |
| 6224 | SRC 2 Phase C Current Angle | SRC 2 Ic Angle |
| 6225 | SRC 2 Neutral Current Magnitude | SRC 2 In Mag |
| 6227 | SRC 2 Neutral Current Angle | SRC 2 In Angle |
| 6228 | SRC 2 Ground Current RMS | SRC 2 Ig RMS |
| 6230 | SRC 2 Ground Current Magnitude | SRC 2 Ig Mag |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 2 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 6232 | SRC 2 Ground Current Angle | SRC 2 Ig Angle |
| 6233 | SRC 2 Zero Seq. Current Magnitude | SRC 2 I_0 Mag |
| 6235 | SRC 2 Zero Sequence Current Angle | SRC 2 I_0 Angle |
| 6236 | SRC 2 Pos. Seq. Current Magnitude | SRC 2 I_1 Mag |
| 6238 | SRC 2 Positive Seq. Current Angle | SRC 2 I_1 Angle |
| 6239 | SRC 2 Neg. Seq. Current Magnitude | SRC 2 I_2 Mag |
| 6241 | SRC 2 Negative Seq. Current Angle | SRC 2 I_2 Angle |
| 6242 | SRC 2 Differential Gnd Current Mag. | SRC 2 Igd Mag |
| 6244 | SRC 2 Diff. Gnd Current Angle | SRC 2 Igd Angle |
| 6272 | SRC 3 Phase A Current RMS | SRC 3 la RMS |
| 6274 | SRC 3 Phase B Current RMS | SRC 3 lb RMS |
| 6276 | SRC 3 Phase C Current RMS | SRC 3 Ic RMS |
| 6278 | SRC 3 Neutral Current RMS | SRC 3 In RMS |
| 6280 | SRC 3 Phase A Current Magnitude | SRC 3 la Mag |
| 6282 | SRC 3 Phase A Current Angle | SRC 3 la Angle |
| 6283 | SRC 3 Phase B Current Magnitude | SRC 3 lb Mag |
| 6285 | SRC 3 Phase B Current Angle | SRC 3 lb Angle |
| 6286 | SRC 3 Phase C Current Magnitude | SRC 3 Ic Mag |
| 6288 | SRC 3 Phase C Current Angle | SRC 3 Ic Angle |
| 6289 | SRC 3 Neutral Current Magnitude | SRC 3 In Mag |
| 6291 | SRC 3 Neutral Current Angle | SRC 3 In Angle |
| 6292 | SRC 3 Ground Current RMS | SRC 3 Ig RMS |
| 6294 | SRC 3 Ground Current Magnitude | SRC 3 Ig Mag |
| 6296 | SRC 3 Ground Current Angle | SRC 3 Ig Angle |
| 6297 | SRC 3 Zero Seq. Current Magnitude | SRC 3 I_0 Mag |
| 6299 | SRC 3 Zero Sequence Current Angle | SRC 3 I_0 Angle |
| 6300 | SRC 3 Pos. Seq. Current Magnitude | SRC 3 I_1 Mag |
| 6302 | SRC 3 Positive Seq. Current Angle | SRC 3 I_1 Angle |
| 6303 | SRC 3 Neg. Seq. Current Magnitude | SRC 3 I_2 Mag |
| 6305 | SRC 3 Negative Seq. Current Angle | SRC 3 I_2 Angle |
| 6306 | SRC 3 Differential Gnd Current Mag. | SRC 3 Igd Mag |
| 6308 | SRC 3 Differential Gnd Current Angle | SRC 3 Igd Angle |
| 6336 | SRC 4 Phase A Current RMS | SRC 4 la RMS |
| 6338 | SRC 4 Phase B Current RMS | SRC 4 Ib RMS |
| 6340 | SRC 4 Phase C Current RMS | SRC 4 Ic RMS |
| 6342 | SRC 4 Neutral Current RMS | SRC 4 In RMS |
| 6344 | SRC 4 Phase A Current Magnitude | SRC 4 la Mag |
| 6346 | SRC 4 Phase A Current Angle | SRC 4 la Angle |
| 6347 | SRC 4 Phase B Current Magnitude | SRC 4 lb Mag |
| 6349 | SRC 4 Phase B Current Angle | SRC 4 lb Angle |
| 6350 | SRC 4 Phase C Current Magnitude | SRC 4 Ic Mag |
| 6352 | SRC 4 Phase C Current Angle | SRC 4 Ic Angle |
| 6353 | SRC 4 Neutral Current Magnitude | SRC 4 In Mag |
| 6355 | SRC 4 Neutral Current Angle | SRC 4 In Angle |
| 6356 | SRC 4 Ground Current RMS | SRC 4 Ig RMS |
| 6358 | SRC 4 Ground Current Magnitude | SRC 4 Ig Mag |
| 6360 | SRC 4 Ground Current Angle | SRC 4 Ig Angle |
| 6361 | SRC 4 Zero Seq. Current Magnitude | SRC 4 I_0 Mag |
| 6363 | SRC 4 Zero Seq. Current Angle | SRC 4 I_0 Angle |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 3 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 6364 | SRC 4 Positive Seq. Current Mag. | SRC 4 I_1 Mag |
| 6366 | SRC 4 Positive Seq. Current Angle | SRC 4 I_1 Angle |
| 6367 | SRC 4 Negative Seq. Current Mag. | SRC $41 \_2 \mathrm{Mag}$ |
| 6369 | SRC 4 Negative Seq. Current Angle | SRC 4 I_2 Angle |
| 6370 | SRC 4 Differential Gnd Current Mag. | SRC 4 Igd Mag |
| 6372 | SRC 4 Differential Gnd Current Angle | SRC 4 Igd Angle |
| 6656 | SRC 1 Phase AG Voltage RMS | SRC 1 Vag RMS |
| 6658 | SRC 1 Phase BG Voltage RMS | SRC 1 Vbg RMS |
| 6660 | SRC 1 Phase CG Voltage RMS | SRC 1 Vcg RMS |
| 6662 | SRC 1 Phase AG Voltage Magnitude | SRC 1 Vag Mag |
| 6664 | SRC 1 Phase AG Voltage Angle | SRC 1 Vag Angle |
| 6665 | SRC 1 Phase BG Voltage Magnitude | SRC 1 Vbg Mag |
| 6667 | SRC 1 Phase BG Voltage Angle | SRC 1 Vbg Angle |
| 6668 | SRC 1 Phase CG Voltage Magnitude | SRC 1 Vcg Mag |
| 6670 | SRC 1 Phase CG Voltage Angle | SRC 1 Vcg Angle |
| 6671 | SRC 1 Phase AB Voltage RMS | SRC 1 Vab RMS |
| 6673 | SRC 1 Phase BC Voltage RMS | SRC 1 Vbc RMS |
| 6675 | SRC 1 Phase CA Voltage RMS | SRC 1 Vca RMS |
| 6677 | SRC 1 Phase AB Voltage Magnitude | SRC 1 Vab Mag |
| 6679 | SRC 1 Phase AB Voltage Angle | SRC 1 Vab Angle |
| 6680 | SRC 1 Phase BC Voltage Magnitude | SRC 1 Vbc Mag |
| 6682 | SRC 1 Phase BC Voltage Angle | SRC 1 Vbc Angle |
| 6683 | SRC 1 Phase CA Voltage Magnitude | SRC 1 Vca Mag |
| 6685 | SRC 1 Phase CA Voltage Angle | SRC 1 Vca Angle |
| 6686 | SRC 1 Auxiliary Voltage RMS | SRC 1 Vx RMS |
| 6688 | SRC 1 Auxiliary Voltage Magnitude | SRC 1 Vx Mag |
| 6690 | SRC 1 Auxiliary Voltage Angle | SRC 1 Vx Angle |
| 6691 | SRC 1 Zero Sequence Voltage Mag. | SRC 1 V_0 Mag |
| 6693 | SRC 1 Zero Sequence Voltage Angle | SRC 1 V_0 Angle |
| 6694 | SRC 1 Positive Seq. Voltage Mag. | SRC 1 V_1 Mag |
| 6696 | SRC 1 Positive Seq. Voltage Angle | SRC 1 V_1 Angle |
| 6697 | SRC 1 Negative Seq. Voltage Mag. | SRC 1 V_2 Mag |
| 6699 | SRC 1 Negative Seq. Voltage Angle | SRC 1 V_2 Angle |
| 6720 | SRC 2 Phase AG Voltage RMS | SRC 2 Vag RMS |
| 6722 | SRC 2 Phase BG Voltage RMS | SRC 2 Vbg RMS |
| 6724 | SRC 2 Phase CG Voltage RMS | SRC 2 Vcg RMS |
| 6726 | SRC 2 Phase AG Voltage Magnitude | SRC 2 Vag Mag |
| 6728 | SRC 2 Phase AG Voltage Angle | SRC 2 Vag Angle |
| 6729 | SRC 2 Phase BG Voltage Magnitude | SRC 2 Vbg Mag |
| 6731 | SRC 2 Phase BG Voltage Angle | SRC 2 Vbg Angle |
| 6732 | SRC 2 Phase CG Voltage Magnitude | SRC 2 Vcg Mag |
| 6734 | SRC 2 Phase CG Voltage Angle | SRC 2 Vcg Angle |
| 6735 | SRC 2 Phase AB Voltage RMS | SRC 2 Vab RMS |
| 6737 | SRC 2 Phase BC Voltage RMS | SRC 2 Vbc RMS |
| 6739 | SRC 2 Phase CA Voltage RMS | SRC 2 Vca RMS |
| 6741 | SRC 2 Phase AB Voltage Magnitude | SRC 2 Vab Mag |
| 6743 | SRC 2 Phase AB Voltage Angle | SRC 2 Vab Angle |
| 6744 | SRC 2 Phase BC Voltage Magnitude | SRC 2 Vbc Mag |
| 6746 | SRC 2 Phase BC Voltage Angle | SRC 2 Vbc Angle |
| 6747 | SRC 2 Phase CA Voltage Magnitude | SRC 2 Vca Mag |
| 6749 | SRC 2 Phase CA Voltage Angle | SRC 2 Vca Angle |
| 6750 | SRC 2 Auxiliary Voltage RMS | SRC 2 Vx RMS |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 4 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 6752 | SRC 2 Auxiliary Voltage Magnitude | SRC 2 Vx Mag |
| 6754 | SRC 2 Auxiliary Voltage Angle | SRC 2 Vx Angle |
| 6755 | SRC 2 Zero Seq. Voltage Magnitude | SRC 2 V_0 Mag |
| 6757 | SRC 2 Zero Sequence Voltage Angle | SRC 2 V_0 Angle |
| 6758 | SRC 2 Positive Seq. Voltage Mag. | SRC 2 V _1 Mag |
| 6760 | SRC 2 Positive Seq. Voltage Angle | SRC 2 V_1 Angle |
| 6761 | SRC 2 Negative Seq. Voltage Mag. | SRC 2 V_2 Mag |
| 6763 | SRC 2 Negative Seq. Voltage Angle | SRC 2 V_2 Angle |
| 6784 | SRC 3 Phase AG Voltage RMS | SRC 3 Vag RMS |
| 6786 | SRC 3 Phase BG Voltage RMS | SRC 3 Vbg RMS |
| 6788 | SRC 3 Phase CG Voltage RMS | SRC 3 Vcg RMS |
| 6790 | SRC 3 Phase AG Voltage Magnitude | SRC 3 Vag Mag |
| 6792 | SRC 3 Phase AG Voltage Angle | SRC 3 Vag Angle |
| 6793 | SRC 3 Phase BG Voltage Magnitude | SRC 3 Vbg Mag |
| 6795 | SRC 3 Phase BG Voltage Angle | SRC 3 Vbg Angle |
| 6796 | SRC 3 Phase CG Voltage Magnitude | SRC 3 Vcg Mag |
| 6798 | SRC 3 Phase CG Voltage Angle | SRC 3 Vcg Angle |
| 6799 | SRC 3 Phase AB Voltage RMS | SRC 3 Vab RMS |
| 6801 | SRC 3 Phase BC Voltage RMS | SRC 3 Vbc RMS |
| 6803 | SRC 3 Phase CA Voltage RMS | SRC 3 Vca RMS |
| 6805 | SRC 3 Phase AB Voltage Magnitude | SRC 3 Vab Mag |
| 6807 | SRC 3 Phase AB Voltage Angle | SRC 3 Vab Angle |
| 6808 | SRC 3 Phase BC Voltage Magnitude | SRC 3 Vbc Mag |
| 6810 | SRC 3 Phase BC Voltage Angle | SRC 3 Vbc Angle |
| 6811 | SRC 3 Phase CA Voltage Magnitude | SRC 3 Vca Mag |
| 6813 | SRC 3 Phase CA Voltage Angle | SRC 3 Vca Angle |
| 6814 | SRC 3 Auxiliary Voltage RMS | SRC 3 Vx RMS |
| 6816 | SRC 3 Auxiliary Voltage Magnitude | SRC 3 Vx Mag |
| 6818 | SRC 3 Auxiliary Voltage Angle | SRC 3 Vx Angle |
| 6819 | SRC 3 Zero Seq. Voltage Magnitude | SRC 3 V_0 Mag |
| 6821 | SRC 3 Zero Sequence Voltage Angle | SRC 3 V_0 Angle |
| 6822 | SRC 3 Positive Seq. Voltage Mag. | SRC 3 V_1 Mag |
| 6824 | SRC 3 Positive Seq. Voltage Angle | SRC 3 V_1 Angle |
| 6825 | SRC 3 Negative Seq. Voltage Mag. | SRC 3 V_2 Mag |
| 6827 | SRC 3 Negative Seq. Voltage Angle | SRC 3 V_2 Angle |
| 6848 | SRC 4 Phase AG Voltage RMS | SRC 4 Vag RMS |
| 6850 | SRC 4 Phase BG Voltage RMS | SRC 4 Vbg RMS |
| 6852 | SRC 4 Phase CG Voltage RMS | SRC 4 Vcg RMS |
| 6854 | SRC 4 Phase AG Voltage Magnitude | SRC 4 Vag Mag |
| 6856 | SRC 4 Phase AG Voltage Angle | SRC 4 Vag Angle |
| 6857 | SRC 4 Phase BG Voltage Magnitude | SRC 4 Vbg Mag |
| 6859 | SRC 4 Phase BG Voltage Angle | SRC 4 Vbg Angle |
| 6860 | SRC 4 Phase CG Voltage Magnitude | SRC 4 Vcg Mag |
| 6862 | SRC 4 Phase CG Voltage Angle | SRC 4 Vcg Angle |
| 6863 | SRC 4 Phase AB Voltage RMS | SRC 4 Vab RMS |
| 6865 | SRC 4 Phase BC Voltage RMS | SRC 4 Vbc RMS |
| 6867 | SRC 4 Phase CA Voltage RMS | SRC 4 Vca RMS |
| 6869 | SRC 4 Phase AB Voltage Magnitude | SRC 4 Vab Mag |
| 6871 | SRC 4 Phase AB Voltage Angle | SRC 4 Vab Angle |
| 6872 | SRC 4 Phase BC Voltage Magnitude | SRC 4 Vbc Mag |
| 6874 | SRC 4 Phase BC Voltage Angle | SRC 4 Vbc Angle |
| 6875 | SRC 4 Phase CA Voltage Magnitude | SRC 4 Vca Mag |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 5 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 6877 | SRC 4 Phase CA Voltage Angle | SRC 4 Vca Angle |
| 6878 | SRC 4 Auxiliary Voltage RMS | SRC 4 Vx RMS |
| 6880 | SRC 4 Auxiliary Voltage Magnitude | SRC 4 Vx Mag |
| 6882 | SRC 4 Auxiliary Voltage Angle | SRC 4 Vx Angle |
| 6883 | SRC 4 Zero Seq. Voltage Magnitude | SRC 4 V_0 Mag |
| 6885 | SRC 4 Zero Sequence Voltage Angle | SRC 4 V_0 Angle |
| 6886 | SRC 4 Positive Seq. Voltage Mag. | SRC 4 V_1 Mag |
| 6888 | SRC 4 Positive Seq. Voltage Angle | SRC 4 V_1 Angle |
| 6889 | SRC 4 Negative Seq. Voltage Mag. | SRC 4 V_2 Mag |
| 6891 | SRC 4 Negative Seq. Voltage Angle | SRC 4 V_2 Angle |
| 7168 | SRC 1 Three Phase Real Power | SRC 1 P |
| 7170 | SRC 1 Phase A Real Power | SRC 1 Pa |
| 7172 | SRC 1 Phase B Real Power | SRC 1 Pb |
| 7174 | SRC 1 Phase C Real Power | SRC 1 Pc |
| 7176 | SRC 1 Three Phase Reactive Power | SRC 1 Q |
| 7178 | SRC 1 Phase A Reactive Power | SRC 1 Qa |
| 7180 | SRC 1 Phase B Reactive Power | SRC 1 Qb |
| 7182 | SRC 1 Phase C Reactive Power | SRC 1 Qc |
| 7184 | SRC 1 Three Phase Apparent Power | SRC 1 S |
| 7186 | SRC 1 Phase A Apparent Power | SRC 1 Sa |
| 7188 | SRC 1 Phase B Apparent Power | SRC 1 Sb |
| 7190 | SRC 1 Phase C Apparent Power | SRC 1 Sc |
| 7192 | SRC 1 Three Phase Power Factor | SRC 1 PF |
| 7193 | SRC 1 Phase A Power Factor | SRC 1 Phase A PF |
| 7194 | SRC 1 Phase B Power Factor | SRC 1 Phase B PF |
| 7195 | SRC 1 Phase C Power Factor | SRC 1 Phase C PF |
| 7200 | SRC 2 Three Phase Real Power | SRC 2 P |
| 7202 | SRC 2 Phase A Real Power | SRC 2 Pa |
| 7204 | SRC 2 Phase B Real Power | SRC 2 Pb |
| 7206 | SRC 2 Phase C Real Power | SRC 2 Pc |
| 7208 | SRC 2 Three Phase Reactive Power | SRC 2 Q |
| 7210 | SRC 2 Phase A Reactive Power | SRC 2 Qa |
| 7212 | SRC 2 Phase B Reactive Power | SRC 2 Qb |
| 7214 | SRC 2 Phase C Reactive Power | SRC 2 Qc |
| 7216 | SRC 2 Three Phase Apparent Power | SRC 2 S |
| 7218 | SRC 2 Phase A Apparent Power | SRC 2 Sa |
| 7220 | SRC 2 Phase B Apparent Power | SRC 2 Sb |
| 7222 | SRC 2 Phase C Apparent Power | SRC 2 Sc |
| 7224 | SRC 2 Three Phase Power Factor | SRC 2 PF |
| 7225 | SRC 2 Phase A Power Factor | SRC 2 Phase A PF |
| 7226 | SRC 2 Phase B Power Factor | SRC 2 Phase B PF |
| 7227 | SRC 2 Phase C Power Factor | SRC 2 Phase C PF |
| 7232 | SRC 3 Three Phase Real Power | SRC 3 P |
| 7234 | SRC 3 Phase A Real Power | SRC 3 Pa |
| 7236 | SRC 3 Phase B Real Power | SRC 3 Pb |
| 7238 | SRC 3 Phase C Real Power | SRC 3 Pc |
| 7240 | SRC 3 Three Phase Reactive Power | SRC 3 Q |
| 7242 | SRC 3 Phase A Reactive Power | SRC 3 Qa |
| 7244 | SRC 3 Phase B Reactive Power | SRC 3 Qb |
| 7246 | SRC 3 Phase C Reactive Power | SRC 3 Qc |
| 7248 | SRC 3 Three Phase Apparent Power | SRC 3 S |
| 7250 | SRC 3 Phase A Apparent Power | SRC 3 Sa |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 6 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 7252 | SRC 3 Phase B Apparent Power | SRC 3 Sb |
| 7254 | SRC 3 Phase C Apparent Power | SRC 3 Sc |
| 7256 | SRC 3 Three Phase Power Factor | SRC 3 PF |
| 7257 | SRC 3 Phase A Power Factor | SRC 3 Phase A PF |
| 7258 | SRC 3 Phase B Power Factor | SRC 3 Phase B PF |
| 7259 | SRC 3 Phase C Power Factor | SRC 3 Phase C PF |
| 7264 | SRC 4 Three Phase Real Power | SRC 4 P |
| 7266 | SRC 4 Phase A Real Power | SRC 4 Pa |
| 7268 | SRC 4 Phase B Real Power | SRC 4 Pb |
| 7270 | SRC 4 Phase C Real Power | SRC 4 Pc |
| 7272 | SRC 4 Three Phase Reactive Power | SRC 4 Q |
| 7274 | SRC 4 Phase A Reactive Power | SRC 4 Qa |
| 7276 | SRC 4 Phase B Reactive Power | SRC 4 Qb |
| 7278 | SRC 4 Phase C Reactive Power | SRC 4 Qc |
| 7280 | SRC 4 Three Phase Apparent Power | SRC 4 S |
| 7282 | SRC 4 Phase A Apparent Power | SRC 4 Sa |
| 7284 | SRC 4 Phase B Apparent Power | SRC 4 Sb |
| 7286 | SRC 4 Phase C Apparent Power | SRC 4 Sc |
| 7288 | SRC 4 Three Phase Power Factor | SRC 4 PF |
| 7289 | SRC 4 Phase A Power Factor | SRC 4 Phase A PF |
| 7290 | SRC 4 Phase B Power Factor | SRC 4 Phase B PF |
| 7291 | SRC 4 Phase C Power Factor | SRC 4 Phase C PF |
| 7552 | SRC 1 Frequency | SRC 1 Frequency |
| 7553 | SRC 2 Frequency | SRC 2 Frequency |
| 7554 | SRC 3 Frequency | SRC 3 Frequency |
| 7555 | SRC 4 Frequency | SRC 4 Frequency |
| 7680 | SRC 1 Demand la | SRC 1 Demand la |
| 7682 | SRC 1 Demand Ib | SRC 1 Demand Ib |
| 7684 | SRC 1 Demand Ic | SRC 1 Demand Ic |
| 7686 | SRC 1 Demand Watt | SRC 1 Demand Watt |
| 7688 | SRC 1 Demand Var | SRC 1 Demand var |
| 7690 | SRC 1 Demand Va | SRC 1 Demand Va |
| 7696 | SRC 2 Demand la | SRC 2 Demand la |
| 7698 | SRC 2 Demand lb | SRC 2 Demand lb |
| 7700 | SRC 2 Demand Ic | SRC 2 Demand Ic |
| 7702 | SRC 2 Demand Watt | SRC 2 Demand Watt |
| 7704 | SRC 2 Demand Var | SRC 2 Demand var |
| 7706 | SRC 2 Demand Va | SRC 2 Demand Va |
| 7712 | SRC 3 Demand la | SRC 3 Demand la |
| 7714 | SRC 3 Demand Ib | SRC 3 Demand Ib |
| 7716 | SRC 3 Demand Ic | SRC 3 Demand Ic |
| 7718 | SRC 3 Demand Watt | SRC 3 Demand Watt |
| 7720 | SRC 3 Demand Var | SRC 3 Demand var |
| 7722 | SRC 3 Demand Va | SRC 3 Demand Va |
| 7728 | SRC 4 Demand la | SRC 4 Demand la |
| 7730 | SRC 4 Demand Ib | SRC 4 Demand Ib |
| 7732 | SRC 4 Demand Ic | SRC 4 Demand Ic |
| 7734 | SRC 4 Demand Watt | SRC 4 Demand Watt |
| 7736 | SRC 4 Demand Var | SRC 4 Demand var |
| 7738 | SRC 4 Demand Va | SRC 4 Demand Va |
| 8064 | SRC 1 Va THD | SRC 1 Va THD |
| 8065 | SRC 1 Va Harmonics | SRC 1 Va Harm[0] |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 7 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 8066 | SRC 1 Va Harmonics | SRC 1 Va Harm[1] |
| 8067 | SRC 1 Va Harmonics | SRC 1 Va Harm[2] |
| 8068 | SRC 1 Va Harmonics | SRC 1 Va Harm[3] |
| 8069 | SRC 1 Va Harmonics | SRC 1 Va Harm[4] |
| 8070 | SRC 1 Va Harmonics | SRC 1 Va Harm[5] |
| 8071 | SRC 1 Va Harmonics | SRC 1 Va Harm[6] |
| 8072 | SRC 1 Va Harmonics | SRC 1 Va Harm[7] |
| 8073 | SRC 1 Va Harmonics | SRC 1 Va Harm[8] |
| 8074 | SRC 1 Va Harmonics | SRC 1 Va Harm[9] |
| 8075 | SRC 1 Va Harmonics | SRC 1 Va Harm[10] |
| 8076 | SRC 1 Va Harmonics | SRC 1 Va Harm[11] |
| 8077 | SRC 1 Va Harmonics | SRC 1 Va Harm[12] |
| 8078 | SRC 1 Va Harmonics | SRC 1 Va Harm[13] |
| 8079 | SRC 1 Va Harmonics | SRC 1 Va Harm[14] |
| 8080 | SRC 1 Va Harmonics | SRC 1 Va Harm[15] |
| 8081 | SRC 1 Va Harmonics | SRC 1 Va Harm[16] |
| 8082 | SRC 1 Va Harmonics | SRC 1 Va Harm[17] |
| 8083 | SRC 1 Va Harmonics | SRC 1 Va Harm[18] |
| 8084 | SRC 1 Va Harmonics | SRC 1 Va Harm[19] |
| 8085 | SRC 1 Va Harmonics | SRC 1 Va Harm[20] |
| 8086 | SRC 1 Va Harmonics | SRC 1 Va Harm[21] |
| 8087 | SRC 1 Va Harmonics | SRC 1 Va Harm[22] |
| 8088 | SRC 1 Va Harmonics | SRC 1 Va Harm[23] |
| 8089 | SRC 1 Vb THD | SRC 1 Vb THD |
| 8090 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[0] |
| 8091 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[1] |
| 8092 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[2] |
| 8093 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[3] |
| 8094 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[4] |
| 8095 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[5] |
| 8096 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[6] |
| 8097 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[7] |
| 8098 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[8] |
| 8099 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[9] |
| 8100 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[10] |
| 8101 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[11] |
| 8102 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[12] |
| 8103 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[13] |
| 8104 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[14] |
| 8105 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[15] |
| 8106 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[16] |
| 8107 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[17] |
| 8108 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[18] |
| 8109 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[19] |
| 8110 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[20] |
| 8111 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[21] |
| 8112 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[22] |
| 8113 | SRC 1 Vb Harmonics | SRC 1 Vb Harm[23] |
| 8114 | SRC 1 Vc THD | SRC 1 Vc THD |
| 8115 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[0] |
| 8116 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[1] |
| 8117 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[2] |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 8 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 8118 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[3] |
| 8119 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[4] |
| 8120 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[5] |
| 8121 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[6] |
| 8122 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[7] |
| 8123 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[8] |
| 8124 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[9] |
| 8125 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[10] |
| 8126 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[11] |
| 8127 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[12] |
| 8128 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[13] |
| 8129 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[14] |
| 8130 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[15] |
| 8131 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[16] |
| 8132 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[17] |
| 8133 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[18] |
| 8134 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[19] |
| 8135 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[20] |
| 8136 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[21] |
| 8137 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[22] |
| 8138 | SRC 1 Vc Harmonics | SRC 1 Vc Harm[23] |
| 8139 | SRC 2 Va THD | SRC 2 Va THD |
| 8140 | SRC 2 Va Harmonics | SRC 2 Va Harm[0] |
| 8141 | SRC 2 Va Harmonics | SRC 2 Va Harm[1] |
| 8142 | SRC 2 Va Harmonics | SRC 2 Va Harm[2] |
| 8143 | SRC 2 Va Harmonics | SRC 2 Va Harm[3] |
| 8144 | SRC 2 Va Harmonics | SRC 2 Va Harm[4] |
| 8145 | SRC 2 Va Harmonics | SRC 2 Va Harm[5] |
| 8146 | SRC 2 Va Harmonics | SRC 2 Va Harm[6] |
| 8147 | SRC 2 Va Harmonics | SRC 2 Va Harm[7] |
| 8148 | SRC 2 Va Harmonics | SRC 2 Va Harm[8] |
| 8149 | SRC 2 Va Harmonics | SRC 2 Va Harm[9] |
| 8150 | SRC 2 Va Harmonics | SRC 2 Va Harm[10] |
| 8151 | SRC 2 Va Harmonics | SRC 2 Va Harm[11] |
| 8152 | SRC 2 Va Harmonics | SRC 2 Va Harm[12] |
| 8153 | SRC 2 Va Harmonics | SRC 2 Va Harm[13] |
| 8154 | SRC 2 Va Harmonics | SRC 2 Va Harm[14] |
| 8155 | SRC 2 Va Harmonics | SRC 2 Va Harm[15] |
| 8156 | SRC 2 Va Harmonics | SRC 2 Va Harm[16] |
| 8157 | SRC 2 Va Harmonics | SRC 2 Va Harm[17] |
| 8158 | SRC 2 Va Harmonics | SRC 2 Va Harm[18] |
| 8159 | SRC 2 Va Harmonics | SRC 2 Va Harm[19] |
| 8160 | SRC 2 Va Harmonics | SRC 2 Va Harm[20] |
| 8161 | SRC 2 Va Harmonics | SRC 2 Va Harm[21] |
| 8162 | SRC 2 Va Harmonics | SRC 2 Va Harm[22] |
| 8163 | SRC 2 Va Harmonics | SRC 2 Va Harm[23] |
| 8164 | SRC 2 Vb THD | SRC 2 Vb THD |
| 8165 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[0] |
| 8166 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[1] |
| 8167 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[2] |
| 8168 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[3] |
| 8169 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[4] |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 9 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 8170 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[5] |
| 8171 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[6] |
| 8172 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[7] |
| 8173 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[8] |
| 8174 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[9] |
| 8175 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[10] |
| 8176 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[11] |
| 8177 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[12] |
| 8178 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[13] |
| 8179 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[14] |
| 8180 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[15] |
| 8181 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[16] |
| 8182 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[17] |
| 8183 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[18] |
| 8184 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[19] |
| 8185 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[20] |
| 8186 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[21] |
| 8187 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[22] |
| 8188 | SRC 2 Vb Harmonics | SRC 2 Vb Harm[23] |
| 8189 | SRC 2 Vc THD | SRC 2 Vc THD |
| 8190 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[0] |
| 8191 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[1] |
| 8192 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[2] |
| 8193 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[3] |
| 8194 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[4] |
| 8195 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[5] |
| 8196 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[6] |
| 8197 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[7] |
| 8198 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[8] |
| 8199 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[9] |
| 8200 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[10] |
| 8201 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[11] |
| 8202 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[12] |
| 8203 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[13] |
| 8204 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[14] |
| 8205 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[15] |
| 8206 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[16] |
| 8207 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[17] |
| 8208 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[18] |
| 8209 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[19] |
| 8210 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[20] |
| 8211 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[21] |
| 8212 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[22] |
| 8213 | SRC 2 Vc Harmonics | SRC 2 Vc Harm[23] |
| 8214 | SRC 3 Va THD | SRC 3 Va THD |
| 8215 | SRC 3 Va Harmonics | SRC 3 Va Harm[0] |
| 8216 | SRC 3 Va Harmonics | SRC 3 Va Harm[1] |
| 8217 | SRC 3 Va Harmonics | SRC 3 Va Harm[2] |
| 8218 | SRC 3 Va Harmonics | SRC 3 Va Harm[3] |
| 8219 | SRC 3 Va Harmonics | SRC 3 Va Harm[4] |
| 8220 | SRC 3 Va Harmonics | SRC 3 Va Harm[5] |
| 8221 | SRC 3 Va Harmonics | SRC 3 Va Harm[6] |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 10 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 8222 | SRC 3 Va Harmonics | SRC 3 Va Harm[7] |
| 8223 | SRC 3 Va Harmonics | SRC 3 Va Harm[8] |
| 8224 | SRC 3 Va Harmonics | SRC 3 Va Harm[9] |
| 8225 | SRC 3 Va Harmonics | SRC 3 Va Harm[10] |
| 8226 | SRC 3 Va Harmonics | SRC 3 Va Harm[11] |
| 8227 | SRC 3 Va Harmonics | SRC 3 Va Harm[12] |
| 8228 | SRC 3 Va Harmonics | SRC 3 Va Harm[13] |
| 8229 | SRC 3 Va Harmonics | SRC 3 Va Harm[14] |
| 8230 | SRC 3 Va Harmonics | SRC 3 Va Harm[15] |
| 8231 | SRC 3 Va Harmonics | SRC 3 Va Harm[16] |
| 8232 | SRC 3 Va Harmonics | SRC 3 Va Harm[17] |
| 8233 | SRC 3 Va Harmonics | SRC 3 Va Harm[18] |
| 8234 | SRC 3 Va Harmonics | SRC 3 Va Harm[19] |
| 8235 | SRC 3 Va Harmonics | SRC 3 Va Harm[20] |
| 8236 | SRC 3 Va Harmonics | SRC 3 Va Harm[21] |
| 8237 | SRC 3 Va Harmonics | SRC 3 Va Harm[22] |
| 8238 | SRC 3 Va Harmonics | SRC 3 Va Harm[23] |
| 8239 | SRC 3 Vb THD | SRC 3 Vb THD |
| 8240 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[0] |
| 8241 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[1] |
| 8242 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[2] |
| 8243 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[3] |
| 8244 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[4] |
| 8245 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[5] |
| 8246 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[6] |
| 8247 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[7] |
| 8248 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[8] |
| 8249 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[9] |
| 8250 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[10] |
| 8251 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[11] |
| 8252 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[12] |
| 8253 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[13] |
| 8254 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[14] |
| 8255 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[15] |
| 8256 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[16] |
| 8257 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[17] |
| 8258 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[18] |
| 8259 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[19] |
| 8260 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[20] |
| 8261 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[21] |
| 8262 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[22] |
| 8263 | SRC 3 Vb Harmonics | SRC 3 Vb Harm[23] |
| 8264 | SRC 3 Vc THD | SRC 3 Vc THD |
| 8265 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[0] |
| 8266 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[1] |
| 8267 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[2] |
| 8268 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[3] |
| 8269 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[4] |
| 8270 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[5] |
| 8271 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[6] |
| 8272 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[7] |
| 8273 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[8] |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 11 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 8274 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[9] |
| 8275 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[10] |
| 8276 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[11] |
| 8277 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[12] |
| 8278 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[13] |
| 8279 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[14] |
| 8280 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[15] |
| 8281 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[16] |
| 8282 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[17] |
| 8283 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[18] |
| 8284 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[19] |
| 8285 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[20] |
| 8286 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[21] |
| 8287 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[22] |
| 8288 | SRC 3 Vc Harmonics | SRC 3 Vc Harm[23] |
| 8289 | SRC 4 Va THD | SRC 4 Va THD |
| 8290 | SRC 4 Va Harmonics | SRC 4 Va Harm[0] |
| 8291 | SRC 4 Va Harmonics | SRC 4 Va Harm[1] |
| 8292 | SRC 4 Va Harmonics | SRC 4 Va Harm[2] |
| 8293 | SRC 4 Va Harmonics | SRC 4 Va Harm[3] |
| 8294 | SRC 4 Va Harmonics | SRC 4 Va Harm[4] |
| 8295 | SRC 4 Va Harmonics | SRC 4 Va Harm[5] |
| 8296 | SRC 4 Va Harmonics | SRC 4 Va Harm[6] |
| 8297 | SRC 4 Va Harmonics | SRC 4 Va Harm[7] |
| 8298 | SRC 4 Va Harmonics | SRC 4 Va Harm[8] |
| 8299 | SRC 4 Va Harmonics | SRC 4 Va Harm[9] |
| 8300 | SRC 4 Va Harmonics | SRC 4 Va Harm[10] |
| 8301 | SRC 4 Va Harmonics | SRC 4 Va Harm[11] |
| 8302 | SRC 4 Va Harmonics | SRC 4 Va Harm[12] |
| 8303 | SRC 4 Va Harmonics | SRC 4 Va Harm[13] |
| 8304 | SRC 4 Va Harmonics | SRC 4 Va Harm[14] |
| 8305 | SRC 4 Va Harmonics | SRC 4 Va Harm[15] |
| 8306 | SRC 4 Va Harmonics | SRC 4 Va Harm[16] |
| 8307 | SRC 4 Va Harmonics | SRC 4 Va Harm[17] |
| 8308 | SRC 4 Va Harmonics | SRC 4 Va Harm[18] |
| 8309 | SRC 4 Va Harmonics | SRC 4 Va Harm[19] |
| 8310 | SRC 4 Va Harmonics | SRC 4 Va Harm[20] |
| 8311 | SRC 4 Va Harmonics | SRC 4 Va Harm[21] |
| 8312 | SRC 4 Va Harmonics | SRC 4 Va Harm[22] |
| 8313 | SRC 4 Va Harmonics | SRC 4 Va Harm[23] |
| 8314 | SRC 4 Vb THD | SRC 4 Vb THD |
| 8315 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[0] |
| 8316 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[1] |
| 8317 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[2] |
| 8318 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[3] |
| 8319 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[4] |
| 8320 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[5] |
| 8321 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[6] |
| 8322 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[7] |
| 8323 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[8] |
| 8324 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[9] |
| 8325 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[10] |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 12 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 8326 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[11] |
| 8327 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[12] |
| 8328 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[13] |
| 8329 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[14] |
| 8330 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[15] |
| 8331 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[16] |
| 8332 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[17] |
| 8333 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[18] |
| 8334 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[19] |
| 8335 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[20] |
| 8336 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[21] |
| 8337 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[22] |
| 8338 | SRC 4 Vb Harmonics | SRC 4 Vb Harm[23] |
| 8339 | SRC 4 Vc THD | SRC 4 Vc THD |
| 8340 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[0] |
| 8341 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[1] |
| 8342 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[2] |
| 8343 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[3] |
| 8344 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[4] |
| 8345 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[5] |
| 8346 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[6] |
| 8347 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[7] |
| 8348 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[8] |
| 8349 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[9] |
| 8350 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[10] |
| 8351 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[11] |
| 8352 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[12] |
| 8353 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[13] |
| 8354 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[14] |
| 8355 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[15] |
| 8356 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[16] |
| 8357 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[17] |
| 8358 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[18] |
| 8359 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[19] |
| 8360 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[20] |
| 8361 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[21] |
| 8362 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[22] |
| 8363 | SRC 4 Vc Harmonics | SRC 4 Vc Harm[23] |
| 8960 | Transformer Reference Winding | Xfmr Ref Winding |
| 8961 | Transformer Diff. Phasor lad Mag. | Xfmr Iad Mag |
| 8962 | Transformer Diff. Phasor Iad Angle | Xfmr lad Angle |
| 8963 | Transformer Restraint Phsr. Iar Mag. | Xfmr lar Mag |
| 8964 | Transformer Restraint Phsr. Iar Angle | Xfmr lar Angle |
| 8965 | Transformer Diff. 2nd Harm lad Mag. | Xfmr Harm2 Iad Mag |
| 8966 | Transformer Diff. 2nd Harm lad Angle | Xfmr Harm2 lad Angle |
| 8967 | Transformer Diff. 5th Harm lad Mag. | Xfmr Harm5 Iad Mag |
| 8968 | Transformer Diff. 5th Harm lad Angle | Xfmr Harm5 lad Angle |
| 8969 | Transformer Diff. Phasor Ibd Mag. | Xfmr Ibd Mag |
| 8970 | Transformer Diff. Phasor Ibd Angle | Xfmr Ibd Angle |
| 8971 | Transformer Restraint Phsr. Ibr Mag. | Xfmr Ibr Mag |
| 8972 | Transformer Restraint Phsr. Ibr Angle | Xfmr Ibr Angle |
| 8973 | Transformer Diff. 2nd Harm Ibd Mag. | Xfmr Harm2 Ibd Mag |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 13 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 8974 | Transformer Diff. 2nd Harm Ibd Angle | Xfmr Harm2 Ibd Angle |
| 8975 | Transformer Diff. 5th Harm Ibd Mag. | Xfmr Harm5 Ibd Mag |
| 8976 | Transformer Diff. 5th Harm Ibd Angle | Xfmr Harm5 Ibd Angle |
| 8977 | Transformer Diff. Phasor Icd Mag. | Xfmr Icd Mag |
| 8978 | Transformer Diff. Phasor Icd Angle | Xfmr Icd Angle |
| 8979 | Transformer Restraint Phasor Icr Mag. | Xfmr Icr Mag |
| 8980 | Transformer Restraint Phsr. Icr Angle | Xfmr Icr Angle |
| 8981 | Transformer Diff. 2nd Harm Icd Mag. | Xfmr Harm2 Icd Mag |
| 8982 | Transformer Diff. 2nd Harm Icd Angle | Xfmr Harm2 Icd Angle |
| 8983 | Transformer Diff. 5th Harm Icd Mag. | Xfmr Harm5 Icd Mag |
| 8984 | Transformer Diff. 5th Harm Icd Angle | Xfmr Harm5 Icd Angle |
| 9008 | Transformer Top Oil Temperature | Xfmr top-oil t ${ }^{\circ} \mathrm{C}$ |
| 9009 | Trans. Hottest Spot Temperature | Xfmr hst-spot t ${ }^{\circ} \mathrm{C}$ |
| 9010 | Transformer Aging Factor | Xfmr agng fctr |
| 9011 | Transformer Daily Loss Of Life | Xfmr daily LOL |
| 9013 | Transformer Accumulated Loss Of Life | Xfmr acc LOL |
| 10240 | SRC 1 la THD | SRC 1 Ia THD |
| 10241 | SRC 1 la Harmonics | SRC 1 la Harm[0] |
| 10242 | SRC 1 la Harmonics | SRC 1 la Harm[1] |
| 10243 | SRC 1 la Harmonics | SRC 1 la Harm[2] |
| 10244 | SRC 1 la Harmonics | SRC 1 la Harm[3] |
| 10245 | SRC 1 la Harmonics | SRC 1 la Harm[4] |
| 10246 | SRC 1 la Harmonics | SRC 1 la Harm[5] |
| 10247 | SRC 1 la Harmonics | SRC 1 la Harm[6] |
| 10248 | SRC 1 la Harmonics | SRC 1 la Harm[7] |
| 10249 | SRC 1 la Harmonics | SRC 1 la Harm[8] |
| 10250 | SRC 1 la Harmonics | SRC 1 la Harm[9] |
| 10251 | SRC 1 la Harmonics | SRC 1 la Harm[10] |
| 10252 | SRC 1 la Harmonics | SRC 1 la Harm[11] |
| 10253 | SRC 1 la Harmonics | SRC 1 la Harm[12] |
| 10254 | SRC 1 la Harmonics | SRC 1 la Harm[13] |
| 10255 | SRC 1 la Harmonics | SRC 1 la Harm[14] |
| 10256 | SRC 1 la Harmonics | SRC 1 la Harm[15] |
| 10257 | SRC 1 la Harmonics | SRC 1 la Harm[16] |
| 10258 | SRC 1 la Harmonics | SRC 1 la Harm[17] |
| 10259 | SRC 1 la Harmonics | SRC 1 la Harm[18] |
| 10260 | SRC 1 la Harmonics | SRC 1 la Harm[19] |
| 10261 | SRC 1 la Harmonics | SRC 1 la Harm[20] |
| 10262 | SRC 1 la Harmonics | SRC 1 la Harm[21] |
| 10263 | SRC 1 la Harmonics | SRC 1 la Harm[22] |
| 10264 | SRC 1 la Harmonics | SRC 1 la Harm[23] |
| 10273 | SRC 1 lb THD | SRC 1 lb THD |
| 10274 | SRC 1 lb Harmonics | SRC 1 lb Harm[0] |
| 10275 | SRC 1 lb Harmonics | SRC 1 Ib Harm[1] |
| 10276 | SRC 1 lb Harmonics | SRC 1 Ib Harm[2] |
| 10277 | SRC 1 lb Harmonics | SRC 1 Ib Harm[3] |
| 10278 | SRC 1 lb Harmonics | SRC 1 lb Harm[4] |
| 10279 | SRC 1 lb Harmonics | SRC 1 lb Harm[5] |
| 10280 | SRC 1 lb Harmonics | SRC 1 lb Harm[6] |
| 10281 | SRC 1 lb Harmonics | SRC 1 Ib Harm[7] |
| 10282 | SRC 1 lb Harmonics | SRC 1 lb Harm[8] |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 14 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 10283 | SRC 1 lb Harmonics | SRC 1 lb Harm[9] |
| 10284 | SRC 1 lb Harmonics | SRC 1 lb Harm[10] |
| 10285 | SRC 1 lb Harmonics | SRC 1 lb Harm[11] |
| 10286 | SRC 1 lb Harmonics | SRC 1 lb Harm[12] |
| 10287 | SRC 1 lb Harmonics | SRC 1 lb Harm[13] |
| 10288 | SRC 1 lb Harmonics | SRC 1 lb Harm[14] |
| 10289 | SRC 1 lb Harmonics | SRC 1 lb Harm[15] |
| 10290 | SRC 1 lb Harmonics | SRC 1 lb Harm[16] |
| 10291 | SRC 1 lb Harmonics | SRC 1 lb Harm[17] |
| 10292 | SRC 1 lb Harmonics | SRC 1 lb Harm[18] |
| 10293 | SRC 1 lb Harmonics | SRC 1 lb Harm[19] |
| 10294 | SRC 1 lb Harmonics | SRC 1 lb Harm[20] |
| 10295 | SRC 1 lb Harmonics | SRC 1 lb Harm[21] |
| 10296 | SRC 1 lb Harmonics | SRC 1 lb Harm[22] |
| 10297 | SRC 1 lb Harmonics | SRC 1 lb Harm[23] |
| 10306 | SRC 1 Ic THD | SRC 1 Ic THD |
| 10307 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[0] |
| 10308 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[1] |
| 10309 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[2] |
| 10310 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[3] |
| 10311 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[4] |
| 10312 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[5] |
| 10313 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[6] |
| 10314 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[7] |
| 10315 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[8] |
| 10316 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[9] |
| 10317 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[10] |
| 10318 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[11] |
| 10319 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[12] |
| 10320 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[13] |
| 10321 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[14] |
| 10322 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[15] |
| 10323 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[16] |
| 10324 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[17] |
| 10325 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[18] |
| 10326 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[19] |
| 10327 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[20] |
| 10328 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[21] |
| 10329 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[22] |
| 10330 | SRC 1 Ic Harmonics | SRC 1 Ic Harm[23] |
| 10339 | SRC 2 la THD | SRC 2 la THD |
| 10340 | SRC 2 la Harmonics | SRC 2 la Harm[0] |
| 10341 | SRC 2 la Harmonics | SRC 2 la Harm[1] |
| 10342 | SRC 2 la Harmonics | SRC 2 la Harm[2] |
| 10343 | SRC 2 la Harmonics | SRC 2 Ia Harm[3] |
| 10344 | SRC 2 la Harmonics | SRC 2 la Harm[4] |
| 10345 | SRC 2 la Harmonics | SRC 2 la Harm[5] |
| 10346 | SRC 2 la Harmonics | SRC 2 la Harm[6] |
| 10347 | SRC 2 la Harmonics | SRC 2 la Harm[7] |
| 10348 | SRC 2 la Harmonics | SRC 2 Ia Harm[8] |
| 10349 | SRC 2 la Harmonics | SRC 2 la Harm[9] |
| 10350 | SRC 2 la Harmonics | SRC 2 Ia Harm[10] |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 15 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 10351 | SRC 2 la Harmonics | SRC 2 la Harm[11] |
| 10352 | SRC 2 la Harmonics | SRC 2 la Harm[12] |
| 10353 | SRC 2 la Harmonics | SRC 2 la Harm[13] |
| 10354 | SRC 2 la Harmonics | SRC 2 la Harm[14] |
| 10355 | SRC 2 la Harmonics | SRC 2 la Harm[15] |
| 10356 | SRC 2 la Harmonics | SRC 2 la Harm[16] |
| 10357 | SRC 2 la Harmonics | SRC 2 la Harm[17] |
| 10358 | SRC 2 la Harmonics | SRC 2 la Harm[18] |
| 10359 | SRC 2 la Harmonics | SRC 2 la Harm[19] |
| 10360 | SRC 2 la Harmonics | SRC 2 la Harm[20] |
| 10361 | SRC 2 la Harmonics | SRC 2 la Harm[21] |
| 10362 | SRC 2 la Harmonics | SRC 2 la Harm[22] |
| 10363 | SRC 2 la Harmonics | SRC 2 la Harm[23] |
| 10372 | SRC 2 lb THD | SRC 2 lb THD |
| 10373 | SRC 2 lb Harmonics | SRC 2 lb Harm[0] |
| 10374 | SRC 2 lb Harmonics | SRC 2 lb Harm[1] |
| 10375 | SRC 2 lb Harmonics | SRC 2 lb Harm[2] |
| 10376 | SRC 2 lb Harmonics | SRC 2 lb Harm[3] |
| 10377 | SRC 2 Ib Harmonics | SRC 2 lb Harm[4] |
| 10378 | SRC 2 lb Harmonics | SRC 2 lb Harm[5] |
| 10379 | SRC 2 lb Harmonics | SRC 2 lb Harm[6] |
| 10380 | SRC 2 lb Harmonics | SRC 2 lb Harm[7] |
| 10381 | SRC 2 lb Harmonics | SRC 2 lb Harm[8] |
| 10382 | SRC 2 lb Harmonics | SRC 2 lb Harm[9] |
| 10383 | SRC 2 Ib Harmonics | SRC 2 Ib Harm[10] |
| 10384 | SRC 2 Ib Harmonics | SRC 2 lb Harm[11] |
| 10385 | SRC 2 Ib Harmonics | SRC 2 lb Harm[12] |
| 10386 | SRC 2 Ib Harmonics | SRC 2 lb Harm[13] |
| 10387 | SRC 2 lb Harmonics | SRC 2 lb Harm[14] |
| 10388 | SRC 2 lb Harmonics | SRC 2 lb Harm[15] |
| 10389 | SRC 2 lb Harmonics | SRC 2 lb Harm[16] |
| 10390 | SRC 2 lb Harmonics | SRC 2 lb Harm[17] |
| 10391 | SRC 2 lb Harmonics | SRC 2 lb Harm[18] |
| 10392 | SRC 2 lb Harmonics | SRC 2 lb Harm[19] |
| 10393 | SRC 2 lb Harmonics | SRC 2 lb Harm[20] |
| 10394 | SRC 2 lb Harmonics | SRC 2 lb Harm[21] |
| 10395 | SRC 2 Ib Harmonics | SRC 2 lb Harm[22] |
| 10396 | SRC 2 Ib Harmonics | SRC 2 lb Harm[23] |
| 10405 | SRC 2 Ic THD | SRC 2 Ic THD |
| 10406 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[0] |
| 10407 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[1] |
| 10408 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[2] |
| 10409 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[3] |
| 10410 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[4] |
| 10411 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[5] |
| 10412 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[6] |
| 10413 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[7] |
| 10414 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[8] |
| 10415 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[9] |
| 10416 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[10] |
| 10417 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[11] |
| 10418 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[12] |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 16 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 10419 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[13] |
| 10420 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[14] |
| 10421 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[15] |
| 10422 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[16] |
| 10423 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[17] |
| 10424 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[18] |
| 10425 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[19] |
| 10426 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[20] |
| 10427 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[21] |
| 10428 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[22] |
| 10429 | SRC 2 Ic Harmonics | SRC 2 Ic Harm[23] |
| 10438 | SRC 3 la THD | SRC 3 la THD |
| 10439 | SRC 3 la Harmonics | SRC 3 la Harm[0] |
| 10440 | SRC 3 la Harmonics | SRC 3 la Harm[1] |
| 10441 | SRC 3 la Harmonics | SRC 3 la Harm[2] |
| 10442 | SRC 3 la Harmonics | SRC 3 la Harm[3] |
| 10443 | SRC 3 la Harmonics | SRC 3 la Harm[4] |
| 10444 | SRC 3 la Harmonics | SRC 3 la Harm[5] |
| 10445 | SRC 3 la Harmonics | SRC 3 la Harm[6] |
| 10446 | SRC 3 la Harmonics | SRC 3 la Harm[7] |
| 10447 | SRC 3 la Harmonics | SRC 3 la Harm[8] |
| 10448 | SRC 3 la Harmonics | SRC 3 la Harm[9] |
| 10449 | SRC 3 la Harmonics | SRC 3 la Harm[10] |
| 10450 | SRC 3 la Harmonics | SRC 3 la Harm[11] |
| 10451 | SRC 3 la Harmonics | SRC 3 la Harm[12] |
| 10452 | SRC 3 la Harmonics | SRC 3 la Harm[13] |
| 10453 | SRC 3 la Harmonics | SRC 3 la Harm[14] |
| 10454 | SRC 3 la Harmonics | SRC 3 la Harm[15] |
| 10455 | SRC 3 la Harmonics | SRC 3 la Harm[16] |
| 10456 | SRC 3 la Harmonics | SRC 3 la Harm[17] |
| 10457 | SRC 3 la Harmonics | SRC 3 la Harm[18] |
| 10458 | SRC 3 la Harmonics | SRC 3 la Harm[19] |
| 10459 | SRC 3 la Harmonics | SRC 3 la Harm[20] |
| 10460 | SRC 3 la Harmonics | SRC 3 la Harm[21] |
| 10461 | SRC 3 la Harmonics | SRC 3 la Harm[22] |
| 10462 | SRC 3 la Harmonics | SRC 3 la Harm[23] |
| 10471 | SRC 3 lb THD | SRC 3 lb THD |
| 10472 | SRC 3 lb Harmonics | SRC 3 Ib Harm[0] |
| 10473 | SRC 3 lb Harmonics | SRC 3 Ib Harm[1] |
| 10474 | SRC 3 lb Harmonics | SRC 3 lb Harm[2] |
| 10475 | SRC 3 lb Harmonics | SRC 3 Ib Harm[3] |
| 10476 | SRC 3 lb Harmonics | SRC 3 lb Harm[4] |
| 10477 | SRC 3 lb Harmonics | SRC 3 Ib Harm[5] |
| 10478 | SRC 3 lb Harmonics | SRC 3 Ib Harm[6] |
| 10479 | SRC 3 lb Harmonics | SRC 3 Ib Harm[7] |
| 10480 | SRC 3 lb Harmonics | SRC 3 Ib Harm[8] |
| 10481 | SRC 3 lb Harmonics | SRC 3 Ib Harm[9] |
| 10482 | SRC 3 lb Harmonics | SRC 3 Ib Harm[10] |
| 10483 | SRC 3 lb Harmonics | SRC 3 lb Harm[11] |
| 10484 | SRC 3 lb Harmonics | SRC 3 lb Harm[12] |
| 10485 | SRC 3 lb Harmonics | SRC 3 lb Harm[13] |
| 10486 | SRC 3 lb Harmonics | SRC 3 lb Harm[14] |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 17 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 10487 | SRC 3 lb Harmonics | SRC 3 lb Harm[15] |
| 10488 | SRC 3 lb Harmonics | SRC 3 lb Harm[16] |
| 10489 | SRC 3 lb Harmonics | SRC 3 lb Harm[17] |
| 10490 | SRC 3 lb Harmonics | SRC 3 lb Harm[18] |
| 10491 | SRC 3 lb Harmonics | SRC 3 lb Harm[19] |
| 10492 | SRC 3 lb Harmonics | SRC 3 lb Harm[20] |
| 10493 | SRC 3 lb Harmonics | SRC 3 lb Harm[21] |
| 10494 | SRC 3 lb Harmonics | SRC 3 lb Harm[22] |
| 10495 | SRC 3 lb Harmonics | SRC 3 lb Harm[23] |
| 10504 | SRC 3 Ic THD | SRC 3 Ic THD |
| 10505 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[0] |
| 10506 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[1] |
| 10507 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[2] |
| 10508 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[3] |
| 10509 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[4] |
| 10510 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[5] |
| 10511 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[6] |
| 10512 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[7] |
| 10513 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[8] |
| 10514 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[9] |
| 10515 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[10] |
| 10516 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[11] |
| 10517 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[12] |
| 10518 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[13] |
| 10519 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[14] |
| 10520 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[15] |
| 10521 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[16] |
| 10522 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[17] |
| 10523 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[18] |
| 10524 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[19] |
| 10525 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[20] |
| 10526 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[21] |
| 10527 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[22] |
| 10528 | SRC 3 Ic Harmonics | SRC 3 Ic Harm[23] |
| 10537 | SRC 4 la THD | SRC 4 la THD |
| 10538 | SRC 4 la Harmonics | SRC 4 la Harm[0] |
| 10539 | SRC 4 la Harmonics | SRC 4 la Harm[1] |
| 10540 | SRC 4 la Harmonics | SRC 4 la Harm[2] |
| 10541 | SRC 4 la Harmonics | SRC 4 la Harm[3] |
| 10542 | SRC 4 la Harmonics | SRC 4 la Harm[4] |
| 10543 | SRC 4 la Harmonics | SRC 4 la Harm[5] |
| 10544 | SRC 4 la Harmonics | SRC 4 la Harm[6] |
| 10545 | SRC 4 la Harmonics | SRC 4 la Harm[7] |
| 10546 | SRC 4 la Harmonics | SRC 4 la Harm[8] |
| 10547 | SRC 4 la Harmonics | SRC 4 la Harm[9] |
| 10548 | SRC 4 la Harmonics | SRC 4 la Harm[10] |
| 10549 | SRC 4 la Harmonics | SRC 4 la Harm[11] |
| 10550 | SRC 4 la Harmonics | SRC 4 la Harm[12] |
| 10551 | SRC 4 la Harmonics | SRC 4 la Harm[13] |
| 10552 | SRC 4 la Harmonics | SRC 4 la Harm[14] |
| 10553 | SRC 4 la Harmonics | SRC 4 la Harm[15] |
| 10554 | SRC 4 la Harmonics | SRC 4 la Harm[16] |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 18 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 10555 | SRC 4 la Harmonics | SRC 4 Ia Harm[17] |
| 10556 | SRC 4 la Harmonics | SRC 4 la Harm[18] |
| 10557 | SRC 4 la Harmonics | SRC 4 Ia Harm[19] |
| 10558 | SRC 4 la Harmonics | SRC 4 la Harm[20] |
| 10559 | SRC 4 la Harmonics | SRC 4 la Harm[21] |
| 10560 | SRC 4 la Harmonics | SRC 4 la Harm[22] |
| 10561 | SRC 4 la Harmonics | SRC 4 la Harm[23] |
| 10570 | SRC 4 lb THD | SRC 4 lb THD |
| 10571 | SRC 4 lb Harmonics | SRC 4 lb Harm[0] |
| 10572 | SRC 4 lb Harmonics | SRC 4 lb Harm[1] |
| 10573 | SRC 4 lb Harmonics | SRC 4 lb Harm[2] |
| 10574 | SRC 4 lb Harmonics | SRC 4 lb Harm[3] |
| 10575 | SRC 4 lb Harmonics | SRC 4 lb Harm[4] |
| 10576 | SRC 4 lb Harmonics | SRC 4 lb Harm[5] |
| 10577 | SRC 4 lb Harmonics | SRC 4 lb Harm[6] |
| 10578 | SRC 4 lb Harmonics | SRC 4 lb Harm[7] |
| 10579 | SRC 4 lb Harmonics | SRC 4 lb Harm[8] |
| 10580 | SRC 4 lb Harmonics | SRC 4 lb Harm[9] |
| 10581 | SRC 4 lb Harmonics | SRC 4 lb Harm[10] |
| 10582 | SRC 4 lb Harmonics | SRC 4 lb Harm[11] |
| 10583 | SRC 4 lb Harmonics | SRC 4 lb Harm[12] |
| 10584 | SRC 4 lb Harmonics | SRC 4 lb Harm[13] |
| 10585 | SRC 4 lb Harmonics | SRC 4 lb Harm[14] |
| 10586 | SRC 4 lb Harmonics | SRC 4 Ib Harm[15] |
| 10587 | SRC 4 lb Harmonics | SRC 4 lb Harm[16] |
| 10588 | SRC 4 lb Harmonics | SRC 4 lb Harm[17] |
| 10589 | SRC 4 lb Harmonics | SRC 4 lb Harm[18] |
| 10590 | SRC 4 lb Harmonics | SRC 4 lb Harm[19] |
| 10591 | SRC 4 lb Harmonics | SRC 4 lb Harm[20] |
| 10592 | SRC 4 lb Harmonics | SRC 4 lb Harm[21] |
| 10593 | SRC 4 lb Harmonics | SRC 4 Ib Harm[22] |
| 10594 | SRC 4 lb Harmonics | SRC 4 Ib Harm[23] |
| 10603 | SRC 4 Ic THD | SRC 4 Ic THD |
| 10604 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[0] |
| 10605 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[1] |
| 10606 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[2] |
| 10607 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[3] |
| 10608 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[4] |
| 10609 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[5] |
| 10610 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[6] |
| 10611 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[7] |
| 10612 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[8] |
| 10613 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[9] |
| 10614 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[10] |
| 10615 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[11] |
| 10616 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[12] |
| 10617 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[13] |
| 10618 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[14] |
| 10619 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[15] |
| 10620 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[16] |
| 10621 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[17] |
| 10622 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[18] |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 19 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 10623 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[19] |
| 10624 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[20] |
| 10625 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[21] |
| 10626 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[22] |
| 10627 | SRC 4 Ic Harmonics | SRC 4 Ic Harm[23] |
| 13504 | DCMA Inputs 1 Value | DCMA Inputs 1 Value |
| 13506 | DCMA Inputs 2 Value | DCMA Inputs 2 Value |
| 13508 | DCMA Inputs 3 Value | DCMA Inputs 3 Value |
| 13510 | DCMA Inputs 4 Value | DCMA Inputs 4 Value |
| 13512 | DCMA Inputs 5 Value | DCMA Inputs 5 Value |
| 13514 | DCMA Inputs 6 Value | DCMA Inputs 6 Value |
| 13516 | DCMA Inputs 7 Value | DCMA Inputs 7 Value |
| 13518 | DCMA Inputs 8 Value | DCMA Inputs 8 Value |
| 13520 | DCMA Inputs 9 Value | DCMA Inputs 9 Value |
| 13522 | DCMA Inputs 10 Value | DCMA Inputs 10 Value |
| 13524 | DCMA Inputs 11 Value | DCMA Inputs 11 Value |
| 13526 | DCMA Inputs 12 Value | DCMA Inputs 12 Value |
| 13528 | DCMA Inputs 13 Value | DCMA Inputs 13 Value |
| 13530 | DCMA Inputs 14 Value | DCMA Inputs 14 Value |
| 13532 | DCMA Inputs 15 Value | DCMA Inputs 15 Value |
| 13534 | DCMA Inputs 16 Value | DCMA Inputs 16 Value |
| 13536 | DCMA Inputs 17 Value | DCMA Inputs 17 Value |
| 13538 | DCMA Inputs 18 Value | DCMA Inputs 18 Value |
| 13540 | DCMA Inputs 19 Value | DCMA Inputs 19 Value |
| 13542 | DCMA Inputs 20 Value | DCMA Inputs 20 Value |
| 13544 | DCMA Inputs 21 Value | DCMA Inputs 21 Value |
| 13546 | DCMA Inputs 22 Value | DCMA Inputs 22 Value |
| 13548 | DCMA Inputs 23 Value | DCMA Inputs 23 Value |
| 13550 | DCMA Inputs 24 Value | DCMA Inputs 24 Value |
| 13552 | RTD Inputs 1 Value | RTD Inputs 1 Value |
| 13553 | RTD Inputs 2 Value | RTD Inputs 2 Value |
| 13554 | RTD Inputs 3 Value | RTD Inputs 3 Value |
| 13555 | RTD Inputs 4 Value | RTD Inputs 4 Value |
| 13556 | RTD Inputs 5 Value | RTD Inputs 5 Value |
| 13557 | RTD Inputs 6 Value | RTD Inputs 6 Value |
| 13558 | RTD Inputs 7 Value | RTD Inputs 7 Value |
| 13559 | RTD Inputs 8 Value | RTD Inputs 8 Value |
| 13560 | RTD Inputs 9 Value | RTD Inputs 9 Value |
| 13561 | RTD Inputs 10 Value | RTD Inputs 10 Value |
| 13562 | RTD Inputs 11 Value | RTD Inputs 11 Value |
| 13563 | RTD Inputs 12 Value | RTD Inputs 12 Value |
| 13564 | RTD Inputs 13 Value | RTD Inputs 13 Value |
| 13565 | RTD Inputs 14 Value | RTD Inputs 14 Value |
| 13566 | RTD Inputs 15 Value | RTD Inputs 15 Value |
| 13567 | RTD Inputs 16 Value | RTD Inputs 16 Value |
| 13568 | RTD Inputs 17 Value | RTD Inputs 17 Value |
| 13569 | RTD Inputs 18 Value | RTD Inputs 18 Value |
| 13570 | RTD Inputs 19 Value | RTD Inputs 19 Value |
| 13571 | RTD Inputs 20 Value | RTD Inputs 20 Value |
| 13572 | RTD Inputs 21 Value | RTD Inputs 21 Value |
| 13573 | RTD Inputs 22 Value | RTD Inputs 22 Value |
| 13574 | RTD Inputs 23 Value | RTD Inputs 23 Value |

Table A-1: FLEXANALOG DATA ITEMS (Sheet 20 of 20)

| ADDR | DATA ITEM | FLEXANALOG NAME |
| :---: | :---: | :---: |
| 13575 | RTD Inputs 24 Value | RTD Inputs 24 Value |
| 13576 | RTD Inputs 25 Value | RTD Inputs 25 Value |
| 13577 | RTD Inputs 26 Value | RTD Inputs 26 Value |
| 13578 | RTD Inputs 27 Value | RTD Inputs 27 Value |
| 13579 | RTD Inputs 28 Value | RTD Inputs 28 Value |
| 13580 | RTD Inputs 29 Value | RTD Inputs 29 Value |
| 13581 | RTD Inputs 30 Value | RTD Inputs 30 Value |
| 13582 | RTD Inputs 31 Value | RTD Inputs 31 Value |
| 13583 | RTD Inputs 32 Value | RTD Inputs 32 Value |
| 13584 | RTD Inputs 33 Value | RTD Inputs 33 Value |
| 13585 | RTD Inputs 34 Value | RTD Inputs 34 Value |
| 13586 | RTD Inputs 35 Value | RTD Inputs 35 Value |
| 13587 | RTD Inputs 36 Value | RTD Inputs 36 Value |
| 13588 | RTD Inputs 37 Value | RTD Inputs 37 Value |
| 13589 | RTD Inputs 38 Value | RTD Inputs 38 Value |
| 13590 | RTD Inputs 39 Value | RTD Inputs 39 Value |
| 13591 | RTD Inputs 40 Value | RTD Inputs 40 Value |
| 13592 | RTD Inputs 41 Value | RTD Inputs 41 Value |
| 13593 | RTD Inputs 42 Value | RTD Inputs 42 Value |
| 13594 | RTD Inputs 43 Value | RTD Inputs 43 Value |
| 13595 | RTD Inputs 44 Value | RTD Inputs 44 Value |
| 13596 | RTD Inputs 45 Value | RTD Inputs 45 Value |
| 13597 | RTD Inputs 46 Value | RTD Inputs 46 Value |
| 13598 | RTD Inputs 47 Value | RTD Inputs 47 Value |
| 13599 | RTD Inputs 48 Value | RTD Inputs 48 Value |
| 32768 | Tracking Frequency | Tracking Frequency |
| 39425 | FlexElement 1 Actual | FlexElement 1 Value |
| 39427 | FlexElement 2 Actual | FlexElement 2 Value |
| 39429 | FlexElement 3 Actual | FlexElement 3 Value |
| 39431 | FlexElement 4 Actual | FlexElement 4 Value |
| 39433 | FlexElement 5 Actual | FlexElement 5 Value |
| 39435 | FlexElement 6 Actual | FlexElement 6 Value |
| 39437 | FlexElement 7 Actual | FlexElement 7 Value |
| 39439 | FlexElement 8 Actual | FlexElement 8 Value |
| 39441 | FlexElement 9 Actual | FlexElement 9 Value |
| 39443 | FlexElement 10 Actual | FlexElement 10 Value |
| 39445 | FlexElement 11 Actual | FlexElement 11 Value |
| 39447 | FlexElement 12 Actual | FlexElement 12 Value |
| 39449 | FlexElement 13 Actual | FlexElement 13 Value |
| 39451 | FlexElement 14 Actual | FlexElement 14 Value |
| 39453 | FlexElement 15 Actual | FlexElement 15 Value |
| 39455 | FlexElement 16 Actual | FlexElement 16 Value |
| 40971 | Current Setting Group | Active Setting Group |
| 43808 | VHZ 1 Actual | Volts Per Hertz 1 |
| 43809 | VHZ 2 Actual | Volts Per Hertz 2 |

The UR-series relays support a number of communications protocols to allow connection to equipment such as personal computers, RTUs, SCADA masters, and programmable logic controllers. The Modicon Modbus RTU protocol is the most basic protocol supported by the UR. Modbus is available via RS232 or RS485 serial links or via ethernet (using the Modbus/TCP specification). The following description is intended primarily for users who wish to develop their own master communication drivers and applies to the serial Modbus RTU protocol. Note that:

- The UR always acts as a slave device, meaning that it never initiates communications; it only listens and responds to requests issued by a master computer.
- For Modbus ${ }^{\circledR}$, a subset of the Remote Terminal Unit (RTU) protocol format is supported that allows extensive monitoring, programming, and control functions using read and write register commands.


## B.1.2 PHYSICAL LAYER

The Modbus ${ }^{\circledR}$ RTU protocol is hardware-independent so that the physical layer can be any of a variety of standard hardware configurations including RS232 and RS485. The relay includes a faceplate (front panel) RS232 port and two rear terminal communications ports that may be configured as RS485, fiber optic, 10BaseT, or 10BaseF. Data flow is half-duplex in all configurations. See Chapter 3 for details on wiring.

Each data byte is transmitted in an asynchronous format consisting of 1 start bit, 8 data bits, 1 stop bit, and possibly 1 parity bit. This produces a 10 or 11 bit data frame. This can be important for transmission through modems at high bit rates (11 bit data frames are not supported by many modems at baud rates greater than 300).

The baud rate and parity are independently programmable for each communications port. Baud rates of 300, 1200, 2400, $4800,9600,14400,19200,28800,33600,38400,57600$, or 115200 bps are available. Even, odd, and no parity are available. Refer to the Communications section of Chapter 5 for further details.

The master device in any system must know the address of the slave device with which it is to communicate. The relay will not act on a request from a master if the address in the request does not match the relay's slave address (unless the address is the broadcast address - see below).

A single setting selects the slave address used for all ports, with the exception that for the faceplate port, the relay will accept any address when the Modbus ${ }^{\circledR}$ RTU protocol is used.
B.1.3 DATA LINK LAYER

Communications takes place in packets which are groups of asynchronously framed byte data. The master transmits a packet to the slave and the slave responds with a packet. The end of a packet is marked by 'dead-time' on the communications line. The following describes general format for both transmit and receive packets. For exact details on packet formatting, refer to subsequent sections describing each function code.

Table B-1: MODBUS PACKET FORMAT

| DESCRIPTION | SIZE |
| :--- | :--- |
| SLAVE ADDRESS | 1 byte |
| FUNCTION CODE | 1 byte |
| DATA | N bytes |
| CRC | 2 bytes |
| DEAD TIME | 3.5 bytes transmission time |

- SLAVE ADDRESS: This is the address of the slave device that is intended to receive the packet sent by the master and to perform the desired action. Each slave device on a communications bus must have a unique address to prevent bus contention. All of the relay's ports have the same address which is programmable from 1 to 254; see Chapter 5 for details. Only the addressed slave will respond to a packet that starts with its address. Note that the faceplate port is an exception to this rule; it will act on a message containing any slave address.
A master transmit packet with slave address 0 indicates a broadcast command. All slaves on the communication link take action based on the packet, but none respond to the master. Broadcast mode is only recognized when associated with Function Code 05 h. For any other function code, a packet with broadcast mode slave address 0 will be ignored.
- FUNCTION CODE: This is one of the supported functions codes of the unit which tells the slave what action to perform. See the Supported Function Codes section for complete details. An exception response from the slave is indicated by setting the high order bit of the function code in the response packet. See the Exception Responses section for further details.
- DATA: This will be a variable number of bytes depending on the function code. This may include actual values, settings, or addresses sent by the master to the slave or by the slave to the master.
- CRC: This is a two byte error checking code. The RTU version of Modbus ${ }^{\circledR}$ includes a 16 -bit cyclic redundancy check (CRC-16) with every packet which is an industry standard method used for error detection. If a Modbus slave device receives a packet in which an error is indicated by the CRC, the slave device will not act upon or respond to the packet thus preventing any erroneous operations. See the CRC-16 Algorithm section for details on calculating the CRC.
- DEAD TIME: A packet is terminated when no data is received for a period of 3.5 byte transmission times (about 15 ms at $2400 \mathrm{bps}, 2 \mathrm{~ms}$ at 19200 bps , and $300 \mu \mathrm{~s}$ at 115200 bps ). Consequently, the transmitting device must not allow gaps between bytes longer than this interval. Once the dead time has expired without a new byte transmission, all slaves start listening for a new packet from the master except for the addressed slave.
B.1.4 CRC-16 ALGORITHM

The CRC-16 algorithm essentially treats the entire data stream (data bits only; start, stop and parity ignored) as one continuous binary number. This number is first shifted left 16 bits and then divided by a characteristic polynomial (11000000000000101B). The 16 bit remainder of the division is appended to the end of the packet, MSByte first. The resulting packet including CRC, when divided by the same polynomial at the receiver will give a zero remainder if no transmission errors have occurred. This algorithm requires the characteristic polynomial to be reverse bit ordered. The most significant bit of the characteristic polynomial is dropped, since it does not affect the value of the remainder.
A C programming language implementation of the CRC algorithm will be provided upon request.
Table B-2: CRC-16 ALGORITHM

| SYMBOLS: | --> | data transfer |  |
| :---: | :---: | :---: | :---: |
|  | A | 16 bit working register |  |
|  | Alow | low order byte of A |  |
|  | Ahigh | high order byte of $A$ |  |
|  | CRC | 16 bit CRC-16 result |  |
|  | i,j | loop counters |  |
|  | (+) | logical EXCLUSIVE-OR operator |  |
|  | N | total number of data bytes |  |
|  | Di | i-th data byte ( $\mathrm{l}=0$ to $\mathrm{N}-1$ ) |  |
|  | G | 16 bit characteristic polynomial = 1010000000000001 (binary) with MSbit dropped and bit order reversed |  |
|  | shr (x) | right shift operator (th LSbit of $x$ is shifted into a carry flag, a ' 0 ' is shifted into the MSbit of $x$, all other bits are shifted right one location) |  |
| ALGORITHM: | 1. | FFFF (hex) --> A |  |
|  | 2. | $0-->\mathrm{i}$ |  |
|  | 3. | $0-->j$ |  |
|  | 4. | Di (+) Alow --> Alow |  |
|  | 5. | j + 1 --> j |  |
|  | 6. | shr (A) |  |
|  | 7. | Is there a carry? | No: go to 8; Yes: G (+) A --> A and continue. |
|  | 8. | Is j = 8? | No: go to 5; Yes: continue |
|  | 9. | i + 1 --> i |  |
|  | 10. | Is $\mathrm{i}=\mathrm{N}$ ? | No: go to 3; Yes: continue |
|  | 11. | A --> CRC |  |

Modbus ${ }^{\circledR}$ officially defines function codes from 1 to 127 though only a small subset is generally needed. The relay supports some of these functions, as summarized in the following table. Subsequent sections describe each function code in detail.

| FUNCTION CODE |  | MODBUS DEFINITION | GE MULTILIN DEFINITION |
| :---: | :---: | :--- | :--- |
| HEX | DEC |  | Read Actual Values or Settings |
| 03 | 3 | Read Holding Registers | Read Actual Values or Settings |
| 04 | 4 | Read Holding Registers | Execute Operation |
| 05 | 5 | Force Single Coil | Store Single Setting |
| 06 | 6 | Preset Single Register | Store Multiple Settings |
| 10 | 16 | Preset Multiple Registers |  |

B.2.2 READ ACTUAL VALUES OR SETTINGS (FUNCTION CODE 03/04H)

This function code allows the master to read one or more consecutive data registers (actual values or settings) from a relay. Data registers are always 16 bit (two byte) values transmitted with high order byte first. The maximum number of registers that can be read in a single packet is 125 . See the Modbus Memory Map table for exact details on the data registers.
Since some PLC implementations of Modbus ${ }^{\circledR}$ only support one of function codes 03 h and 04 h , the relay interpretation allows either function code to be used for reading one or more consecutive data registers. The data starting address will determine the type of data being read. Function codes 03h and 04h are therefore identical.
The following table shows the format of the master and slave packets. The example shows a master device requesting 3 register values starting at address 4050h from slave device 11 h ( 17 decimal); the slave device responds with the values 40 , 300, and 0 from registers 4050h, 4051h, and 4052h, respectively.

Table B-3: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

| MASTER TRANSMISSION |  |
| :--- | :---: |
| PACKET FORMAT | EXAMPLE (HEX) |
| SLAVE ADDRESS | 11 |
| FUNCTION CODE | 04 |
| DATA STARTING ADDRESS - high | 40 |
| DATA STARTING ADDRESS - low | 50 |
| NUMBER OF REGISTERS - high | 00 |
| NUMBER OF REGISTERS - low | 03 |
| CRC - low | A7 |
| CRC - high | $4 A$ |


| SLAVE RESPONSE |  |
| :--- | :---: |
| PACKET FORMAT | EXAMPLE (HEX) |
| SLAVE ADDRESS | 11 |
| FUNCTION CODE | 04 |
| BYTE COUNT | 06 |
| DATA \#1 - high | 00 |
| DATA \#1 - low | 28 |
| DATA \#2 - high | 01 |
| DATA \#2 - low | $2 C$ |
| DATA \#3 - high | 00 |
| DATA \#3 - low | 00 |
| CRC - low | $0 D$ |
| CRC - high | 60 |

This function code allows the master to perform various operations in the relay. Available operations are shown in the Summary of Operation Codes table below.

The following table shows the format of the master and slave packets. The example shows a master device requesting the slave device $11 \mathrm{H}(17 \mathrm{dec})$ to perform a reset. The high and low Code Value bytes always have the values "FF" and " 00 " respectively and are a remnant of the original Modbus ${ }^{\circledR}$ definition of this function code.

Table B-4: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

| MASTER TRANSMISSION | EXAMPLE (HEX) |
| :--- | :---: |
| PACKET FORMAT | 11 |
| SLAVE ADDRESS | 05 |
| FUNCTION CODE | 00 |
| OPERATION CODE - high | 01 |
| OPERATION CODE - low | FF |
| CODE VALUE - high | 00 |
| CODE VALUE - low | DF |
| CRC - low | $6 A$ |
| CRC - high |  |


| SLAVE RESPONSE |  |
| :--- | :---: |
| PACKET FORMAT | EXAMPLE (HEX) |
| SLAVE ADDRESS | 11 |
| FUNCTION CODE | 05 |
| OPERATION CODE - high | 00 |
| OPERATION CODE - low | 01 |
| CODE VALUE - high | FF |
| CODE VALUE - low | 00 |
| CRC - low | DF |
| CRC - high | $6 A$ |

Table B-5: SUMMARY OF OPERATION CODES FOR FUNCTION 05H

| OPERATION <br> CODE (HEX) | DEFINITION | DESCRIPTION |
| :--- | :--- | :--- |
| 0000 | NO OPERATION | Does not do anything. |
| 0001 | RESET | Performs the same function as the faceplate RESET key. |
| 0005 | CLEAR EVENT RECORDS | Performs the same function as the faceplate CLEAR EVENT RECORDS menu <br> command. |
| 0006 | CLEAR OSCILLOGRAPHY | Clears all oscillography records. |
| 1000 to 103F | VIRTUAL IN 1 to 64 ON/OFF | Sets the states of Virtual Inputs 1 to 64 either "ON" or "OFF". |

B.2.4 STORE SINGLE SETTING (FUNCTION CODE 06H)

This function code allows the master to modify the contents of a single setting register in an relay. Setting registers are always 16 bit (two byte) values transmitted high order byte first. The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051 h to slave device 11h (17 dec).

Table B-6: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

| MASTER TRANSMISSION |  |
| :--- | :---: |
| PACKET FORMAT | EXAMPLE (HEX) |
| SLAVE ADDRESS | 11 |
| FUNCTION CODE | 06 |
| DATA STARTING ADDRESS - high | 40 |
| DATA STARTING ADDRESS - low | 51 |
| DATA - high | 00 |
| DATA - low | C8 |
| CRC - low | CE |
| CRC - high | DD |


| SLAVE RESPONSE |  |
| :--- | :---: |
| PACKET FORMAT | EXAMPLE (HEX) |
| SLAVE ADDRESS | 11 |
| FUNCTION CODE | 06 |
| DATA STARTING ADDRESS - high | 40 |
| DATA STARTING ADDRESS - low | 51 |
| DATA - high | 00 |
| DATA - low | C8 |
| CRC - low | CE |
| CRC - high | DD |

This function code allows the master to modify the contents of a one or more consecutive setting registers in a relay. Setting registers are 16-bit (two byte) values transmitted high order byte first. The maximum number of setting registers that can be stored in a single packet is 60 . The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051 h , and the value 1 at memory map address 4052 h to slave device 11 h ( 17 decimal).

Table B-7: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

| MASTER TRANSMISSION |  |
| :--- | :---: |
| PACKET FORMAT | EXAMPLE (HEX) |
| SLAVE ADDRESS | 11 |
| FUNCTION CODE | 10 |
| DATA STARTING ADDRESS - hi | 40 |
| DATA STARTING ADDRESS - lo | 51 |
| NUMBER OF SETTINGS - hi | 00 |
| NUMBER OF SETTINGS - lo | 02 |
| BYTE COUNT | 04 |
| DATA \#1 - high order byte | 00 |
| DATA \#1 - low order byte | C8 |
| DATA \#2 - high order byte | 00 |
| DATA \#2 - low order byte | 01 |
| CRC - low order byte | 12 |
| CRC - high order byte | 62 |


| SLAVE RESPONSE |  |
| :--- | :---: |
| PACKET FORMAT | EXMAPLE (HEX) |
| SLAVE ADDRESS | 11 |
| FUNCTION CODE | 10 |
| DATA STARTING ADDRESS - hi | 40 |
| DATA STARTING ADDRESS - lo | 51 |
| NUMBER OF SETTINGS - hi | 00 |
| NUMBER OF SETTINGS - lo | 02 |
| CRC - lo | 07 |
| CRC - hi | 64 |

B.2.6 EXCEPTION RESPONSES

Programming or operation errors usually happen because of illegal data in a packet. These errors result in an exception response from the slave. The slave detecting one of these errors sends a response packet to the master with the high order bit of the function code set to 1 .

The following table shows the format of the master and slave packets. The example shows a master device sending the unsupported function code 39 h to slave device 11.

Table B-8: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

| MASTER TRANSMISSION |  |
| :--- | :---: |
| PACKET FORMAT | EXAMPLE (HEX) |
| SLAVE ADDRESS | 11 |
| FUNCTION CODE | 39 |
| CRC - low order byte | CD |
| CRC - high order byte | F2 |


| SLAVE RESPONSE |  |
| :--- | :---: |
| PACKET FORMAT | EXAMPLE (HEX) |
| SLAVE ADDRESS | 11 |
| FUNCTION CODE | B9 |
| ERROR CODE | 01 |
| CRC - low order byte | 93 |
| CRC - high order byte | 95 |

## a) DESCRIPTION

The UR relay has a generic file transfer facility, meaning that you use the same method to obtain all of the different types of files from the unit. The Modbus registers that implement file transfer are found in the "Modbus File Transfer (Read/Write)" and "Modbus File Transfer (Read Only)" modules, starting at address 3100 in the Modbus Memory Map. To read a file from the UR relay, use the following steps:

1. Write the filename to the "Name of file to read" register using a write multiple registers command. If the name is shorter than 80 characters, you may write only enough registers to include all the text of the filename. Filenames are not case sensitive.
2. Repeatedly read all the registers in "Modbus File Transfer (Read Only)" using a read multiple registers command. It is not necessary to read the entire data block, since the UR relay will remember which was the last register you read. The "position" register is initially zero and thereafter indicates how many bytes ( 2 times the number of registers) you have read so far. The "size of..." register indicates the number of bytes of data remaining to read, to a maximum of 244.
3. Keep reading until the "size of..." register is smaller than the number of bytes you are transferring. This condition indicates end of file. Discard any bytes you have read beyond the indicated block size.
4. If you need to re-try a block, read only the "size of.." and "block of data", without reading the position. The file pointer is only incremented when you read the position register, so the same data block will be returned as was read in the previous operation. On the next read, check to see if the position is where you expect it to be, and discard the previous block if it is not (this condition would indicate that the UR relay did not process your original read request).
The UR relay retains connection-specific file transfer information, so files may be read simultaneously on multiple Modbus connections.

## b) OTHER PROTOCOLS

All the files available via Modbus may also be retrieved using the standard file transfer mechanisms in other protocols (for example, TFTP or MMS).

## c) COMTRADE, OSCILLOGRAPHY, AND DATA LOGGER FILES

Oscillography and data logger files are formatted using the COMTRADE file format per IEEE PC37.111 Draft 7c (02 September 1997). The files may be obtained in either text or binary COMTRADE format.

## d) READING OSCILLOGRAPHY FILES

Familiarity with the oscillography feature is required to understand the following description. Refer to the Oscillography section in Chapter 5 for additional details.
The Oscillography Number of Triggers register is incremented by one every time a new oscillography file is triggered (captured) and cleared to zero when oscillography data is cleared. When a new trigger occurs, the associated oscillography file is assigned a file identifier number equal to the incremented value of this register; the newest file number is equal to the Oscillography_Number_of_Triggers register. This register can be used to determine if any new data has been captured by periodically reading it to see if the value has changed; if the number has increased then new data is available.
The Oscillography Number of Records register specifies the maximum number of files (and the number of cycles of data per file) that can be stored in memory of the relay. The Oscillography Available Records register specifies the actual number of files that are stored and still available to be read out of the relay.
Writing "Yes" (i.e. the value 1) to the Oscillography Clear Data register clears oscillography data files, clears both the Oscillography Number of Triggers and Oscillography Available Records registers to zero, and sets the Oscillography Last Cleared Date to the present date and time.

To read binary COMTRADE oscillography files, read the following filenames:

```
OSCnnnn.CFG and OSCnnn.DAT
```

Replace "nnn" with the desired oscillography trigger number. For ASCII format, use the following file names

```
OSCAnnnn.CFG and OSCAnnn.DAT
```


## e) READING DATA LOGGER FILES

Familiarity with the data logger feature is required to understand this description. Refer to the Data Logger section of Chapter 5 for details. To read the entire data logger in binary COMTRADE format, read the following files.

```
datalog.cfg and datalog.dat
```

To read the entire data logger in ASCII COMTRADE format, read the following files.

```
dataloga.cfg and dataloga.dat
```

To limit the range of records to be returned in the COMTRADE files, append the following to the filename before writing it:

- To read from a specific time to the end of the log: <space> startTime
- To read a specific range of records: <space> startTime <space> endTime
- Replace <startTime> and <endTime> with Julian dates (seconds since Jan. 1 1970) as numeric text.


## f) READING EVENT RECORDER FILES

To read the entire event recorder contents in ASCII format (the only available format), use the following filename:
EVT.TXT
To read from a specific record to the end of the log, use the following filename:
EVTnnn.TXT (replace nnn with the desired starting record number)
To read from a specific record to another specific record, use the following filename:
EVT.TXT xxxxx yyyyy (replace xxxxx with the starting record number and yyyyy with the ending record number)
B.3.2 MODBUS PASSWORD OPERATION

The COMMAND password is set up at memory location 4000. Storing a value of " 0 " removes COMMAND password protection. When reading the password setting, the encrypted value (zero if no password is set) is returned. COMMAND security is required to change the COMMAND password. Similarly, the SETTING password is set up at memory location 4002. These are the same settings and encrypted values found in the SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ PASSWORD SECURITY menu via the keypad. Enabling password security for the faceplate display will also enable it for Modbus, and vice-versa.

To gain COMMAND level security access, the COMMAND password must be entered at memory location 4008. To gain SETTING level security access, the SETTING password must be entered at memory location 400A. The entered SETTING password must match the current SETTING password setting, or must be zero, to change settings or download firmware.

COMMAND and SETTING passwords each have a 30-minute timer. Each timer starts when you enter the particular password, and is re-started whenever you "use" it. For example, writing a setting re-starts the SETTING password timer and writing a command register or forcing a coil re-starts the COMMAND password timer. The value read at memory location 4010 can be used to confirm whether a COMMAND password is enabled or disabled ( 0 for Disabled). The value read at memory location 4011 can be used to confirm whether a SETTING password is enabled or disabled.
COMMAND or SETTING password security access is restricted to the particular port or particular TCP/IP connection on which the entry was made. Passwords must be entered when accessing the relay through other ports or connections, and the passwords must be re-entered after disconnecting and re-connecting on TCP/IP.

Table B-9: MODBUS MEMORY MAP (Sheet 1 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Product Information (Read Only) |  |  |  |  |  |  |
| 0000 | UR Product Type | 0 to 65535 | --- | 1 | F001 | 0 |
| 0002 | Product Version | 0 to 655.35 | --- | 0.01 | F001 | 1 |
| Product Information (Read Only -- Written by Factory) |  |  |  |  |  |  |
| 0010 | Serial Number | --- | --- | --- | F203 | "0" |
| 0020 | Manufacturing Date | 0 to 4294967295 | --- | 1 | F050 | 0 |
| 0022 | Modification Number | 0 to 65535 | --- | 1 | F001 | 0 |
| 0040 | Order Code | --- | --- | --- | F204 | "Order Code x" |
| 0090 | Ethernet MAC Address | --- | --- | --- | F072 | 0 |
| 0093 | Reserved (13 items) | --- | --- | --- | F001 | 0 |
| 00A0 | CPU Module Serial Number | --- | --- | --- | F203 | (none) |
| 00B0 | CPU Supplier Serial Number | --- | --- | --- | F203 | (none) |
| 00C0 | Ethernet Sub Module Serial Number (8 items) | --- | --- | --- | F203 | (none) |
| Self Test Targets (Read Only) |  |  |  |  |  |  |
| 0200 | Self Test States (2 items) | 0 to 4294967295 | 0 | 1 | F143 | 0 |
| Front Panel (Read Only) |  |  |  |  |  |  |
| 0204 | LED Column $n$ State, $n=1$ to 10 (10 items) | 0 to 65535 | --- | 1 | F501 | 0 |
| 0220 | Display Message | --- | --- | --- | F204 | (none) |
| 0248 | Last Key Pressed | 0 to 47 | --- | 1 | F530 | 0 (None) |
| Keypress Emulation (Read/Write) |  |  |  |  |  |  |
| 0280 | Simulated keypress -- write zero before each keystroke | 0 to 42 | --- | 1 | F190 | 0 (No key -- use between real keys) |
| Virtual Input Commands (Read/Write Command) (64 modules) |  |  |  |  |  |  |
| 0400 | Virtual Input 1 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0401 | Virtual Input 2 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0402 | Virtual Input 3 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0403 | Virtual Input 4 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0404 | Virtual Input 5 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0405 | Virtual Input 6 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0406 | Virtual Input 7 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0407 | Virtual Input 8 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0408 | Virtual Input 9 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0409 | Virtual Input 10 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 040A | Virtual Input 11 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 040B | Virtual Input 12 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 040C | Virtual Input 13 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 040D | Virtual Input 14 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 040E | Virtual Input 15 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 040F | Virtual Input 16 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0410 | Virtual Input 17 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0411 | Virtual Input 18 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0412 | Virtual Input 19 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0413 | Virtual Input 20 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0414 | Virtual Input 21 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0415 | Virtual Input 22 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0416 | Virtual Input 23 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0417 | Virtual Input 24 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0418 | Virtual Input 25 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0419 | Virtual Input 26 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 041A | Virtual Input 27 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 041B | Virtual Input 28 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |

Table B-9: MODBUS MEMORY MAP (Sheet 2 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 041C | Virtual Input 29 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 041D | Virtual Input 30 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 041E | Virtual Input 31 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 041F | Virtual Input 32 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0420 | Virtual Input 33 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0421 | Virtual Input 34 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0422 | Virtual Input 35 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0423 | Virtual Input 36 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0424 | Virtual Input 37 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0425 | Virtual Input 38 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0426 | Virtual Input 39 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0427 | Virtual Input 40 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0428 | Virtual Input 41 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0429 | Virtual Input 42 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 042A | Virtual Input 43 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 042B | Virtual Input 44 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 042C | Virtual Input 45 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 042D | Virtual Input 46 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 042E | Virtual Input 47 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 042F | Virtual Input 48 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0430 | Virtual Input 49 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0431 | Virtual Input 50 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0432 | Virtual Input 51 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0433 | Virtual Input 52 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0434 | Virtual Input 53 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0435 | Virtual Input 54 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0436 | Virtual Input 55 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0437 | Virtual Input 56 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0438 | Virtual Input 57 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 0439 | Virtual Input 58 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 043A | Virtual Input 59 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 043B | Virtual Input 60 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 043C | Virtual Input 61 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 043D | Virtual Input 62 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 043E | Virtual Input 63 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 043F | Virtual Input 64 State | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| Digital Counter States (Read Only Non-Volatile) (8 modules) |  |  |  |  |  |  |
| 0800 | Digital Counter 1 Value | $\begin{gathered} -2147483647 \text { to } \\ 2147483647 \end{gathered}$ | --- | 1 | F004 | 0 |
| 0802 | Digital Counter 1 Frozen | $\begin{gathered} -2147483647 \text { to } \\ 2147483647 \end{gathered}$ | --- | 1 | F004 | 0 |
| 0804 | Digital Counter 1 Frozen Time Stamp | 0 to 4294967295 | --- | 1 | F050 | 0 |
| 0806 | Digital Counter 1 Frozen Time Stamp us | 0 to 4294967295 | --- | 1 | F003 | 0 |
| 0808 | ...Repeated for Digital Counter 2 |  |  |  |  |  |
| 0810 | ...Repeated for Digital Counter 3 |  |  |  |  |  |
| 0818 | ...Repeated for Digital Counter 4 |  |  |  |  |  |
| 0820 | ...Repeated for Digital Counter 5 |  |  |  |  |  |
| 0828 | ...Repeated for Digital Counter 6 |  |  |  |  |  |
| 0830 | ...Repeated for Digital Counter 7 |  |  |  |  |  |
| 0838 | ...Repeated for Digital Counter 8 |  |  |  |  |  |
| FlexStates (Read Only) |  |  |  |  |  |  |
| 0900 | FlexState Bits (16 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| Element States (Read Only) |  |  |  |  |  |  |
| 1000 | Element Operate States (64 items) | 0 to 65535 | --- | 1 | F502 | 0 |

Table B-9: MODBUS MEMORY MAP (Sheet 3 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| User Displays Actuals (Read Only) |  |  |  |  |  |  |
| 1080 | Formatted user-definable displays (16 items) | --- | --- | --- | F200 | (none) |
| Modbus User Map Actuals (Read Only) |  |  |  |  |  |  |
| 1200 | User Map Values (256 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| Element Targets (Read Only) |  |  |  |  |  |  |
| 14C0 | Target Sequence | 0 to 65535 | --- | 1 | F001 | 0 |
| 14C1 | Number of Targets | 0 to 65535 | --- | 1 | F001 | 0 |
| Element Targets (Read/Write) |  |  |  |  |  |  |
| 14C2 | Target to Read | 0 to 65535 | --- | 1 | F001 | 0 |
| Element Targets (Read Only) |  |  |  |  |  |  |
| 14C3 | Target Message | --- | --- | --- | F200 | "." |
| Digital Input/Output States (Read Only) |  |  |  |  |  |  |
| 1500 | Contact Input States (6 items) | 0 to 65535 | --- | 1 | F500 | 0 |
| 1508 | Virtual Input States (8 items) | 0 to 65535 | --- | 1 | F500 | 0 |
| 1510 | Contact Output States (4 items) | 0 to 65535 | --- | 1 | F500 | 0 |
| 1518 | Contact Output Current States (4 items) | 0 to 65535 | --- | 1 | F500 | 0 |
| 1520 | Contact Output Voltage States (4 items) | 0 to 65535 | --- | 1 | F500 | 0 |
| 1528 | Virtual Output States (6 items) | 0 to 65535 | --- | 1 | F500 | 0 |
| 1530 | Contact Output Detectors (4 items) | 0 to 65535 | --- | 1 | F500 | 0 |
| Remote Input/Output States (Read Only) |  |  |  |  |  |  |
| 1540 | Remote Device 1 States | 0 to 65535 | --- | 1 | F500 | 0 |
| 1542 | Remote Input States (4 items) | 0 to 65535 | --- | 1 | F500 | 0 |
| 1550 | Remote Devices Online | 0 to 1 | --- | 1 | F126 | 0 (No) |
| Remote Device Status (Read Only) (16 modules) |  |  |  |  |  |  |
| 1551 | Remote Device 1 StNum | 0 to 4294967295 | --- | 1 | F003 | 0 |
| 1553 | Remote Device 1 SqNum | 0 to 4294967295 | --- | 1 | F003 | 0 |
| 1555 | ...Repeated for Remote Device 2 |  |  |  |  |  |
| 1559 | ...Repeated for Remote Device 3 |  |  |  |  |  |
| 155D | ...Repeated for Remote Device 4 |  |  |  |  |  |
| 1561 | ...Repeated for Remote Device 5 |  |  |  |  |  |
| 1565 | ...Repeated for Remote Device 6 |  |  |  |  |  |
| 1569 | ...Repeated for Remote Device 7 |  |  |  |  |  |
| 156D | ...Repeated for Remote Device 8 |  |  |  |  |  |
| 1571 | ...Repeated for Remote Device 9 |  |  |  |  |  |
| 1575 | ...Repeated for Remote Device 10 |  |  |  |  |  |
| 1579 | ...Repeated for Remote Device 11 |  |  |  |  |  |
| 157D | ...Repeated for Remote Device 12 |  |  |  |  |  |
| 1581 | ...Repeated for Remote Device 13 |  |  |  |  |  |
| 1585 | ...Repeated for Remote Device 14 |  |  |  |  |  |
| 1589 | ...Repeated for Remote Device 15 |  |  |  |  |  |
| 158D | ...Repeated for Remote Device 16 |  |  |  |  |  |
| Platform Direct Input/Output States (Read Only) |  |  |  |  |  |  |
| 15C0 | Direct input states (6 items) | 0 to 65535 | --- | 1 | F500 | 0 |
| 15C8 | Direct outputs average message return time 1 | 0 to 65535 | ms | 1 | F001 | 0 |
| 15C9 | Direct outputs average message return time 2 | 0 to 65535 | ms | 1 | F001 | 0 |
| 15CA | Direct inputs/outputs unreturned message count - Ch. 1 | 0 to 65535 | --- | 1 | F001 | 0 |
| 15CB | Direct inputs/outputs unreturned message count - Ch. 2 | 0 to 65535 | --- | 1 | F001 | 0 |
| 15D0 | Direct device states | 0 to 65535 | --- | 1 | F500 | 0 |
| 15D1 | Reserved | 0 to 65535 | --- | 1 | F001 | 0 |
| 15D2 | Direct inputs/outputs CRC fail count 1 | 0 to 65535 | --- | 1 | F001 | 0 |
| 15D3 | Direct inputs/outputs CRC fail count 2 | 0 to 65535 | --- | 1 | F001 | 0 |
| Ethernet Fibre Channel Status (Read/Write) |  |  |  |  |  |  |
| 1610 | Ethernet primary fibre channel status | 0 to 2 | --- | 1 | F134 | 0 (Fail) |
| 1611 | Ethernet secondary fibre channel status | 0 to 2 | --- | 1 | F134 | 0 (Fail) |

Table B-9: MODBUS MEMORY MAP (Sheet 4 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data Logger Actuals (Read Only) |  |  |  |  |  |  |
| 1618 | Data logger channel count | 0 to 16 | channel | 1 | F001 | 0 |
| 1619 | Time of oldest available samples | 0 to 4294967295 | seconds | 1 | F050 | 0 |
| 161B | Time of newest available samples | 0 to 4294967295 | seconds | 1 | F050 | 0 |
| 161D | Data logger duration | 0 to 999.9 | days | 0.1 | F001 | 0 |
| Restricted Ground Fault Currents (Read Only) (6 modules) |  |  |  |  |  |  |
| 16A0 | Differential Ground Current Magnitude | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 16A2 | Restricted Ground Current Magnitude | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 16A4 | ...Repeated for Restricted Ground Fault 2 |  |  |  |  |  |
| 16A8 | ...Repeated for Restricted Ground Fault 3 |  |  |  |  |  |
| 16AC | ...Repeated for Restricted Ground Fault 4 |  |  |  |  |  |
| 16B0 | ...Repeated for Restricted Ground Fault 5 |  |  |  |  |  |
| 16B4 | ...Repeated for Restricted Ground Fault 6 |  |  |  |  |  |
| Source Current (Read Only) (6 modules) |  |  |  |  |  |  |
| 1800 | Source 1 Phase A Current RMS | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1802 | Source 1 Phase B Current RMS | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1804 | Source 1 Phase C Current RMS | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1806 | Source 1 Neutral Current RMS | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1808 | Source 1 Phase A Current Magnitude | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 180A | Source 1 Phase A Current Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 180B | Source 1 Phase B Current Magnitude | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 180D | Source 1 Phase B Current Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 180E | Source 1 Phase C Current Magnitude | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1810 | Source 1 Phase C Current Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 1811 | Source 1 Neutral Current Magnitude | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1813 | Source 1 Neutral Current Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 1814 | Source 1 Ground Current RMS | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1816 | Source 1 Ground Current Magnitude | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1818 | Source 1 Ground Current Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 1819 | Source 1 Zero Sequence Current Magnitude | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 181B | Source 1 Zero Sequence Current Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 181C | Source 1 Positive Sequence Current Magnitude | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 181E | Source 1 Positive Sequence Current Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 181F | Source 1 Negative Sequence Current Magnitude | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1821 | Source 1 Negative Sequence Current Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 1822 | Source 1 Differential Ground Current Magnitude | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1824 | Source 1 Differential Ground Current Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 1825 | Reserved (27 items) | --- | --- | --- | F001 | 0 |
| 1840 | ...Repeated for Source 2 |  |  |  |  |  |
| 1880 | ...Repeated for Source 3 |  |  |  |  |  |
| 18C0 | ...Repeated for Source 4 |  |  |  |  |  |
| 1900 | ...Repeated for Source 5 |  |  |  |  |  |
| 1940 | ...Repeated for Source 6 |  |  |  |  |  |
| Source Voltage (Read Only) (6 modules) |  |  |  |  |  |  |
| 1A00 | Source 1 Phase AG Voltage RMS | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A02 | Source 1 Phase BG Voltage RMS | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A04 | Source 1 Phase CG Voltage RMS | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A06 | Source 1 Phase AG Voltage Magnitude | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A08 | Source 1 Phase AG Voltage Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 1A09 | Source 1 Phase BG Voltage Magnitude | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A0B | Source 1 Phase BG Voltage Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 1A0C | Source 1 Phase CG Voltage Magnitude | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A0E | Source 1 Phase CG Voltage Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 1A0F | Source 1 Phase AB or AC Voltage RMS | 0 to 999999.999 | V | 0.001 | F060 | 0 |

Table B-9: MODBUS MEMORY MAP (Sheet 5 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1A11 | Source 1 Phase BC or BA Voltage RMS | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A13 | Source 1 Phase CA or CB Voltage RMS | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A15 | Source 1 Phase AB or AC Voltage Magnitude | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A17 | Source 1 Phase AB or AC Voltage Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 1A18 | Source 1 Phase BC or BA Voltage Magnitude | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A1A | Source 1 Phase BC or BA Voltage Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 1A1B | Source 1 Phase CA or CB Voltage Magnitude | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A1D | Source 1 Phase CA or CB Voltage Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 1A1E | Source 1 Auxiliary Voltage RMS | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A20 | Source 1 Auxiliary Voltage Magnitude | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A22 | Source 1 Auxiliary Voltage Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 1A23 | Source 1 Zero Sequence Voltage Magnitude | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A25 | Source 1 Zero Sequence Voltage Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 1A26 | Source 1 Positive Sequence Voltage Magnitude | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A28 | Source 1 Positive Sequence Voltage Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 1A29 | Source 1 Negative Sequence Voltage Magnitude | 0 to 999999.999 | V | 0.001 | F060 | 0 |
| 1A2B | Source 1 Negative Sequence Voltage Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 1A2C | Reserved (20 items) | --- | --- | --- | F001 | 0 |
| 1A40 | ...Repeated for Source 2 |  |  |  |  |  |
| 1A80 | ...Repeated for Source 3 |  |  |  |  |  |
| 1AC0 | ...Repeated for Source 4 |  |  |  |  |  |
| 1B00 | ...Repeated for Source 5 |  |  |  |  |  |
| 1B40 | ...Repeated for Source 6 |  |  |  |  |  |
| Source Power (Read Only) (6 modules) |  |  |  |  |  |  |
| 1C00 | Source 1 Three Phase Real Power | $\begin{gathered} -10000000000000 \text { to } \\ 1000000000000 \end{gathered}$ | W | 0.001 | F060 | 0 |
| 1C02 | Source 1 Phase A Real Power | $\begin{aligned} & -1000000000000 \text { to } \\ & 1000000000000 \end{aligned}$ | W | 0.001 | F060 | 0 |
| 1C04 | Source 1 Phase B Real Power | $\begin{gathered} -10000000000000 \text { to } \\ 1000000000000 \end{gathered}$ | W | 0.001 | F060 | 0 |
| 1C06 | Source 1 Phase C Real Power | $\begin{aligned} & -1000000000000 \text { to } \\ & 10000000000000 \end{aligned}$ | W | 0.001 | F060 | 0 |
| 1C08 | Source 1 Three Phase Reactive Power | $\begin{aligned} & -1000000000000 \text { to } \\ & 1000000000000 \end{aligned}$ | var | 0.001 | F060 | 0 |
| 1C0A | Source 1 Phase A Reactive Power | $\begin{aligned} & -10000000000000 \text { to } \\ & 1000000000000 \end{aligned}$ | var | 0.001 | F060 | 0 |
| 1C0C | Source 1 Phase B Reactive Power | $\begin{gathered} -10000000000000 \text { to } \\ 1000000000000 \end{gathered}$ | var | 0.001 | F060 | 0 |
| 1C0E | Source 1 Phase C Reactive Power | $\begin{aligned} & -10000000000000 \text { to } \\ & 1000000000000 \end{aligned}$ | var | 0.001 | F060 | 0 |
| 1C10 | Source 1 Three Phase Apparent Power | $\begin{gathered} -1000000000000 \text { to } \\ 1000000000000 \end{gathered}$ | VA | 0.001 | F060 | 0 |
| 1C12 | Source 1 Phase A Apparent Power | $\begin{aligned} & -1000000000000 \text { to } \\ & 10000000000000 \end{aligned}$ | VA | 0.001 | F060 | 0 |
| 1C14 | Source 1 Phase B Apparent Power | $\begin{aligned} & -1000000000000 \text { to } \\ & 1000000000000 \end{aligned}$ | VA | 0.001 | F060 | 0 |
| 1C16 | Source 1 Phase C Apparent Power | $\begin{gathered} -10000000000000 \text { to } \\ 1000000000000 \end{gathered}$ | VA | 0.001 | F060 | 0 |
| 1C18 | Source 1 Three Phase Power Factor | -0.999 to 1 | --- | 0.001 | F013 | 0 |
| 1C19 | Source 1 Phase A Power Factor | -0.999 to 1 | --- | 0.001 | F013 | 0 |
| 1C1A | Source 1 Phase B Power Factor | -0.999 to 1 | --- | 0.001 | F013 | 0 |
| 1C1B | Source 1 Phase C Power Factor | -0.999 to 1 | --- | 0.001 | F013 | 0 |
| 1C1C | Reserved (4 items) | -- | --- | --- | F001 | 0 |
| 1C20 | ...Repeated for Source 2 |  |  |  |  |  |
| 1C40 | ...Repeated for Source 3 |  |  |  |  |  |
| 1-60 | ...Repeated for Source 4 |  |  |  |  |  |
| 1C80 | ...Repeated for Source 5 |  |  |  |  |  |
| 1CA0 | ...Repeated for Source 6 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 6 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source Energy (Read Only Non-Volatile) (6 modules) |  |  |  |  |  |  |
| 1D00 | Source 1 Positive Watthour | 0 to 1000000000000 | Wh | 0.001 | F060 | 0 |
| 1D02 | Source 1 Negative Watthour | 0 to 1000000000000 | Wh | 0.001 | F060 | 0 |
| 1D04 | Source 1 Positive Varhour | 0 to 1000000000000 | varh | 0.001 | F060 | 0 |
| 1D06 | Source 1 Negative Varhour | 0 to 1000000000000 | varh | 0.001 | F060 | 0 |
| 1D08 | Reserved (8 items) | --- | --- | --- | F001 | 0 |
| 1D10 | ...Repeated for Source 2 |  |  |  |  |  |
| 1D20 | ...Repeated for Source 3 |  |  |  |  |  |
| 1D30 | ...Repeated for Source 4 |  |  |  |  |  |
| 1D40 | ...Repeated for Source 5 |  |  |  |  |  |
| 1D50 | ...Repeated for Source 6 |  |  |  |  |  |
| Energy Commands (Read/Write Command) |  |  |  |  |  |  |
| 1D60 | Energy Clear Command | 0 to 1 | --- | 1 | F126 | 0 (No) |
| Source Frequency (Read Only) (6 modules) |  |  |  |  |  |  |
| 1D80 | Frequency for Source 1 | 2 to 90 | Hz | 0.01 | F001 | 0 |
| 1D81 | Frequency for Source 2 | 2 to 90 | Hz | 0.01 | F001 | 0 |
| 1D82 | Frequency for Source 3 | 2 to 90 | Hz | 0.01 | F001 | 0 |
| 1D83 | Frequency for Source 4 | 2 to 90 | Hz | 0.01 | F001 | 0 |
| 1D84 | Frequency for Source 5 | 2 to 90 | Hz | 0.01 | F001 | 0 |
| 1D85 | Frequency for Source 6 | 2 to 90 | Hz | 0.01 | F001 | 0 |
| Source Demand (Read Only) (6 modules) |  |  |  |  |  |  |
| 1E00 | Source 1 Demand la | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1E02 | Source 1 Demand Ib | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1E04 | Source 1 Demand Ic | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1E06 | Source 1 Demand Watt | 0 to 999999.999 | W | 0.001 | F060 | 0 |
| 1E08 | Source 1 Demand Var | 0 to 999999.999 | var | 0.001 | F060 | 0 |
| 1E0A | Source 1 Demand Va | 0 to 999999.999 | VA | 0.001 | F060 | 0 |
| 1E0C | Reserved (4 items) | --- | --- | --- | F001 | 0 |
| 1E10 | ...Repeated for Source 2 |  |  |  |  |  |
| 1E20 | ...Repeated for Source 3 |  |  |  |  |  |
| 1E30 | ...Repeated for Source 4 |  |  |  |  |  |
| 1 E 40 | ...Repeated for Source 5 |  |  |  |  |  |
| 1 E50 | ...Repeated for Source 6 |  |  |  |  |  |
| Source Demand Peaks (Read Only Non-Volatile) (6 modules) |  |  |  |  |  |  |
| 1E80 | Source 1 Demand la Maximum | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1E82 | Source 1 Demand la Maximum Date | 0 to 4294967295 | --- | 1 | F050 | 0 |
| 1E84 | Source 1 Demand Ib Maximum | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1E86 | Source 1 Demand Ib Maximum Date | 0 to 4294967295 | --- | 1 | F050 | 0 |
| 1E88 | Source 1 Demand Ic Maximum | 0 to 999999.999 | A | 0.001 | F060 | 0 |
| 1E8A | Source 1 Demand Ic Maximum Date | 0 to 4294967295 | --- | 1 | F050 | 0 |
| 1E8C | Source 1 Demand Watt Maximum | 0 to 999999.999 | W | 0.001 | F060 | 0 |
| 1E8E | Source 1 Demand Watt Maximum Date | 0 to 4294967295 | --- | 1 | F050 | 0 |
| 1E90 | Source 1 Demand Var | 0 to 999999.999 | var | 0.001 | F060 | 0 |
| 1E92 | Source 1 Demand Var Maximum Date | 0 to 4294967295 | --- | 1 | F050 | 0 |
| 1E94 | Source 1 Demand Va Maximum | 0 to 999999.999 | VA | 0.001 | F060 | 0 |
| 1E96 | Source 1 Demand Va Maximum Date | 0 to 4294967295 | --- | 1 | F050 | 0 |
| 1E98 | Reserved (8 items) | --- | --- | --- | F001 | 0 |
| 1EA0 | ...Repeated for Source 2 |  |  |  |  |  |
| 1EC0 | ...Repeated for Source 3 |  |  |  |  |  |
| 1EE0 | ...Repeated for Source 4 |  |  |  |  |  |
| 1F00 | ...Repeated for Source 5 |  |  |  |  |  |
| 1F20 | ...Repeated for Source 6 |  |  |  |  |  |
| Breaker Arcing Current Actuals (Read Only Non-Volatile) (2 modules) |  |  |  |  |  |  |
| 21E0 | Breaker 1 Arcing Current Phase A | 0 to 99999999 | kA ${ }^{2}$-cyc | 1 | F060 | 0 |

Table B-9: MODBUS MEMORY MAP (Sheet 7 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21E2 | Breaker 1 Arcing Current Phase B | 0 to 99999999 | kA ${ }^{2}$-cyc | 1 | F060 | 0 |
| 21E4 | Breaker 1 Arcing Current Phase C | 0 to 99999999 | kA ${ }^{2}$-cyc | 1 | F060 | 0 |
| 21E6 | Breaker 1 Operating Time Phase A | 0 to 65535 | ms | 1 | F001 | 0 |
| 21E7 | Breaker 1 Operating Time Phase B | 0 to 65535 | ms | 1 | F001 | 0 |
| 21E8 | Breaker 1 Operating Time Phase C | 0 to 65535 | ms | 1 | F001 | 0 |
| 21E9 | Breaker 1 Operating Time | 0 to 65535 | ms | 1 | F001 | 0 |
| 21E6 | ...Repeated for Breaker Arcing Current 2 |  |  |  |  |  |
| Breaker Arcing Current Commands (Read/Write Command) (2 modules) |  |  |  |  |  |  |
| 2224 | Breaker 1 Arcing Current Clear Command | 0 to 1 | --- | 1 | F126 | 0 (No) |
| 2225 | Breaker 2 Arcing Current Clear Command | 0 to 1 | --- | 1 | F126 | 0 (No) |
| Passwords Unauthorized Access (Read/Write Command) |  |  |  |  |  |  |
| 2230 | Reset Unauthorized Access | 0 to 1 | --- | 1 | F126 | 0 (No) |
| Transformer Differential And Restraint (Read Only) |  |  |  |  |  |  |
| 2300 | Transformer Reference Winding | 1 to 6 | --- | 1 | F001 | 1 |
| 2301 | Transformer Differential Phasor Iad Magnitude | 0 to 30 | pu | 0.001 | F001 | 0 |
| 2302 | Transformer Differential Phasor Iad Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 2303 | Transformer Restraint Phasor lar Magnitude | 0 to 30 | pu | 0.001 | F001 | 0 |
| 2304 | Transformer Restraint Phasor lar Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 2305 | Transformer Differential 2nd Harm Iad Magnitude | 0 to 999.9 | \% fo | 0.1 | F001 | 0 |
| 2306 | Transformer Differential 2nd Harm lad Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 2307 | Transformer Differential 5th Harm lad Magnitude | 0 to 999.9 | \% fo | 0.1 | F001 | 0 |
| 2308 | Transformer Differential 5th Harm lad Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 2309 | Transformer Differential Phasor Ibd Magnitude | 0 to 30 | pu | 0.001 | F001 | 0 |
| 230A | Transformer Differential Phasor Ibd Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 230B | Transformer Restraint Phasor Ibr Magnitude | 0 to 30 | pu | 0.001 | F001 | 0 |
| 230C | Transformer Restraint Phasor Ibr Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 230D | Transformer Differential 2nd Harm Ibd Magnitude | 0 to 999.9 | \% fo | 0.1 | F001 | 0 |
| 230E | Transformer Differential 2nd Harm Ibd Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 230F | Transformer Differential 5th Harm Ibd Magnitude | 0 to 999.9 | \% fo | 0.1 | F001 | 0 |
| 2310 | Transformer Differential 5th Harm Ibd Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 2311 | Transformer Differential Phasor Icd Magnitude | 0 to 30 | pu | 0.001 | F001 | 0 |
| 2312 | Transformer Differential Phasor Icd Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 2313 | Transformer Restraint Phasor Icr Magnitude | 0 to 30 | pu | 0.001 | F001 | 0 |
| 2314 | Transformer Restraint Phasor Icr Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 2315 | Transformer Differential 2nd Harm Icd Magnitude | 0 to 999.9 | \% fo | 0.1 | F001 | 0 |
| 2316 | Transformer Differential 2nd Harm Icd Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 2317 | Transformer Differential 5th Harm Icd Magnitude | 0 to 999.9 | \% fo | 0.1 | F001 | 0 |
| 2318 | Transformer Differential 5th Harm Icd Angle | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| Transformer Thermal Inputs Actuals (Read Only) |  |  |  |  |  |  |
| 2330 | Transformer Top Oil Temperature | 0 to 300 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 2331 | Transformer Hottest Spot Temperature | 0 to 300 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 2332 | Transformer Aging Factor | 0 to 6553.5 | PU | 0.1 | F001 | 0 |
| 2333 | Transformer Daily Loss Of Life | 0 to 500000 | Hours | 1 | F060 | 0 |
| Source Current THD And Harmonics (Read Only) (6 modules) |  |  |  |  |  |  |
| 2800 | la THD for Source 1 | 0 to 99.9 | --- | 0.1 | F001 | 0 |
| 2801 | Ia Harmonics for Source 1-2nd to 25th (24 items) | 0 to 99.9 | --- | 0.1 | F001 | 0 |
| 2821 | Ib THD for Source 1 | 0 to 99.9 | --- | 0.1 | F001 | 0 |
| 2822 | Ib Harmonics for Source 1-2nd to 25th (24 items) | 0 to 99.9 | --- | 0.1 | F001 | 0 |
| 283A | Reserved (8 items) | 0 to 0.1 | --- | 0.1 | F001 | 0 |
| 2842 | Ic THD for Source 1 | 0 to 99.9 | --- | 0.1 | F001 | 0 |
| 2843 | Ic Harmonics for Source 1-2nd to 25th (24 items) | 0 to 99.9 | --- | 0.1 | F001 | 0 |
| 285B | Reserved (8 items) | 0 to 0.1 | --- | 0.1 | F001 | 0 |
| 2863 | ...Repeated for Source 2 |  |  |  |  |  |
| 28C6 | ...Repeated for Source 3 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 8 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2929 | ...Repeated for Source 4 |  |  |  |  |  |
| 298C | ...Repeated for Source 5 |  |  |  |  |  |
| 29EF | ...Repeated for Source 6 |  |  |  |  |  |
| Expanded FlexStates (Read Only) |  |  |  |  |  |  |
| 2B00 | FlexStates, one per register (256 items) | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| Expanded Digital Input/Output states (Read Only) |  |  |  |  |  |  |
| 2D00 | Contact Input States, one per register (96 items) | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 2D80 | Contact Output States, one per register (64 items) | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 2E00 | Virtual Output States, one per register (96 items) | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| Expanded Remote Input/Output Status (Read Only) |  |  |  |  |  |  |
| 2F00 | Remote Device States, one per register (16 items) | 0 to 1 | --- | 1 | F155 | 0 (Offline) |
| 2F80 | Remote Input States, one per register (64 items) | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| Oscillography Values (Read Only) |  |  |  |  |  |  |
| 3000 | Oscillography Number of Triggers | 0 to 65535 | --- | 1 | F001 | 0 |
| 3001 | Oscillography Available Records | 0 to 65535 | --- | 1 | F001 | 0 |
| 3002 | Oscillography Last Cleared Date | 0 to 400000000 | --- | 1 | F050 | 0 |
| 3004 | Oscillography Number Of Cycles Per Record | 0 to 65535 | --- | 1 | F001 | 0 |
| Oscillography Commands (Read/Write Command) |  |  |  |  |  |  |
| 3005 | Oscillography Force Trigger | 0 to 1 | --- | 1 | F126 | 0 (No) |
| 3011 | Oscillography Clear Data | 0 to 1 | --- | 1 | F126 | 0 (No) |
| User Programmable Fault Report Commands (Read/Write Command) |  |  |  |  |  |  |
| 3060 | User Fault Report Clear | 0 to 1 | --- | 1 | F126 | 0 (No) |
| User Programmable Fault Report Actuals (Read Only) |  |  |  |  |  |  |
| 3070 | Newest Record Number | 0 to 65535 | --- | 1 | F001 | 0 |
| 3071 | Cleared Date | 0 to 4294967295 | --- | 1 | F050 | 0 |
| 3073 | Report Date (10 items) | 0 to 4294967295 | --- | 1 | F050 | 0 |
| User Programmable Fault Report (Read/Write Setting) (2 modules) |  |  |  |  |  |  |
| 3090 | Fault Report 1 Fault Trigger | 0 to 65535 | --- | 1 | F300 | 0 |
| 3091 | Fault Report 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 3092 | Fault Report 1 Prefault Trigger | 0 to 65535 | --- | 1 | F300 | 0 |
| 3093 | Fault Report Analog Channel 1 (32 items) | 0 to 65536 | --- | 1 | F600 | 0 |
| 30B3 | Fault Report 1 Reserved (5 items) | --- | --- | --- | F001 | 0 |
| 30B8 | ...Repeated for Fault Report 2 |  |  |  |  |  |
| Modbus File Transfer (Read/Write) |  |  |  |  |  |  |
| 3100 | Name of file to read | -- | --- | --- | F204 | (none) |
| Modbus File Transfer (Read Only) |  |  |  |  |  |  |
| 3200 | Character position of current block within file | 0 to 4294967295 | --- | 1 | F003 | 0 |
| 3202 | Size of currently-available data block | 0 to 65535 | --- | 1 | F001 | 0 |
| 3203 | Block of data from requested file (122 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| Event Recorder (Read Only) |  |  |  |  |  |  |
| 3400 | Events Since Last Clear | 0 to 4294967295 | --- | 1 | F003 | 0 |
| 3402 | Number of Available Events | 0 to 4294967295 | --- | 1 | F003 | 0 |
| 3404 | Event Recorder Last Cleared Date | 0 to 4294967295 | --- | 1 | F050 | 0 |
| Event Recorder (Read/Write Command) |  |  |  |  |  |  |
| 3406 | Event Recorder Clear Command | 0 to 1 | --- | 1 | F126 | 0 (No) |
| DCMA Input Values (Read Only) (24 modules) |  |  |  |  |  |  |
| 34C0 | DCMA Inputs 1 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34 C 2 | DCMA Inputs 2 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34C4 | DCMA Inputs 3 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34C6 | DCMA Inputs 4 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34C8 | DCMA Inputs 5 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34CA | DCMA Inputs 6 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34CC | DCMA Inputs 7 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34CE | DCMA Inputs 8 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |

Table B-9: MODBUS MEMORY MAP (Sheet 9 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 34D0 | DCMA Inputs 9 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34D2 | DCMA Inputs 10 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34D4 | DCMA Inputs 11 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34D6 | DCMA Inputs 12 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34D8 | DCMA Inputs 13 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34DA | DCMA Inputs 14 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34DC | DCMA Inputs 15 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34DE | DCMA Inputs 16 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34E0 | DCMA Inputs 17 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34E2 | DCMA Inputs 18 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34E4 | DCMA Inputs 19 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34E6 | DCMA Inputs 20 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34E8 | DCMA Inputs 21 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34EA | DCMA Inputs 22 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34EC | DCMA Inputs 23 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| 34EE | DCMA Inputs 24 Value | -9999999 to 9999999 | --- | 1 | F004 | 0 |
| RTD Input Values (Read Only) (48 modules) |  |  |  |  |  |  |
| 34F0 | RTD Input 1 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 34F1 | RTD Input 2 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 34F2 | RTD Input 3 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 34F3 | RTD Input 4 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 34F4 | RTD Input 5 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 34F5 | RTD Input 6 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 34F6 | RTD Input 7 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 34F7 | RTD Input 8 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 34F8 | RTD Input 9 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 34F9 | RTD Input 10 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 34FA | RTD Input 11 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 34FB | RTD Input 12 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 34FC | RTD Input 13 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 34FD | RTD Input 14 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 34FE | RTD Input 15 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 34FF | RTD Input 16 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3500 | RTD Input 17 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3501 | RTD Input 18 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3502 | RTD Input 19 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3503 | RTD Input 20 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3504 | RTD Input 21 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3505 | RTD Input 22 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3506 | RTD Input 23 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3507 | RTD Input 24 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3508 | RTD Input 25 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3509 | RTD Input 26 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 350A | RTD Input 27 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 350B | RTD Input 28 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 350C | RTD Input 29 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 350D | RTD Input 30 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 350E | RTD Input 31 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 350F | RTD Input 32 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3510 | RTD Input 33 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3511 | RTD Input 34 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3512 | RTD Input 35 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3513 | RTD Input 36 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3514 | RTD Input 37 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |

Table B-9: MODBUS MEMORY MAP (Sheet 10 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3515 | RTD Input 38 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3516 | RTD Input 39 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3517 | RTD Input 40 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3518 | RTD Input 41 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 3519 | RTD Input 42 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 351A | RTD Input 43 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 351B | RTD Input 44 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 351C | RTD Input 45 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 351D | RTD Input 46 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 351E | RTD Input 47 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| 351F | RTD Input 48 Value | -32768 to 32767 | ${ }^{\circ} \mathrm{C}$ | 1 | F002 | 0 |
| Expanded Direct Input/Output Status (Read Only) |  |  |  |  |  |  |
| 3560 | Direct Device States, one per register (8 items) | 0 to 1 | --- | 1 | F155 | 0 (Offline) |
| 3570 | Direct Input States, one per register (96 items) | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| Passwords (Read/Write Command) |  |  |  |  |  |  |
| 4000 | Command Password Setting | 0 to 4294967295 | --- | 1 | F003 | 0 |
| Passwords (Read/Write Setting) |  |  |  |  |  |  |
| 4002 | Setting Password Setting | 0 to 4294967295 | --- | 1 | F003 | 0 |
| Passwords (Read/Write) |  |  |  |  |  |  |
| 4008 | Command Password Entry | 0 to 4294967295 | --- | 1 | F003 | 0 |
| 400A | Setting Password Entry | 0 to 4294967295 | --- | 1 | F003 | 0 |
| Passwords (Read Only) |  |  |  |  |  |  |
| 4010 | Command Password Status | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 4011 | Setting Password Status | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| User Display Invoke (Read/Write Setting) |  |  |  |  |  |  |
| 4040 | Invoke and Scroll Through User Display Menu Operand | 0 to 65535 | --- | 1 | F300 | 0 |
| LED Test (Read/Write Setting) |  |  |  |  |  |  |
| 4048 | LED Test Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 4049 | LED Test Control | 0 to 65535 | --- | 1 | F300 | 0 |
| Preferences (Read/Write Setting) |  |  |  |  |  |  |
| 404F | Language | 0 to 3 | --- | 1 | F531 | 0 (English) |
| 4050 | Flash Message Time | 0.5 to 10 | S | 0.1 | F001 | 10 |
| 4051 | Default Message Timeout | 10 to 900 | s | 1 | F001 | 300 |
| 4052 | Default Message Intensity | 0 to 3 | --- | 1 | F101 | 0 (25\%) |
| 4053 | Screen Saver Feature | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 4054 | Screen Saver Wait Time | 1 to 65535 | min | 1 | F001 | 30 |
| 4055 | Current Cutoff Level | 0.002 to 0.02 | pu | 0.001 | F001 | 20 |
| 4056 | Voltage Cutoff Level | 0.1 to 1 | V | 0.1 | F001 | 10 |
| Communications (Read/Write Setting) |  |  |  |  |  |  |
| 407E | COM1 minimum response time | 0 to 1000 | ms | 10 | F001 | 0 |
| 407F | COM2 minimum response time | 0 to 1000 | ms | 10 | F001 | 0 |
| 4080 | Modbus Slave Address | 1 to 254 | --- | 1 | F001 | 254 |
| 4083 | RS485 Com1 Baud Rate | 0 to 11 | --- | 1 | F112 | 8 (115200) |
| 4084 | RS485 Com1 Parity | 0 to 2 | --- | 1 | F113 | 0 (None) |
| 4085 | RS485 Com2 Baud Rate | 0 to 11 | --- | 1 | F112 | 8 (115200) |
| 4086 | RS485 Com2 Parity | 0 to 2 | --- | 1 | F113 | 0 (None) |
| 4087 | IP Address | 0 to 4294967295 | --- | 1 | F003 | 56554706 |
| 4089 | IP Subnet Mask | 0 to 4294967295 | --- | 1 | F003 | 4294966272 |
| 408B | Gateway IP Address | 0 to 4294967295 | --- | 1 | F003 | 56554497 |
| 408D | Network Address NSAP | --- | --- | --- | F074 | 0 |
| 409A | DNP Channel 1 Port | 0 to 4 | --- | 1 | F177 | 0 (None) |
| 409B | DNP Channel 2 Port | 0 to 4 | --- | 1 | F177 | 0 (None) |
| 409C | DNP Address | 0 to 65519 | --- | 1 | F001 | 1 |
| 409D | Reserved | 0 to 1 | --- | 1 | F001 | 0 |

Table B-9: MODBUS MEMORY MAP (Sheet 11 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 409E | DNP Client Addresses (2 items) | 0 to 4294967295 | --- | 1 | F003 | 0 |
| 40A3 | TCP Port Number for the Modbus protocol | 1 to 65535 | --- | 1 | F001 | 502 |
| 40A4 | TCP/UDP Port Number for the DNP Protocol | 1 to 65535 | --- | 1 | F001 | 20000 |
| 40A5 | TCP Port Number for the HTTP (Web Server) Protocol | 1 to 65535 | --- | 1 | F001 | 80 |
| 40A6 | Main UDP Port Number for the TFTP Protocol | 1 to 65535 | --- | 1 | F001 | 69 |
| 40A7 | Data Transfer UDP Port Numbers for the TFTP Protocol (zero means "automatic") (2 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| 40A9 | DNP Unsolicited Responses Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 40AA | DNP Unsolicited Responses Timeout | 0 to 60 | S | 1 | F001 | 5 |
| 40AB | DNP Unsolicited Responses Max Retries | 1 to 255 | --- | 1 | F001 | 10 |
| 40AC | DNP Unsolicited Responses Destination Address | 0 to 65519 | --- | 1 | F001 | 1 |
| 40AD | Ethernet Operation Mode | 0 to 1 | --- | 1 | F192 | 0 (Half-Duplex) |
| 40AE | DNP Current Scale Factor | 0 to 8 | --- | 1 | F194 | 2 (1) |
| 40AF | DNP Voltage Scale Factor | 0 to 8 | --- | 1 | F194 | 2 (1) |
| 40B0 | DNP Power Scale Factor | 0 to 8 | --- | 1 | F194 | 2 (1) |
| 40B1 | DNP Energy Scale Factor | 0 to 8 | --- | 1 | F194 | 2 (1) |
| 40B2 | DNP Other Scale Factor | 0 to 8 | --- | 1 | F194 | 2 (1) |
| 40B3 | DNP Current Default Deadband | 0 to 65535 | --- | 1 | F001 | 30000 |
| 40B4 | DNP Voltage Default Deadband | 0 to 65535 | --- | 1 | F001 | 30000 |
| 40B5 | DNP Power Default Deadband | 0 to 65535 | --- | 1 | F001 | 30000 |
| 40B6 | DNP Energy Default Deadband | 0 to 65535 | --- | 1 | F001 | 30000 |
| 40B7 | DNP Other Default Deadband | 0 to 65535 | --- | 1 | F001 | 30000 |
| 40B8 | DNP IIN Time Sync Bit Period | 1 to 10080 | min | 1 | F001 | 1440 |
| 40B9 | DNP Message Fragment Size | 30 to 2048 | --- | 1 | F001 | 240 |
| 40BA | DNP Client Address 3 | 0 to 4294967295 | --- | 1 | F003 | 0 |
| 40BC | DNP Client Address 4 | 0 to 4294967295 | --- | 1 | F003 | 0 |
| 40BE | DNP Client Address 5 | 0 to 4294967295 | --- | 1 | F003 | 0 |
| 40C0 | DNP Number of Paired Binary Output Control Points | 0 to 16 | --- | 1 | F001 | 0 |
| 40C1 | Reserved (31 items) | 0 to 1 | --- | 1 | F001 | 0 |
| 40E0 | TCP Port Number for the IEC 60870-5-104 Protocol | 1 to 65535 | --- | 1 | F001 | 2404 |
| 40E1 | IEC 60870-5-104 Protocol Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 40E2 | IEC 60870-5-104 Protocol Common Address of ASDU | 0 to 65535 | --- | 1 | F001 | 0 |
| 40E3 | IEC 60870-5-104 Protocol Cyclic Data Trans. Period | 1 to 65535 | S | 1 | F001 | 60 |
| 40E4 | IEC 60870-5-104 Current Default Threshold | 0 to 65535 | --- | 1 | F001 | 30000 |
| 40E5 | IEC 60870-5-104 Voltage Default Threshold | 0 to 65535 | --- | 1 | F001 | 30000 |
| 40E6 | IEC 60870-5-104 Power Default Threshold | 0 to 65535 | --- | 1 | F001 | 30000 |
| 40E7 | IEC 60870-5-104 Energy Default Threshold | 0 to 65535 | --- | 1 | F001 | 30000 |
| 40E8 | IEC 60870-5-104 Other Default Threshold | 0 to 65535 | --- | 1 | F001 | 30000 |
| 40E9 | IEC 60870-5-104 Client Address (5 items) | 0 to 4294967295 | --- | 1 | F003 | 0 |
| 40FD | IEC 60870-5-104 Communications Reserved (60 items) | 0 to 1 | --- | 1 | F001 | 0 |
| 4140 | DNP Object 1 Default Variation | 1 to 2 | --- | 1 | F001 | 2 |
| 4141 | DNP Object 2 Default Variation | 1 to 2 | --- | 1 | F001 | 2 |
| 4142 | DNP Object 20 Default Variation | 0 to 3 | --- | 1 | F523 | 0 (1) |
| 4143 | DNP Object 21 Default Variation | 0 to 3 | --- | 1 | F524 | 0 (1) |
| 4144 | DNP Object 22 Default Variation | 0 to 3 | --- | 1 | F523 | 0 (1) |
| 4145 | DNP Object 23 Default Variation | 0 to 3 | --- | 1 | F523 | 0 (1) |
| 4146 | DNP Object 30 Default Variation | 1 to 5 | --- | 1 | F001 | 1 |
| 4147 | DNP Object 32 Default Variation | 0 to 5 | --- | 1 | F525 | 0 (1) |
| Simple Network Time Protocol (Read/Write Setting) |  |  |  |  |  |  |
| 4168 | Simple Network Time Protocol (SNTP) Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 4169 | Simple Network Time Protocol (SNTP) Server IP Address | 0 to 4294967295 | --- | 1 | F003 | 0 |
| 416B | Simple Network Time Protocol (SNTP) UDP Port Number | 1 to 65535 | --- | 1 | F001 | 123 |
| Data Logger Commands (Read/Write Command) |  |  |  |  |  |  |
| 4170 | Data Logger Clear | 0 to 1 | --- | 1 | F126 | 0 (No) |

Table B-9: MODBUS MEMORY MAP (Sheet 12 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data Logger (Read/Write Setting) |  |  |  |  |  |  |
| 4181 | Data Logger Channel Settings (16 items) | --- | --- | --- | F600 | 0 |
| 4191 | Data Logger Mode | 0 to 1 | --- | 1 | F260 | 0 (continuous) |
| 4192 | Data Logger Trigger | 0 to 65535 | --- | 1 | F300 | 0 |
| 4193 | Data Logger Rate | 15 to 3600000 | ms | 1 | F003 | 60000 |
| Clock (Read/Write Command) |  |  |  |  |  |  |
| 41A0 | Real Time Clock Set Time | 0 to 235959 | --- | 1 | F050 | 0 |
| Clock (Read/Write Setting) |  |  |  |  |  |  |
| 41A2 | SR Date Format | 0 to 4294967295 | --- | 1 | F051 | 0 |
| 41A4 | SR Time Format | 0 to 4294967295 | --- | 1 | F052 | 0 |
| 41A6 | IRIG-B Signal Type | 0 to 2 | --- | 1 | F114 | 0 (None) |
| 41A7 | Clock Events Enable / Disable | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| Oscillography (Read/Write Setting) |  |  |  |  |  |  |
| 41C0 | Oscillography Number of Records | 1 to 64 | --- | 1 | F001 | 15 |
| 41C1 | Oscillography Trigger Mode | 0 to 1 | --- | 1 | F118 | 0 (Auto. Overwrite) |
| 41C2 | Oscillography Trigger Position | 0 to 100 | \% | 1 | F001 | 50 |
| 41C3 | Oscillography Trigger Source | 0 to 65535 | --- | 1 | F300 | 0 |
| 41C4 | Oscillography AC Input Waveforms | 0 to 4 | --- | 1 | F183 | 2 (16 samples/cycle) |
| 41D0 | Oscillography Analog Channel $n$ (16 items) | 0 to 65535 | --- | 1 | F600 | 0 |
| 4200 | Oscillography Digital Channel $n$ (63 items) | 0 to 65535 | --- | 1 | F300 | 0 |
| Trip and Alarm LEDs (Read/Write Setting) |  |  |  |  |  |  |
| 4260 | Trip LED Input FlexLogic Operand | 0 to 65535 | --- | 1 | F300 | 0 |
| 4261 | Alarm LED Input FlexLogic Operand | 0 to 65535 | --- | 1 | F300 | 0 |
| User Programmable LEDs (Read/Write Setting) (48 modules) |  |  |  |  |  |  |
| 4280 | FlexLogic ${ }^{\text {TM }}$ Operand to Activate LED | 0 to 65535 | --- | 1 | F300 | 0 |
| 4281 | User LED type (latched or self-resetting) | 0 to 1 | --- | 1 | F127 | 1 (Self-Reset) |
| 4282 | ...Repeated for User-Programmable LED 2 |  |  |  |  |  |
| 4284 | ...Repeated for User-Programmable LED 3 |  |  |  |  |  |
| 4286 | ...Repeated for User-Programmable LED 4 |  |  |  |  |  |
| 4288 | ...Repeated for User-Programmable LED 5 |  |  |  |  |  |
| 428A | ...Repeated for User-Programmable LED 6 |  |  |  |  |  |
| 428C | ...Repeated for User-Programmable LED 7 |  |  |  |  |  |
| 428E | ...Repeated for User-Programmable LED 8 |  |  |  |  |  |
| 4290 | ...Repeated for User-Programmable LED 9 |  |  |  |  |  |
| 4292 | ...Repeated for User-Programmable LED 10 |  |  |  |  |  |
| 4294 | ...Repeated for User-Programmable LED 11 |  |  |  |  |  |
| 4296 | ...Repeated for User-Programmable LED 12 |  |  |  |  |  |
| 4298 | ...Repeated for User-Programmable LED 13 |  |  |  |  |  |
| 429A | ...Repeated for User-Programmable LED 14 |  |  |  |  |  |
| 429C | ...Repeated for User-Programmable LED 15 |  |  |  |  |  |
| 429E | ...Repeated for User-Programmable LED 16 |  |  |  |  |  |
| 42A0 | ...Repeated for User-Programmable LED 17 |  |  |  |  |  |
| 42A2 | ...Repeated for User-Programmable LED 18 |  |  |  |  |  |
| 42A4 | ...Repeated for User-Programmable LED 19 |  |  |  |  |  |
| 42A6 | ...Repeated for User-Programmable LED 20 |  |  |  |  |  |
| 42A8 | ...Repeated for User-Programmable LED 21 |  |  |  |  |  |
| 42AA | ...Repeated for User-Programmable LED 22 |  |  |  |  |  |
| 42AC | ...Repeated for User-Programmable LED 23 |  |  |  |  |  |
| 42AE | ...Repeated for User-Programmable LED 24 |  |  |  |  |  |
| 42B0 | ...Repeated for User-Programmable LED 25 |  |  |  |  |  |
| 42B2 | ...Repeated for User-Programmable LED 26 |  |  |  |  |  |
| 42B4 | ...Repeated for User-Programmable LED 27 |  |  |  |  |  |
| 42B6 | ...Repeated for User-Programmable LED 28 |  |  |  |  |  |
| 42B8 | ...Repeated for User-Programmable LED 29 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 13 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 42BA | ...Repeated for User-Programmable LED 30 |  |  |  |  |  |
| 42BC | ...Repeated for User-Programmable LED 31 |  |  |  |  |  |
| 42BE | ...Repeated for User-Programmable LED 32 |  |  |  |  |  |
| 42C0 | ...Repeated for User-Programmable LED 33 |  |  |  |  |  |
| 42C2 | ...Repeated for User-Programmable LED 34 |  |  |  |  |  |
| 42C4 | ...Repeated for User-Programmable LED 35 |  |  |  |  |  |
| 42C6 | ...Repeated for User-Programmable LED 36 |  |  |  |  |  |
| 42C8 | ...Repeated for User-Programmable LED 37 |  |  |  |  |  |
| 42CA | ...Repeated for User-Programmable LED 38 |  |  |  |  |  |
| 42CC | ...Repeated for User-Programmable LED 39 |  |  |  |  |  |
| 42CE | ...Repeated for User-Programmable LED 40 |  |  |  |  |  |
| 42D0 | ...Repeated for User-Programmable LED 41 |  |  |  |  |  |
| 42D2 | ...Repeated for User-Programmable LED 42 |  |  |  |  |  |
| 42D4 | ...Repeated for User-Programmable LED 43 |  |  |  |  |  |
| 42D6 | ...Repeated for User-Programmable LED 44 |  |  |  |  |  |
| 42D8 | ...Repeated for User-Programmable LED 45 |  |  |  |  |  |
| 42DA | ...Repeated for User-Programmable LED 46 |  |  |  |  |  |
| 42DC | ...Repeated for User-Programmable LED 47 |  |  |  |  |  |
| 42DE | ...Repeated for User-Programmable LED 48 |  |  |  |  |  |
| Installation (Read/Write Setting) |  |  |  |  |  |  |
| 43E0 | Relay Programmed State | 0 to 1 | --- | 1 | F133 | 0 (Not Programmed) |
| 43E1 | Relay Name | --- | --- | --- | F202 | "Relay-1" |
| User Programmable Self Tests (Read/Write Setting) |  |  |  |  |  |  |
| 4441 | User Programmable Detect Ring Break Function | 0 to 1 | --- | 1 | F102 | 1 (Enabled) |
| 4442 | User Programmable Direct Device Off Function | 0 to 1 | --- | 1 | F102 | 1 (Enabled) |
| 4443 | User Programmable Remote Device Off Function | 0 to 1 | --- | 1 | F102 | 1 (Enabled) |
| 4444 | User Programmable Primary Ethernet Fail Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 4445 | User Programmable Secondary Ethernet Fail Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 4446 | User Programmable Battery Fail Function | 0 to 1 | --- | 1 | F102 | 1 (Enabled) |
| 4447 | User Programmable SNTP Fail Function | 0 to 1 | --- | 1 | F102 | 1 (Enabled) |
| 4448 | User Programmable IRIG-B Fail Function | 0 to 1 | --- | 1 | F102 | 1 (Enabled) |
| CT Settings (Read/Write Setting) (6 modules) |  |  |  |  |  |  |
| 4480 | Phase CT 1 Primary | 1 to 65000 | A | 1 | F001 | 1 |
| 4481 | Phase CT 1 Secondary | 0 to 1 | --- | 1 | F123 | 0 (1 A) |
| 4482 | Ground CT 1 Primary | 1 to 65000 | A | 1 | F001 | 1 |
| 4483 | Ground CT 1 Secondary | 0 to 1 | --- | 1 | F123 | 0 (1 A) |
| 4484 | ...Repeated for CT Bank 2 |  |  |  |  |  |
| 4488 | ...Repeated for CT Bank 3 |  |  |  |  |  |
| 448C | ...Repeated for CT Bank 4 |  |  |  |  |  |
| 4490 | ...Repeated for CT Bank 5 |  |  |  |  |  |
| 4494 | ...Repeated for CT Bank 6 |  |  |  |  |  |
| VT Settings (Read/Write Setting) (3 modules) |  |  |  |  |  |  |
| 4500 | Phase VT 1 Connection | 0 to 1 | --- | 1 | F100 | 0 (Wye) |
| 4501 | Phase VT 1 Secondary | 50 to 240 | V | 0.1 | F001 | 664 |
| 4502 | Phase VT 1 Ratio | 1 to 24000 | :1 | 1 | F060 | 1 |
| 4504 | Auxiliary VT 1 Connection | 0 to 6 | --- | 1 | F166 | 1 (Vag) |
| 4505 | Auxiliary VT 1 Secondary | 50 to 240 | V | 0.1 | F001 | 664 |
| 4506 | Auxiliary VT 1 Ratio | 1 to 24000 | :1 | 1 | F060 | 1 |
| 4508 | ...Repeated for VT Bank 2 |  |  |  |  |  |
| 4510 | ...Repeated for VT Bank 3 |  |  |  |  |  |
| Source Settings (Read/Write Setting) (6 modules) |  |  |  |  |  |  |
| 4580 | Source 1 Name | --- | --- | --- | F206 | "SRC 1" |
| 4583 | Source 1 Phase CT | 0 to 63 | --- | 1 | F400 | 0 |
| 4584 | Source 1 Ground CT | 0 to 63 | --- | 1 | F400 | 0 |

Table B-9: MODBUS MEMORY MAP (Sheet 14 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4585 | Source 1 Phase VT | 0 to 63 | --- | 1 | F400 | 0 |
| 4586 | Source 1 Auxiliary VT | 0 to 63 | --- | 1 | F400 | 0 |
| 4587 | ...Repeated for Source 2 |  |  |  |  |  |
| 458E | ...Repeated for Source 3 |  |  |  |  |  |
| 4595 | ...Repeated for Source 4 |  |  |  |  |  |
| 459C | ...Repeated for Source 5 |  |  |  |  |  |
| 45A3 | ...Repeated for Source 6 |  |  |  |  |  |
| Power System (Read/Write Setting) |  |  |  |  |  |  |
| 4600 | Nominal Frequency | 25 to 60 | Hz | 1 | F001 | 60 |
| 4601 | Phase Rotation | 0 to 1 | --- | 1 | F106 | 0 (ABC) |
| 4602 | Frequency And Phase Reference | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 4603 | Frequency Tracking Function | 0 to 1 | --- | 1 | F102 | 1 (Enabled) |
| Transformer General (Read/Write Setting) |  |  |  |  |  |  |
| 4630 | Transformer Number Of Windings | 2 to 6 | --- | 1 | F001 | 2 |
| 4631 | Transformer Phase Compensation | 0 to 1 | --- | 1 | F160 | 0 (Internal (software)) |
| 4632 | Transformer Load Loss At Rated Load | 1 to 20000 | kW | 1 | F001 | 100 |
| 4633 | Transformer Rated Winding Temperature Rise | 0 to 4 | --- | 1 | F161 | 1 (65 ${ }^{\circ} \mathrm{C}$ (oil) |
| 4634 | Transformer No Load Loss | 1 to 20000 | kW | 1 | F001 | 10 |
| 4635 | Transformer Type Of Cooling | 0 to 3 | --- | 1 | F162 | 0 (OA) |
| 4636 | Transformer Top-oil Rise Over Ambient | 1 to 200 | ${ }^{\circ} \mathrm{C}$ | 1 | F001 | 35 |
| 4637 | Transformer Thermal Capacity | 0 to 200 | kWh/ ${ }^{\circ} \mathrm{C}$ | 0.01 | F001 | 10000 |
| 4638 | Transformer Winding Thermal Time Constant | 0.25 to 15 | min | 0.01 | F001 | 200 |
| 4639 | Transformer Reference Winding Manual Selection | 0 to 7 | --- | 1 | F470 | 0 (Auto. Selection) |
| Transformer Winding (Read/Write Setting) (6 modules) |  |  |  |  |  |  |
| 4640 | Transformer Winding 1 Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 4641 | Transformer Winding 1 Rated MVA | 0.001 to 2000 | MVA | 0.001 | F003 | 100000 |
| 4643 | Transformer Winding 1 Nominal Phase-Phase Voltage | 0.001 to 2000 | kV | 0.001 | F003 | 220000 |
| 4645 | Transformer Winding 1 Connection | 0 to 2 | --- | 1 | F163 | 0 (Wye) |
| 4646 | Transformer Winding 1 Grounding | 0 to 1 | --- | 1 | F164 | 0 (Not within zone) |
| 4647 | Transformer Winding 1 Angle w.r.t. Winding 1 | -359.9 to 0 | degrees | 0.1 | F002 | 0 |
| 4651 | Transformer Winding 1 Resistance | 0.0001 to 100 | ohms | 0.0001 | F003 | 100000 |
| 4653 | ...Repeated for Transformer Winding 2 |  |  |  |  |  |
| 4666 | ...Repeated for Transformer Winding 3 |  |  |  |  |  |
| 4679 | ...Repeated for Transformer Winding 4 |  |  |  |  |  |
| 468C | ...Repeated for Transformer Winding 5 |  |  |  |  |  |
| 469F | ...Repeated for Transformer Winding 6 |  |  |  |  |  |
| Demand (Read/Write Setting) |  |  |  |  |  |  |
| 47D0 | Demand Current Method | 0 to 2 | --- | 1 | F139 | 0 (Thrm. Exponential) |
| 47D1 | Demand Power Method | 0 to 2 | --- | 1 | F139 | 0 (Thrm. Exponential) |
| 47D2 | Demand Interval | 0 to 5 | --- | 1 | F132 | 2 (15 MIN) |
| 47D3 | Demand Input | 0 to 65535 | --- | 1 | F300 | 0 |
| Demand (Read/Write Command) |  |  |  |  |  |  |
| 47D4 | Demand Clear Record | 0 to 1 | --- | 1 | F126 | 0 (No) |
| Flexcurves A and B (Read/Write Settings) |  |  |  |  |  |  |
| 4800 | FlexCurve A (120 items) | 0 to 65535 | ms | 1 | F011 | 0 |
| 48F0 | FlexCurve B (120 items) | 0 to 65535 | ms | 1 | F011 | 0 |
| Modbus User Map (Read/Write Setting) |  |  |  |  |  |  |
| 4A00 | Modbus Address Settings for User Map (256 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| User Displays Settings (Read/Write Setting) (16 modules) |  |  |  |  |  |  |
| 4C00 | User-Definable Display 1 Top Line Text | --- | --- | --- | F202 | " " |
| 4COA | User-Definable Display 1 Bottom Line Text | --- | --- | --- | F202 | "" |
| 4C14 | Modbus Addresses of Display 1 Items (5 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| 4C19 | Reserved (7 items) | --- | --- | --- | F001 | 0 |
| 4C20 | ...Repeated for User-Definable Display 2 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 15 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4C40 | ...Repeated for User-Definable Display 3 |  |  |  |  |  |
| 4C60 | ...Repeated for User-Definable Display 4 |  |  |  |  |  |
| 4C80 | ...Repeated for User-Definable Display 5 |  |  |  |  |  |
| 4CA0 | ...Repeated for User-Definable Display 6 |  |  |  |  |  |
| 4CC0 | ...Repeated for User-Definable Display 7 |  |  |  |  |  |
| 4CE0 | ...Repeated for User-Definable Display 8 |  |  |  |  |  |
| 4D00 | ...Repeated for User-Definable Display 9 |  |  |  |  |  |
| 4D20 | ...Repeated for User-Definable Display 10 |  |  |  |  |  |
| 4D40 | ...Repeated for User-Definable Display 11 |  |  |  |  |  |
| 4D60 | ...Repeated for User-Definable Display 12 |  |  |  |  |  |
| 4D80 | ...Repeated for User-Definable Display 13 |  |  |  |  |  |
| 4DA0 | ...Repeated for User-Definable Display 14 |  |  |  |  |  |
| 4DC0 | ...Repeated for User-Definable Display 15 |  |  |  |  |  |
| 4DE0 | ...Repeated for User-Definable Display 16 |  |  |  |  |  |
| User Programmable Pushbuttons (Read/Write Setting) (12 modules) |  |  |  |  |  |  |
| 4E00 | User Programmable Pushbutton 1 Function | 0 to 2 | --- | 1 | F109 | 2 (Disabled) |
| 4E01 | User Programmable Pushbutton 1 Top Line | --- | --- | --- | F202 | (none) |
| 4E0B | User Programmable Pushbutton 1 On Text | --- | --- | --- | F202 | (none) |
| 4E15 | User Programmable Pushbutton 1 Off Text | --- | --- | --- | F202 | (none) |
| 4E1F | User Programmable Pushbutton 1 Drop-Out Time | 0 to 60 | s | 0.05 | F001 | 0 |
| 4E20 | User Programmable Pushbutton 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 4E21 | User Programmable Pushbutton 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 4E22 | User Programmable Pushbutton 1 Reserved (2 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| 4E24 | ...Repeated for User Programmable Pushbutton 2 |  |  |  |  |  |
| 4E48 | ...Repeated for User Programmable Pushbutton 3 |  |  |  |  |  |
| 4E6C | ...Repeated for User Programmable Pushbutton 4 |  |  |  |  |  |
| 4E90 | ...Repeated for User Programmable Pushbutton 5 |  |  |  |  |  |
| 4EB4 | ...Repeated for User Programmable Pushbutton 6 |  |  |  |  |  |
| 4ED8 | ...Repeated for User Programmable Pushbutton 7 |  |  |  |  |  |
| 4EFC | ...Repeated for User Programmable Pushbutton 8 |  |  |  |  |  |
| 4F20 | ...Repeated for User Programmable Pushbutton 9 |  |  |  |  |  |
| 4F44 | ...Repeated for User Programmable Pushbutton 10 |  |  |  |  |  |
| 4F68 | ...Repeated for User Programmable Pushbutton 11 |  |  |  |  |  |
| 4F8C | ...Repeated for User Programmable Pushbutton 12 |  |  |  |  |  |
| Flexlogic (Read/Write Setting) |  |  |  |  |  |  |
| 5000 | FlexLogic ${ }^{\text {TM }}$ Entry (512 items) | 0 to 65535 | --- | 1 | F300 | 16384 |
| Flexlogic Timers (Read/Write Setting) (32 modules) |  |  |  |  |  |  |
| 5800 | FlexLogic ${ }^{\text {TM }}$ Timer 1 Type | 0 to 2 | --- | 1 | F129 | 0 (millisecond) |
| 5801 | FlexLogic ${ }^{\text {TM }}$ Timer 1 Pickup Delay | 0 to 60000 | --- | 1 | F001 | 0 |
| 5802 | FlexLogic ${ }^{\text {TM }}$ Timer 1 Dropout Delay | 0 to 60000 | --- | 1 | F001 | 0 |
| 5803 | Reserved (5 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| 5808 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 2 |  |  |  |  |  |
| 5810 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 3 |  |  |  |  |  |
| 5818 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 4 |  |  |  |  |  |
| 5820 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 5 |  |  |  |  |  |
| 5828 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 6 |  |  |  |  |  |
| 5830 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 7 |  |  |  |  |  |
| 5838 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 8 |  |  |  |  |  |
| 5840 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 9 |  |  |  |  |  |
| 5848 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 10 |  |  |  |  |  |
| 5850 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 11 |  |  |  |  |  |
| 5858 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 12 |  |  |  |  |  |
| 5860 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 13 |  |  |  |  |  |
| 5868 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 14 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 16 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5870 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 15 |  |  |  |  |  |
| 5878 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 16 |  |  |  |  |  |
| 5880 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 17 |  |  |  |  |  |
| 5888 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 18 |  |  |  |  |  |
| 5890 | ...Repeated for FlexLogic ${ }^{\text {™ }}$ Timer 19 |  |  |  |  |  |
| 5898 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 20 |  |  |  |  |  |
| 58A0 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 21 |  |  |  |  |  |
| 58A8 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 22 |  |  |  |  |  |
| 58B0 | ...Repeated for FlexLogic ${ }^{\text {™ }}$ Timer 23 |  |  |  |  |  |
| 58B8 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 24 |  |  |  |  |  |
| 58C0 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 25 |  |  |  |  |  |
| 58C8 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 26 |  |  |  |  |  |
| 58D0 | ...Repeated for FlexLogic ${ }^{\text {™ }}$ Timer 27 |  |  |  |  |  |
| 58D8 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 28 |  |  |  |  |  |
| 58E0 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 29 |  |  |  |  |  |
| 58E8 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 30 |  |  |  |  |  |
| 58F0 | ...Repeated for FlexLogic ${ }^{\text {M }}$ Timer 31 |  |  |  |  |  |
| 58F8 | ...Repeated for FlexLogic ${ }^{\text {TM }}$ Timer 32 |  |  |  |  |  |
| Phase Time Overcurrent (Read/Write Grouped Setting) (6 modules) |  |  |  |  |  |  |
| 5900 | Phase Time Overcurrent 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 5901 | Phase Time Overcurrent 1 Signal Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 5902 | Phase Time Overcurrent 1 Input | 0 to 1 | --- | 1 | F122 | 0 (Phasor) |
| 5903 | Phase Time Overcurrent 1 Pickup | 0 to 30 | pu | 0.001 | F001 | 1000 |
| 5904 | Phase Time Overcurrent 1 Curve | 0 to 16 | --- | 1 | F103 | 0 (IEEE Mod Inv) |
| 5905 | Phase Time Overcurrent 1 Multiplier | 0 to 600 | --- | 0.01 | F001 | 100 |
| 5906 | Phase Time Overcurrent 1 Reset | 0 to 1 | --- | 1 | F104 | 0 (Instantaneous) |
| 5907 | Phase Time Overcurrent 1 Voltage Restraint | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 5908 | Phase TOC 1 Block For Each Phase (3 items) | 0 to 65535 | --- | 1 | F300 | 0 |
| 590B | Phase Time Overcurrent 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 590C | Phase Time Overcurrent 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 590D | Reserved (3 items) | 0 to 1 | --- | 1 | F001 | 0 |
| 5910 | ...Repeated for Phase Time Overcurrent 2 |  |  |  |  |  |
| 5920 | ...Repeated for Phase Time Overcurrent 3 |  |  |  |  |  |
| 5930 | ...Repeated for Phase Time Overcurrent 4 |  |  |  |  |  |
| 5940 | ...Repeated for Phase Time Overcurrent 5 |  |  |  |  |  |
| 5950 | ...Repeated for Phase Time Overcurrent 6 |  |  |  |  |  |
| Phase Instantaneous Overcurrent (Read/Write Grouped Setting) (12 modules) |  |  |  |  |  |  |
| 5A00 | Phase Instantaneous Overcurrent 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 5A01 | Phase Instantaneous Overcurrent 1 Signal Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 5A02 | Phase Instantaneous Overcurrent 1 Pickup | 0 to 30 | pu | 0.001 | F001 | 1000 |
| 5A03 | Phase Instantaneous Overcurrent 1 Delay | 0 to 600 | s | 0.01 | F001 | 0 |
| 5A04 | Phase Instantaneous Overcurrent 1 Reset Delay | 0 to 600 | s | 0.01 | F001 | 0 |
| 5A05 | Phase IOC1 Block For Each Phase (3 items) | 0 to 65535 | --- | 1 | F300 | 0 |
| 5A08 | Phase Instantaneous Overcurrent 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 5A09 | Phase Instantaneous Overcurrent 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 5A0A | Reserved (6 items) | 0 to 1 | --- | 1 | F001 | 0 |
| 5A10 | ...Repeated for Phase Instantaneous Overcurrent 2 |  |  |  |  |  |
| 5A20 | ...Repeated for Phase Instantaneous Overcurrent 3 |  |  |  |  |  |
| 5A30 | ...Repeated for Phase Instantaneous Overcurrent 4 |  |  |  |  |  |
| 5A40 | ...Repeated for Phase Instantaneous Overcurrent 5 |  |  |  |  |  |
| 5A50 | ...Repeated for Phase Instantaneous Overcurrent 6 |  |  |  |  |  |
| 5A60 | ...Repeated for Phase Instantaneous Overcurrent 7 |  |  |  |  |  |
| 5A70 | ...Repeated for Phase Instantaneous Overcurrent 8 |  |  |  |  |  |
| 5A80 | ...Repeated for Phase Instantaneous Overcurrent 9 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 17 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5A90 | ...Repeated for Phase Instantaneous Overcurrent 10 |  |  |  |  |  |
| 5AA0 | ...Repeated for Phase Instantaneous Overcurrent 11 |  |  |  |  |  |
| 5AB0 | ...Repeated for Phase Instantaneous Overcurrent 12 |  |  |  |  |  |
| Neutral Time Overcurrent (Read/Write Grouped Setting) (6 modules) |  |  |  |  |  |  |
| 5B00 | Neutral Time Overcurrent 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 5B01 | Neutral Time Overcurrent 1 Signal Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 5B02 | Neutral Time Overcurrent 1 Input | 0 to 1 | --- | 1 | F122 | 0 (Phasor) |
| 5B03 | Neutral Time Overcurrent 1 Pickup | 0 to 30 | pu | 0.001 | F001 | 1000 |
| 5B04 | Neutral Time Overcurrent 1 Curve | 0 to 16 | --- | 1 | F103 | 0 (IEEE Mod Inv) |
| 5B05 | Neutral Time Overcurrent 1 Multiplier | 0 to 600 | --- | 0.01 | F001 | 100 |
| 5B06 | Neutral Time Overcurrent 1 Reset | 0 to 1 | --- | 1 | F104 | 0 (Instantaneous) |
| 5B07 | Neutral Time Overcurrent 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 5B08 | Neutral Time Overcurrent 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 5B09 | Neutral Time Overcurrent 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 5B0A | Reserved (6 items) | 0 to 1 | --- | 1 | F001 | 0 |
| 5B10 | ...Repeated for Neutral Time Overcurrent 2 |  |  |  |  |  |
| 5B20 | ...Repeated for Neutral Time Overcurrent 3 |  |  |  |  |  |
| 5B30 | ...Repeated for Neutral Time Overcurrent 4 |  |  |  |  |  |
| 5B40 | ...Repeated for Neutral Time Overcurrent 5 |  |  |  |  |  |
| 5B50 | ...Repeated for Neutral Time Overcurrent 6 |  |  |  |  |  |
| Neutral Instantaneous Overcurrent (Read/Write Grouped Setting) (12 modules) |  |  |  |  |  |  |
| 5C00 | Neutral Instantaneous Overcurrent 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 5C01 | Neutral Instantaneous Overcurrent 1 Signal Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 5 C 02 | Neutral Instantaneous Overcurrent 1 Pickup | 0 to 30 | pu | 0.001 | F001 | 1000 |
| 5 C 03 | Neutral Instantaneous Overcurrent 1 Delay | 0 to 600 | s | 0.01 | F001 | 0 |
| 5C04 | Neutral Instantaneous Overcurrent 1 Reset Delay | 0 to 600 | S | 0.01 | F001 | 0 |
| 5 C 05 | Neutral Instantaneous Overcurrent 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 5C06 | Neutral Instantaneous Overcurrent 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 5 C 07 | Neutral Instantaneous Overcurrent 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 5C08 | Reserved (8 items) | 0 to 1 | --- | 1 | F001 | 0 |
| 5C10 | ...Repeated for Neutral Instantaneous Overcurrent 2 |  |  |  |  |  |
| 5 C 20 | ...Repeated for Neutral Instantaneous Overcurrent 3 |  |  |  |  |  |
| 5C30 | ...Repeated for Neutral Instantaneous Overcurrent 4 |  |  |  |  |  |
| 5 C 40 | ...Repeated for Neutral Instantaneous Overcurrent 5 |  |  |  |  |  |
| 5C50 | ...Repeated for Neutral Instantaneous Overcurrent 6 |  |  |  |  |  |
| 5C60 | ...Repeated for Neutral Instantaneous Overcurrent 7 |  |  |  |  |  |
| 5 C 70 | ...Repeated for Neutral Instantaneous Overcurrent 8 |  |  |  |  |  |
| 5C80 | ...Repeated for Neutral Instantaneous Overcurrent 9 |  |  |  |  |  |
| 5C90 | ...Repeated for Neutral Instantaneous Overcurrent 10 |  |  |  |  |  |
| $5 \mathrm{CA0}$ | ...Repeated for Neutral Instantaneous Overcurrent 11 |  |  |  |  |  |
| 5CB0 | ...Repeated for Neutral Instantaneous Overcurrent 12 |  |  |  |  |  |
| Ground Time Overcurrent (Read/Write Grouped Setting) (6 modules) |  |  |  |  |  |  |
| 5D00 | Ground Time Overcurrent 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 5D01 | Ground Time Overcurrent 1 Signal Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 5D02 | Ground Time Overcurrent 1 Input | 0 to 1 | --- | 1 | F122 | 0 (Phasor) |
| 5D03 | Ground Time Overcurrent 1 Pickup | 0 to 30 | pu | 0.001 | F001 | 1000 |
| 5D04 | Ground Time Overcurrent 1 Curve | 0 to 16 | --- | 1 | F103 | 0 (IEEE Mod Inv) |
| 5D05 | Ground Time Overcurrent 1 Multiplier | 0 to 600 | --- | 0.01 | F001 | 100 |
| 5D06 | Ground Time Overcurrent 1 Reset | 0 to 1 | --- | 1 | F104 | 0 (Instantaneous) |
| 5D07 | Ground Time Overcurrent 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 5D08 | Ground Time Overcurrent 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 5D09 | Ground Time Overcurrent 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 5D0A | Reserved (6 items) | 0 to 1 | --- | 1 | F001 | 0 |
| 5D10 | ...Repeated for Ground Time Overcurrent 2 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 18 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5D20 | ...Repeated for Ground Time Overcurrent 3 |  |  |  |  |  |
| 5D30 | ...Repeated for Ground Time Overcurrent 4 |  |  |  |  |  |
| 5D40 | ...Repeated for Ground Time Overcurrent 5 |  |  |  |  |  |
| 5D50 | ...Repeated for Ground Time Overcurrent 6 |  |  |  |  |  |
| Ground Instantaneous Overcurrent (Read/Write Grouped Setting) (12 modules) |  |  |  |  |  |  |
| 5E00 | Ground Instantaneous Overcurrent 1 Signal Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 5E01 | Ground Instantaneous Overcurrent 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 5E02 | Ground Instantaneous Overcurrent 1 Pickup | 0 to 30 | pu | 0.001 | F001 | 1000 |
| 5E03 | Ground Instantaneous Overcurrent 1 Delay | 0 to 600 | s | 0.01 | F001 | 0 |
| 5E04 | Ground Instantaneous Overcurrent 1 Reset Delay | 0 to 600 | s | 0.01 | F001 | 0 |
| 5E05 | Ground Instantaneous Overcurrent 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 5E06 | Ground Instantaneous Overcurrent 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 5E07 | Ground Instantaneous Overcurrent 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 5E08 | Reserved (8 items) | 0 to 1 | --- | 1 | F001 | 0 |
| 5E10 | ...Repeated for Ground Instantaneous Overcurrent 2 |  |  |  |  |  |
| 5E20 | ...Repeated for Ground Instantaneous Overcurrent 3 |  |  |  |  |  |
| 5E30 | ...Repeated for Ground Instantaneous Overcurrent 4 |  |  |  |  |  |
| 5E40 | ...Repeated for Ground Instantaneous Overcurrent 5 |  |  |  |  |  |
| 5E50 | ...Repeated for Ground Instantaneous Overcurrent 6 |  |  |  |  |  |
| 5E60 | ...Repeated for Ground Instantaneous Overcurrent 7 |  |  |  |  |  |
| 5E70 | ...Repeated for Ground Instantaneous Overcurrent 8 |  |  |  |  |  |
| 5E80 | ...Repeated for Ground Instantaneous Overcurrent 9 |  |  |  |  |  |
| 5E90 | ...Repeated for Ground Instantaneous Overcurrent 10 |  |  |  |  |  |
| 5EA0 | ...Repeated for Ground Instantaneous Overcurrent 11 |  |  |  |  |  |
| 5EB0 | ...Repeated for Ground Instantaneous Overcurrent 12 |  |  |  |  |  |
| Setting Groups (Read/Write Setting) |  |  |  |  |  |  |
| 5F80 | Setting Group for Modbus Comms (0 means group 1) | 0 to 5 | --- | 1 | F001 | 0 |
| 5F81 | Setting Groups Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 5F82 | FlexLogic to Activate Groups 2 through 6 (5 items) | 0 to 65535 | --- | 1 | F300 | 0 |
| 5F89 | Setting Group Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 5F8A | Setting Group Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| Setting Groups (Read Only) |  |  |  |  |  |  |
| 5F8B | Current Setting Group | 0 to 5 | --- | 1 | F001 | 0 |
| Setting Group Names (Read/Write Setting) |  |  |  |  |  |  |
| 5F8C | Setting Group 1 Name | --- | --- | --- | F203 | (none) |
| 5494 | Setting Group 2 Name | --- | --- | --- | F203 | (none) |
| 5F9C | Setting Group 3 Name | --- | --- | --- | F203 | (none) |
| 5FA4 | Setting Group 4 Name | --- | --- | --- | F203 | (none) |
| 5FAC | Setting Group 5 Name | --- | --- | --- | F203 | (none) |
| 5FB4 | Setting Group 6 Name | --- | --- | --- | F203 | (none) |
| Transformer Hottest Spot (Read/Write Grouped Setting) |  |  |  |  |  |  |
| 6140 | Transformer Hottest Spot Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 6141 | Transformer Hottest Spot Pickup | 50 to 300 | $\times \mathrm{C}$ | 1 | F001 | 140 |
| 6142 | Transformer Hottest Spot Delay | 0 to 30000 | min | 1 | F001 | 1 |
| 6143 | Transformer Hottest Spot Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 6144 | Transformer Hottest Spot Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 6145 | Transformer Hottest Spot Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| Transformer Aging Factor (Read/Write Grouped Setting) |  |  |  |  |  |  |
| 6150 | Transformer Aging Factor Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 6151 | Transformer Aging Factor Pickup | 1 to 10 | PU | 0.1 | F001 | 20 |
| 6152 | Transformer Aging Factor Delay | 0 to 30000 | min | 1 | F001 | 10 |
| 6153 | Transformer Aging Factor BLock | 0 to 65535 | --- | 1 | F300 | 0 |
| 6154 | Transformer Aging Factor Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 6155 | Transformer Aging Factor Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |

Table B-9: MODBUS MEMORY MAP (Sheet 19 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transformer Loss of Life (Read/Write Grouped Setting) |  |  |  |  |  |  |
| 6160 | Transformer Loss of Life Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 6161 | XFMR LOL Initial Value | 0 to 500000 | hrs | 1 | F003 | 0 |
| 6163 | Transformer Loss of Life Pickup | 0 to 500000 | hrs | 1 | F003 | 180000 |
| 6165 | Transformer Loss Of Life Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 6166 | Transformer Loss of Life Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 6167 | Transformer Loss of Life Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| Transformer Thermal Inputs (Read/Write Setting) |  |  |  |  |  |  |
| 6170 | Transformer Thermal Model Source Input | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 6171 | Ambient Temperature Input Sensor | 0 to 32 | --- | 1 | F450 | 0 |
| 6172 | Top Oil Temperature Input Sensor | 0 to 32 | --- | 1 | F460 | 0 |
| 6173 | January Average Ambient Temperature | -60 to 60 | --- | 1 | F002 | -20 |
| 6174 | February Average Ambient Temperature | -60 to 60 | --- | 1 | F002 | -30 |
| 6175 | March Average Ambient Temperature | -60 to 60 | --- | 1 | F002 | -10 |
| 6176 | April Average Ambient Temperature | -60 to 60 | --- | 1 | F002 | 10 |
| 6177 | May Average Ambient Temperature | -60 to 60 | --- | 1 | F002 | 20 |
| 6178 | June Average Ambient Temperature | -60 to 60 | --- | 1 | F002 | 30 |
| 6179 | July Average Ambient Temperature | -60 to 60 | --- | 1 | F002 | 30 |
| 617A | August Average Ambient Temperature | -60 to 60 | --- | 1 | F002 | 30 |
| 617B | September Average Ambient Temperature | -60 to 60 | --- | 1 | F002 | 20 |
| 617C | October Average Ambient Temperature | -60 to 60 | --- | 1 | F002 | 10 |
| 617D | November Average Ambient Temperature | -60 to 60 | --- | 1 | F002 | 10 |
| 617E | December Average Ambient Temperature | -60 to 60 | --- | 1 | F002 | -10 |
| Transformer Loss of Life (Read/Write Command) |  |  |  |  |  |  |
| 6180 | Transformer Loss of Life Clear Command | 0 to 1 | --- | 1 | F126 | 0 (No) |
| Transformer Percent Differential (Read/Write Grouped Setting) |  |  |  |  |  |  |
| 6200 | Percent Differential Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 6201 | Percent Differential Pickup | 0.05 to 1 | pu | 0.001 | F001 | 100 |
| 6202 | Percent Differential Slope 1 | 15 to 100 | \% | 1 | F001 | 25 |
| 6203 | Percent Differential Break 1 | 1 to 2 | pu | 0.001 | F001 | 2000 |
| 6204 | Percent Differential Break 2 | 2 to 30 | pu | 0.001 | F001 | 8000 |
| 6205 | Percent Differential Slope 2 | 50 to 100 | \% | 1 | F001 | 100 |
| 6206 | Inrush Inhibit Function | 0 to 2 | --- | 1 | F168 | 1 (Adapt. 2nd) |
| 6207 | Inrush Inhibit Level | 1 to 40 | \% fo | 0.1 | F001 | 200 |
| 6208 | Overexcitation Inhibit Function | 0 to 1 | --- | 1 | F169 | 0 (Disabled) |
| 6209 | Overexcitation Inhibit Level | 1 to 40 | \% fo | 0.1 | F001 | 100 |
| 620A | Percent Differential Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 620B | Percent Differential Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 620C | Percent Differential Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 620D | Transformer Inrush Inhibit Mode | 0 to 2 | --- | 1 | F189 | 0 (Per phase) |
| Transformer Instantaneous Differential (Read/Write Grouped Setting) |  |  |  |  |  |  |
| 6220 | Transformer Instantaneous Differential Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 6221 | Transformer Instantaneous Differential Pickup | 2 to 30 | pu | 0.001 | F001 | 8000 |
| 6222 | Transformer Instantaneous Differential Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 6223 | Transformer Instantaneous Differential Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 6224 | Transformer Instantaneous Differential Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| Overfrequency (Read/Write Setting) (4 modules) |  |  |  |  |  |  |
| 64D0 | Overfrequency 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 64D1 | Overfrequency 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 64D2 | Overfrequency 1 Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 64D3 | Overfrequency 1 Pickup | 20 to 65 | Hz | 0.01 | F001 | 6050 |
| 64D4 | Overfrequency 1 Pickup Delay | 0 to 65.535 | S | 0.001 | F001 | 500 |
| 64D5 | Overfrequency 1 Reset Delay | 0 to 65.535 | s | 0.001 | F001 | 500 |
| 64D6 | Overfrequency 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |

Table B-9: MODBUS MEMORY MAP (Sheet 20 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 64D7 | Overfrequency 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 64D8 | Reserved (4 items) | 0 to 1 | --- | 1 | F001 | 0 |
| 64DC | ...Repeated for Overfrequency 2 |  |  |  |  |  |
| 64E8 | ...Repeated for Overfrequency 3 |  |  |  |  |  |
| 64F4 | ...Repeated for Overfrequency 4 |  |  |  |  |  |
| Phase Undervoltage (Read/Write Grouped Setting) (2 modules) |  |  |  |  |  |  |
| 7000 | Phase Undervoltage 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7001 | Phase Undervoltage 1 Signal Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 7002 | Phase Undervoltage 1 Pickup | 0 to 3 | pu | 0.001 | F001 | 1000 |
| 7003 | Phase Undervoltage 1 Curve | 0 to 1 | --- | 1 | F111 | 0 (Definite Time) |
| 7004 | Phase Undervoltage 1 Delay | 0 to 600 | s | 0.01 | F001 | 100 |
| 7005 | Phase Undervoltage 1 Minimum Voltage | 0 to 3 | pu | 0.001 | F001 | 100 |
| 7006 | Phase Undervoltage 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 7007 | Phase Undervoltage 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 7008 | Phase Undervoltage 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7009 | Phase Undervoltage 1 Measurement Mode | 0 to 1 | --- | 1 | F186 | 0 (Phase to Ground) |
| 700A | Reserved (6 items) | 0 to 1 | --- | 1 | F001 | 0 |
| 7013 | ...Repeated for Phase Undervoltage 2 |  |  |  |  |  |
| Phase Overvoltage (Read/Write Grouped Setting) |  |  |  |  |  |  |
| 7040 | Phase Overvoltage 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7041 | Phase Overvoltage 1 Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 7042 | Phase Overvoltage 1 Pickup | 0 to 3 | pu | 0.001 | F001 | 1000 |
| 7043 | Phase Overvoltage 1 Delay | 0 to 600 | s | 0.01 | F001 | 100 |
| 7044 | Phase Overvoltage 1 Reset Delay | 0 to 600 | s | 0.01 | F001 | 100 |
| 7045 | Phase Overvoltage 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 7046 | Phase Overvoltage 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 7047 | Phase Overvoltage 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7048 | Reserved (8 items) | 0 to 1 | --- | 1 | F001 | 0 |
| Phase Directional Overcurrent (Read/Write Grouped Setting) (2 modules) |  |  |  |  |  |  |
| 7260 | Phase Directional Overcurrent 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7261 | Phase Directional Overcurrent 1 Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 7262 | Phase Directional Overcurrent 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 7263 | Phase Directional Overcurrent 1 ECA | 0 to 359 | --- | 1 | F001 | 30 |
| 7264 | Phase Directional Overcurrent 1 Pol V Threshold | 0 to 3 | pu | 0.001 | F001 | 700 |
| 7265 | Phase Directional Overcurrent 1 Block Overcurrent | 0 to 1 | --- | 1 | F126 | 0 (No) |
| 7266 | Phase Directional Overcurrent 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 7267 | Phase Directional Overcurrent 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7268 | Reserved (8 items) | 0 to 1 | --- | 1 | F001 | 0 |
| 7270 | ...Repeated for Phase Directional Overcurrent 2 |  |  |  |  |  |
| Neutral Directional Overcurrent (Read/Write Grouped Setting) (2 modules) |  |  |  |  |  |  |
| 7280 | Neutral Directional Overcurrent 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7281 | Neutral Directional Overcurrent 1 Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 7282 | Neutral Directional Overcurrent 1 Polarizing | 0 to 2 | --- | 1 | F230 | 0 (Voltage) |
| 7283 | Neutral Directional Overcurrent 1 Forward ECA | -90 to 90 | ${ }^{\circ}$ Lag | 1 | F002 | 75 |
| 7284 | Neutral Directional Overcurrent 1 Forward Limit Angle | 40 to 90 | degrees | 1 | F001 | 90 |
| 7285 | Neutral Directional Overcurrent 1 Forward Pickup | 0.002 to 30 | pu | 0.001 | F001 | 50 |
| 7286 | Neutral Directional Overcurrent 1 Reverse Limit Angle | 40 to 90 | degrees | 1 | F001 | 90 |
| 7287 | Neutral Directional Overcurrent 1 Reverse Pickup | 0.002 to 30 | pu | 0.001 | F001 | 50 |
| 7288 | Neutral Directional Overcurrent 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 7289 | Neutral Directional Overcurrent 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 728A | Neutral Directional Overcurrent 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 728B | Neutral Directional Overcurrent 1 Polarizing Voltage | 0 to 1 | --- | 1 | F231 | 0 (Calculated V0) |
| 728C | Neutral Directional Overcurrent 1 Op Current | 0 to 1 | --- | 1 | F196 | 0 (Calculated 310) |
| 728D | Neutral Directional Overcurrent 1 Offset | 0 to 250 | ohms | 0.01 | F001 | 0 |

Table B-9: MODBUS MEMORY MAP (Sheet 21 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 728E | Neutral Directional Overcurrent 1 Pos Seq Restraint | 0 to 0.5 | --- | 0.001 | F001 | 63 |
| 728F | Reserved | 0 to 1 | --- | 1 | F001 | 0 |
| 7290 | ...Repeated for Neutral Directional Overcurrent 2 |  |  |  |  |  |
| Breaker Arcing Current Settings (Read/Write Setting) (2 modules) |  |  |  |  |  |  |
| 72C0 | Breaker 1 Arcing Current Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 72C1 | Breaker 1 Arcing Current Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 72C2 | Breaker 1 Arcing Current Initiate A | 0 to 65535 | --- | 1 | F300 | 0 |
| 72C3 | Breaker 1 Arcing Current Initiate B | 0 to 65535 | --- | 1 | F300 | 0 |
| 72C4 | Breaker 1 Arcing Current Initiate C | 0 to 65535 | --- | 1 | F300 | 0 |
| 72C5 | Breaker 1 Arcing Current Delay | 0 to 65.535 | S | 0.001 | F001 | 0 |
| 72C6 | Breaker 1 Arcing Current Limit | 0 to 50000 | kA ${ }^{2}$-cyc | 1 | F001 | 1000 |
| 72C7 | Breaker 1 Arcing Current Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 72C8 | Breaker 1 Arcing Current Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 72C9 | Breaker 1 Arcing Current Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 72CA | ...Repeated for Breaker 2 Arcing Current |  |  |  |  |  |
| 72D4 | ...Repeated for Breaker 3 Arcing Current |  |  |  |  |  |
| 72DE | ...Repeated for Breaker 4 Arcing Current |  |  |  |  |  |
| DCMA Inputs (Read/Write Setting) (24 modules) |  |  |  |  |  |  |
| 7300 | dcmA Inputs 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7301 | dcmA Inputs 1 ID | --- | --- | --- | F205 | "DCMA I 1" |
| 7307 | Reserved 1 (4 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| 730B | dcmA Inputs 1 Units | --- | --- | --- | F206 | "mA" |
| 730E | dcmA Inputs 1 Range | 0 to 6 | --- | 1 | F173 | 6 (4 to 20 mA ) |
| 730F | dcmA Inputs 1 Minimum Value | -9999.999 to 9999.999 | --- | 0.001 | F004 | 4000 |
| 7311 | dcmA Inputs 1 Maximum Value | -9999.999 to 9999.999 | --- | 0.001 | F004 | 20000 |
| 7313 | Reserved (5 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| 7318 | ...Repeated for dcmA Inputs 2 |  |  |  |  |  |
| 7330 | ...Repeated for dcmA Inputs 3 |  |  |  |  |  |
| 7348 | ...Repeated for dcmA Inputs 4 |  |  |  |  |  |
| 7360 | ...Repeated for dcmA Inputs 5 |  |  |  |  |  |
| 7378 | ...Repeated for dcmA Inputs 6 |  |  |  |  |  |
| 7390 | ...Repeated for dcmA Inputs 7 |  |  |  |  |  |
| 73A8 | ...Repeated for dcmA Inputs 8 |  |  |  |  |  |
| 73C0 | ...Repeated for dcmA Inputs 9 |  |  |  |  |  |
| 73D8 | ...Repeated for dcmA Inputs 10 |  |  |  |  |  |
| 73F0 | ...Repeated for dcmA Inputs 11 |  |  |  |  |  |
| 7408 | ...Repeated for dcmA Inputs 12 |  |  |  |  |  |
| 7420 | ...Repeated for dcmA Inputs 13 |  |  |  |  |  |
| 7438 | ...Repeated for dcmA Inputs 14 |  |  |  |  |  |
| 7450 | ...Repeated for dcmA Inputs 15 |  |  |  |  |  |
| 7468 | ...Repeated for dcmA Inputs 16 |  |  |  |  |  |
| 7480 | ...Repeated for dcmA Inputs 17 |  |  |  |  |  |
| 7498 | ...Repeated for dcmA Inputs 18 |  |  |  |  |  |
| 74B0 | ...Repeated for dcmA Inputs 19 |  |  |  |  |  |
| 74C8 | ...Repeated for dcmA Inputs 20 |  |  |  |  |  |
| 74E0 | ...Repeated for dcmA Inputs 21 |  |  |  |  |  |
| 74F8 | ...Repeated for dcmA Inputs 22 |  |  |  |  |  |
| 7510 | ...Repeated for dcmA Inputs 23 |  |  |  |  |  |
| 7528 | ...Repeated for dcmA Inputs 24 |  |  |  |  |  |
| RTD Inputs (Read/Write Setting) (48 modules) |  |  |  |  |  |  |
| 7540 | RTD Input 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7541 | RTD Input 1 ID | --- | --- | --- | F205 | "RTD Ip 1" |
| 7547 | Reserved (4 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| 754B | RTD Input 1 Type | 0 to 3 | --- | 1 | F174 | 0 (100 Ohm Platinum) |

Table B-9: MODBUS MEMORY MAP (Sheet 22 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 754C | Reserved (4 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| 7550 | ...Repeated for RTD Input 2 |  |  |  |  |  |
| 7560 | ...Repeated for RTD Input 3 |  |  |  |  |  |
| 7570 | ...Repeated for RTD Input 4 |  |  |  |  |  |
| 7580 | ...Repeated for RTD Input 5 |  |  |  |  |  |
| 7590 | ...Repeated for RTD Input 6 |  |  |  |  |  |
| 75A0 | ...Repeated for RTD Input 7 |  |  |  |  |  |
| 75B0 | ...Repeated for RTD Input 8 |  |  |  |  |  |
| 75C0 | ...Repeated for RTD Input 9 |  |  |  |  |  |
| 75D0 | ...Repeated for RTD Input 10 |  |  |  |  |  |
| 75E0 | ...Repeated for RTD Input 11 |  |  |  |  |  |
| 75F0 | ...Repeated for RTD Input 12 |  |  |  |  |  |
| 7600 | ...Repeated for RTD Input 13 |  |  |  |  |  |
| 7610 | ...Repeated for RTD Input 14 |  |  |  |  |  |
| 7620 | ...Repeated for RTD Input 15 |  |  |  |  |  |
| 7630 | ...Repeated for RTD Input 16 |  |  |  |  |  |
| 7640 | ...Repeated for RTD Input 17 |  |  |  |  |  |
| 7650 | ...Repeated for RTD Input 18 |  |  |  |  |  |
| 7660 | ...Repeated for RTD Input 19 |  |  |  |  |  |
| 7670 | ...Repeated for RTD Input 20 |  |  |  |  |  |
| 7680 | ...Repeated for RTD Input 21 |  |  |  |  |  |
| 7690 | ...Repeated for RTD Input 22 |  |  |  |  |  |
| 76A0 | ...Repeated for RTD Input 23 |  |  |  |  |  |
| 76B0 | ...Repeated for RTD Input 24 |  |  |  |  |  |
| 76C0 | ...Repeated for RTD Input 25 |  |  |  |  |  |
| 76D0 | ...Repeated for RTD Input 26 |  |  |  |  |  |
| 76E0 | ...Repeated for RTD Input 27 |  |  |  |  |  |
| 76F0 | ...Repeated for RTD Input 28 |  |  |  |  |  |
| 7700 | ...Repeated for RTD Input 29 |  |  |  |  |  |
| 7710 | ...Repeated for RTD Input 30 |  |  |  |  |  |
| 7720 | ...Repeated for RTD Input 31 |  |  |  |  |  |
| 7730 | ...Repeated for RTD Input 32 |  |  |  |  |  |
| 7740 | ...Repeated for RTD Input 33 |  |  |  |  |  |
| 7750 | ...Repeated for RTD Input 34 |  |  |  |  |  |
| 7760 | ...Repeated for RTD Input 35 |  |  |  |  |  |
| 7770 | ...Repeated for RTD Input 36 |  |  |  |  |  |
| 7780 | ...Repeated for RTD Input 37 |  |  |  |  |  |
| 7790 | ...Repeated for RTD Input 38 |  |  |  |  |  |
| 77A0 | ...Repeated for RTD Input 39 |  |  |  |  |  |
| 77B0 | ...Repeated for RTD Input 40 |  |  |  |  |  |
| 77C0 | ...Repeated for RTD Input 41 |  |  |  |  |  |
| 77D0 | ...Repeated for RTD Input 42 |  |  |  |  |  |
| 77E0 | ...Repeated for RTD Input 43 |  |  |  |  |  |
| 77F0 | ...Repeated for RTD Input 44 |  |  |  |  |  |
| 7800 | ...Repeated for RTD Input 45 |  |  |  |  |  |
| 7810 | ...Repeated for RTD Input 46 |  |  |  |  |  |
| 7820 | ...Repeated for RTD Input 47 |  |  |  |  |  |
| 7830 | ...Repeated for RTD Input 48 |  |  |  |  |  |
| Underfrequency (Read/Write Setting) (6 modules) |  |  |  |  |  |  |
| 7E00 | Underfrequency Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7E01 | Underfrequency 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 7E02 | Underfrequency 1 Minimum Current | 0.1 to 1.25 | pu | 0.01 | F001 | 10 |
| 7E03 | Underfrequency 1 Pickup | 20 to 65 | Hz | 0.01 | F001 | 5950 |
| 7E04 | Underfrequency 1 Pickup Delay | 0 to 65.535 | S | 0.001 | F001 | 2000 |

Table B-9: MODBUS MEMORY MAP (Sheet 23 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7E05 | Underfrequency 1 Reset Delay | 0 to 65.535 | s | 0.001 | F001 | 2000 |
| 7E06 | Underfrequency 1 Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 7E07 | Underfrequency 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7E08 | Underfrequency 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 7E09 | Reserved (8 items) | 0 to 1 | --- | 1 | F001 | 0 |
| 7E11 | ...Repeated for Underfrequency 2 |  |  |  |  |  |
| 7E22 | ...Repeated for Underfrequency 3 |  |  |  |  |  |
| 7E33 | ...Repeated for Underfrequency 4 |  |  |  |  |  |
| 7E44 | ...Repeated for Underfrequency 5 |  |  |  |  |  |
| 7E55 | ...Repeated for Underfrequency 6 |  |  |  |  |  |
| Neutral Overvoltage (Read/Write Grouped Setting) (3 modules) |  |  |  |  |  |  |
| 7F00 | Neutral Overvoltage 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7F01 | Neutral Overvoltage 1 Signal Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 7F02 | Neutral Overvoltage 1 Pickup | 0 to 1.25 | pu | 0.001 | F001 | 300 |
| 7F03 | Neutral Overvoltage 1 Pickup Delay | 0 to 600 | S | 0.01 | F001 | 100 |
| 7F04 | Neutral Overvoltage 1 Reset Delay | 0 to 600 | s | 0.01 | F001 | 100 |
| 7F05 | Neutral Overvoltage 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 7F06 | Neutral Overvoltage 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 7F07 | Neutral Overvoltage 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7F08 | Reserved (8 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| 7F10 | ...Repeated for Neutral Overvoltage 2 |  |  |  |  |  |
| 7F20 | ...Repeated for Neutral Overvoltage 3 |  |  |  |  |  |
| Auxiliary Overvoltage (Read/Write Grouped Setting) (3 modules) |  |  |  |  |  |  |
| 7F30 | Auxiliary Overvoltage 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7F31 | Auxiliary Overvoltage 1 Signal Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 7F32 | Auxiliary Overvoltage 1 Pickup | 0 to 3 | pu | 0.001 | F001 | 300 |
| 7F33 | Auxiliary Overvoltage 1 Pickup Delay | 0 to 600 | s | 0.01 | F001 | 100 |
| 7F34 | Auxiliary Overvoltage 1 Reset Delay | 0 to 600 | s | 0.01 | F001 | 100 |
| 7F35 | Auxiliary Overvoltage 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 7F36 | Auxiliary Overvoltage 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 7F37 | Auxiliary Overvoltage 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7F38 | Reserved (8 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| 7F40 | ...Repeated for Auxiliary Overvoltage 2 |  |  |  |  |  |
| 7F50 | ...Repeated for Auxiliary Overvoltage 3 |  |  |  |  |  |
| Auxiliary Undervoltage (Read/Write Grouped Setting) (3 modules) |  |  |  |  |  |  |
| 7F60 | Auxiliary Undervoltage 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7F61 | Auxiliary Undervoltage 1 Signal Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| 7F62 | Auxiliary Undervoltage 1 Pickup | 0 to 3 | pu | 0.001 | F001 | 700 |
| 7F63 | Auxiliary Undervoltage 1 Delay | 0 to 600 | s | 0.01 | F001 | 100 |
| 7F64 | Auxiliary Undervoltage 1 Curve | 0 to 1 | --- | 1 | F111 | 0 (Definite Time) |
| 7F65 | Auxiliary Undervoltage 1 Minimum Voltage | 0 to 3 | pu | 0.001 | F001 | 100 |
| 7F66 | Auxiliary Undervoltage 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 7F67 | Auxiliary Undervoltage 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 7F68 | Auxiliary Undervoltage 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 7F69 | Reserved (7 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| 7F70 | ...Repeated for Auxiliary Undervoltage 2 |  |  |  |  |  |
| 7F80 | ...Repeated for Auxiliary Undervoltage 3 |  |  |  |  |  |
| Frequency (Read Only) |  |  |  |  |  |  |
| 8000 | Tracking Frequency | 2 to 90 | Hz | 0.01 | F001 | 0 |
| EGD Fast Production Status (Read Only) |  |  |  |  |  |  |
| 83E0 | EGD Fast Producer Exchange 1 Signature | 0 to 65535 | --- | 1 | F001 | 0 |
| 83E1 | EGD Fast Producer Exchange 1 Configuration Time | 0 to 4294967295 | --- | --- | F003 | 0 |
| 83E3 | EGD Fast Producer Exchange 1 Size | 0 to 65535 | --- | 1 | F001 | 0 |

Table B-9: MODBUS MEMORY MAP (Sheet 24 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EGD Slow Production Status (Read Only) (2 modules) |  |  |  |  |  |  |
| 83F0 | EGD Slow Producer Exchange 1 Signature | 0 to 65535 | --- | 1 | F001 | 0 |
| 83F1 | EGD Slow Producer Exchange 1 Configuration Time | 0 to 4294967295 | --- | --- | F003 | 0 |
| 83F3 | EGD Slow Producer Exchange 1 Size | 0 to 65535 | --- | 1 | F001 | 0 |
| 83F4 | ...Repeated for module number 2 |  |  |  |  |  |
| EGD Fast Production (Read/Write Setting) |  |  |  |  |  |  |
| 8400 | EGD Fast Producer Exchange 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 8401 | EGD Fast Producer Exchange 1 Destination | 0 to 4294967295 | --- | 1 | F003 | 0 |
| 8403 | EGD Fast Producer Exchange 1 Data Rate | 50 to 1000 | ms | 50 | F001 | 1000 |
| 8404 | EGD Fast Producer Exchange 1 Data Item 1 (20 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| 8418 | Reserved (80 items) | --- | --- | --- | F001 | 0 |
| EGD Slow Production (Read/Write Setting) (2 modules) |  |  |  |  |  |  |
| 8500 | EGD Slow Producer Exchange 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 8501 | EGD Fast Producer Exchange 1 Destination | 0 to 4294967295 | --- | 1 | F003 | 0 |
| 8503 | EGD Slow Producer Exchange 1 Data Rate | 500 to 1000 | ms | 50 | F001 | 1000 |
| 8504 | EGD Slow Producer Exchange 1 Data Item 1 (50 items) | 0 to 65535 | --- | 1 | F001 | 0 |
| 8536 | Reserved (50 items) | --- | --- | --- | F001 | 0 |
| 8568 | ...Repeated for EGD Exchange 2 |  |  |  |  |  |
| FlexState Settings (Read/Write Setting) |  |  |  |  |  |  |
| 8800 | FlexState Parameters (256 items) | --- | --- | --- | F300 | 0 |
| Digital Elements (Read/Write Setting) (48 modules) |  |  |  |  |  |  |
| 8A00 | Digital Element 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 8A01 | Digital Element 1 Name | --- | --- | --- | F203 | "Dig Element 1" |
| 8A09 | Digital Element 1 Input | 0 to 65535 | --- | 1 | F300 | 0 |
| 8A0A | Digital Element 1 Pickup Delay | 0 to 999999.999 | s | 0.001 | F003 | 0 |
| 8A0C | Digital Element 1 Reset Delay | 0 to 999999.999 | s | 0.001 | F003 | 0 |
| 8A0E | Digital Element 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 8A0F | Digital Element 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 8A10 | Digital Element 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 8A11 | Digital Element 1 Pickup LED | 0 to 1 | --- | 1 | F102 | 1 (Enabled) |
| 8A12 | Reserved (2 items) | --- | --- | --- | F001 | 0 |
| 8A14 | ...Repeated for Digital Element 2 |  |  |  |  |  |
| 8A28 | ...Repeated for Digital Element 3 |  |  |  |  |  |
| 8A3C | ...Repeated for Digital Element 4 |  |  |  |  |  |
| 8A50 | ...Repeated for Digital Element 5 |  |  |  |  |  |
| 8A64 | ...Repeated for Digital Element 6 |  |  |  |  |  |
| 8A78 | ...Repeated for Digital Element 7 |  |  |  |  |  |
| 8A8C | ...Repeated for Digital Element 8 |  |  |  |  |  |
| 8AAO | ...Repeated for Digital Element 9 |  |  |  |  |  |
| 8AB4 | ...Repeated for Digital Element 10 |  |  |  |  |  |
| 8AC8 | ...Repeated for Digital Element 11 |  |  |  |  |  |
| 8ADC | ...Repeated for Digital Element 12 |  |  |  |  |  |
| 8AF0 | ...Repeated for Digital Element 13 |  |  |  |  |  |
| 8B04 | ...Repeated for Digital Element 14 |  |  |  |  |  |
| 8B18 | ...Repeated for Digital Element 15 |  |  |  |  |  |
| 8B2C | ...Repeated for Digital Element 16 |  |  |  |  |  |
| 8B40 | ...Repeated for Digital Element 17 |  |  |  |  |  |
| 8B54 | ...Repeated for Digital Element 18 |  |  |  |  |  |
| 8B68 | ...Repeated for Digital Element 19 |  |  |  |  |  |
| 8B7C | ...Repeated for Digital Element 20 |  |  |  |  |  |
| 8B90 | ...Repeated for Digital Element 21 |  |  |  |  |  |
| 8BA4 | ...Repeated for Digital Element 22 |  |  |  |  |  |
| 8BB8 | ...Repeated for Digital Element 23 |  |  |  |  |  |
| 8BCC | ...Repeated for Digital Element 24 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 25 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8BE0 | ...Repeated for Digital Element 25 |  |  |  |  |  |
| 8BF4 | ...Repeated for Digital Element 26 |  |  |  |  |  |
| 8C08 | ...Repeated for Digital Element 27 |  |  |  |  |  |
| 8C1C | ...Repeated for Digital Element 28 |  |  |  |  |  |
| 8C30 | ...Repeated for Digital Element 29 |  |  |  |  |  |
| 8C44 | ...Repeated for Digital Element 30 |  |  |  |  |  |
| 8C58 | ...Repeated for Digital Element 31 |  |  |  |  |  |
| 8C6C | ...Repeated for Digital Element 32 |  |  |  |  |  |
| 8C80 | ...Repeated for Digital Element 33 |  |  |  |  |  |
| 8C94 | ...Repeated for Digital Element 34 |  |  |  |  |  |
| 8CA8 | ...Repeated for Digital Element 35 |  |  |  |  |  |
| 8CBC | ...Repeated for Digital Element 36 |  |  |  |  |  |
| 8CD0 | ...Repeated for Digital Element 37 |  |  |  |  |  |
| 8CE4 | ...Repeated for Digital Element 38 |  |  |  |  |  |
| 8CF8 | ...Repeated for Digital Element 39 |  |  |  |  |  |
| 8D0C | ...Repeated for Digital Element 40 |  |  |  |  |  |
| 8D20 | ...Repeated for Digital Element 41 |  |  |  |  |  |
| 8D34 | ...Repeated for Digital Element 42 |  |  |  |  |  |
| 8D48 | ...Repeated for Digital Element 43 |  |  |  |  |  |
| 8D5C | ...Repeated for Digital Element 44 |  |  |  |  |  |
| 8D70 | ...Repeated for Digital Element 45 |  |  |  |  |  |
| 8D84 | ...Repeated for Digital Element 46 |  |  |  |  |  |
| 8D98 | ...Repeated for Digital Element 47 |  |  |  |  |  |
| 8DAC | ...Repeated for Digital Element 48 |  |  |  |  |  |
| FlexElement (Read/Write Setting) (16 modules) |  |  |  |  |  |  |
| 9000 | FlexElement ${ }^{\text {TM }} 1$ Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 9001 | FlexElement ${ }^{\text {TM }} 1$ Name | --- | --- | --- | F206 | "FxE 1" |
| 9004 | FlexElement ${ }^{\text {TM }} 1$ InputP | 0 to 65535 | --- | 1 | F600 | 0 |
| 9005 | FlexElement ${ }^{\text {TM }} 1$ InputM | 0 to 65535 | --- | 1 | F600 | 0 |
| 9006 | FlexElement ${ }^{\text {TM }} 1$ Compare | 0 to 1 | --- | 1 | F516 | 0 (LEVEL) |
| 9007 | FlexElement ${ }^{\text {TM }} 1$ Input | 0 to 1 | --- | 1 | F515 | 0 (SIGNED) |
| 9008 | FlexElement ${ }^{\text {TM }} 1$ Direction | 0 to 1 | --- | 1 | F517 | 0 (OVER) |
| 9009 | FlexElement ${ }^{\text {TM }} 1$ Hysteresis | 0.1 to 50 | \% | 0.1 | F001 | 30 |
| 900A | FlexElement ${ }^{\text {TM }} 1$ Pickup | -90 to 90 | pu | 0.001 | F004 | 1000 |
| 900C | FlexElement ${ }^{\text {TM }} 1$ DeltaT Units | 0 to 2 | --- | 1 | F518 | 0 (Milliseconds) |
| 900D | FlexElement ${ }^{\text {TM }} 1$ Delta ${ }^{\text {a }}$ | 20 to 86400 | --- | 1 | F003 | 20 |
| 900F | FlexElement ${ }^{\text {TM }} 1$ Pickup Delay | 0 to 65.535 | S | 0.001 | F001 | 0 |
| 9010 | FlexElement ${ }^{\text {TM }} 1$ Reset Delay | 0 to 65.535 | s | 0.001 | F001 | 0 |
| 9011 | FlexElement ${ }^{\text {TM }} 1$ Block | 0 to 65535 | --- | 1 | F300 | 0 |
| 9012 | FlexElement ${ }^{\text {TM }} 1$ Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| 9013 | FlexElement ${ }^{\text {TM }} 1$ Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 9014 | ...Repeated for FlexElement ${ }^{\text {TM }} 2$ |  |  |  |  |  |
| 9028 | ...Repeated for FlexElement ${ }^{\text {TM }} 3$ |  |  |  |  |  |
| 903C | ...Repeated for FlexElement ${ }^{\text {TM }} 4$ |  |  |  |  |  |
| 9050 | ...Repeated for FlexElement ${ }^{\text {TM }} 5$ |  |  |  |  |  |
| 9064 | ...Repeated for FlexElement ${ }^{\text {TM }} 6$ |  |  |  |  |  |
| 9078 | ...Repeated for FlexElement ${ }^{\text {TM }} 7$ |  |  |  |  |  |
| 908C | ...Repeated for FlexElement ${ }^{\text {TM }} 8$ |  |  |  |  |  |
| 90A0 | ...Repeated for FlexElement ${ }^{\text {TM }} 9$ |  |  |  |  |  |
| 90B4 | ...Repeated for FlexElement ${ }^{\text {TM }} 10$ |  |  |  |  |  |
| 90C8 | ...Repeated for FlexElement ${ }^{\text {TM }} 11$ |  |  |  |  |  |
| 90DC | ...Repeated for FlexElement ${ }^{\text {TM }} 12$ |  |  |  |  |  |
| 90F0 | ...Repeated for FlexElement ${ }^{\text {TM }} 13$ |  |  |  |  |  |
| 9104 | ...Repeated for FlexElement ${ }^{\text {™ }} 14$ |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 26 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9118 | ...Repeated for FlexElement ${ }^{\text {TM }} 15$ |  |  |  |  |  |
| 912C | ...Repeated for FlexElement ${ }^{\text {TM }} 16$ |  |  |  |  |  |
| DCMA Outputs (Read/Write Setting) (24 modules) |  |  |  |  |  |  |
| 9300 | dcmA Output 1 Source | 0 to 65535 | --- | 1 | F600 | 0 |
| 9301 | dcmA Output 1 Range | 0 to 2 | --- | 1 | F522 | 0 (-1 to 1 mA ) |
| 9302 | dcmA Output 1 Minimum | -90 to 90 | pu | 0.001 | F004 | 0 |
| 9304 | dcmA Output 1 Maximum | -90 to 90 | pu | 0.001 | F004 | 1000 |
| 9306 | ...Repeated for dcmA Output 2 |  |  |  |  |  |
| 930C | ...Repeated for dcmA Output 3 |  |  |  |  |  |
| 9312 | ...Repeated for dcmA Output 4 |  |  |  |  |  |
| 9318 | ...Repeated for dcmA Output 5 |  |  |  |  |  |
| 931E | ...Repeated for dcmA Output 6 |  |  |  |  |  |
| 9324 | ...Repeated for dcmA Output 7 |  |  |  |  |  |
| 932A | ...Repeated for dcmA Output 8 |  |  |  |  |  |
| 9330 | ...Repeated for dcmA Output 9 |  |  |  |  |  |
| 9336 | ...Repeated for dcmA Output 10 |  |  |  |  |  |
| 933C | ...Repeated for dcmA Output 11 |  |  |  |  |  |
| 9342 | ...Repeated for dcmA Output 12 |  |  |  |  |  |
| 9348 | ...Repeated for dcmA Output 13 |  |  |  |  |  |
| 934E | ...Repeated for dcmA Output 14 |  |  |  |  |  |
| 9354 | ...Repeated for dcmA Output 15 |  |  |  |  |  |
| 935A | ...Repeated for dcmA Output 16 |  |  |  |  |  |
| 9360 | ...Repeated for dcmA Output 17 |  |  |  |  |  |
| 9366 | ...Repeated for dcmA Output 18 |  |  |  |  |  |
| 936C | ...Repeated for dcmA Output 19 |  |  |  |  |  |
| 9372 | ...Repeated for dcmA Output 20 |  |  |  |  |  |
| 9378 | ...Repeated for dcmA Output 21 |  |  |  |  |  |
| 937E | ...Repeated for dcmA Output 22 |  |  |  |  |  |
| 9384 | ...Repeated for dcmA Output 23 |  |  |  |  |  |
| 938A | ...Repeated for dcmA Output 24 |  |  |  |  |  |
| Direct Input/Output Names (Read/Write Setting) (96 modules) |  |  |  |  |  |  |
| 9400 | Direct Input 1 Name | 0 to 96 | --- | 1 | F205 | "Dir lp 1" |
| 9406 | Direct Output 1 Name | 1 to 96 | --- | 1 | F205 | "Dir Out 1" |
| 940C | ...Repeated for Direct Input/Output 2 |  |  |  |  |  |
| 9418 | ...Repeated for Direct Input/Output 3 |  |  |  |  |  |
| 9424 | ...Repeated for Direct Input/Output 4 |  |  |  |  |  |
| 9430 | ...Repeated for Direct Input/Output 5 |  |  |  |  |  |
| 943C | ...Repeated for Direct Input/Output 6 |  |  |  |  |  |
| 9448 | ...Repeated for Direct Input/Output 7 |  |  |  |  |  |
| 9454 | ...Repeated for Direct Input/Output 8 |  |  |  |  |  |
| 9460 | ...Repeated for Direct Input/Output 9 |  |  |  |  |  |
| 946C | ...Repeated for Direct Input/Output 10 |  |  |  |  |  |
| 9478 | ...Repeated for Direct Input/Output 11 |  |  |  |  |  |
| 9484 | ...Repeated for Direct Input/Output 12 |  |  |  |  |  |
| 9490 | ...Repeated for Direct Input/Output 13 |  |  |  |  |  |
| 949C | ...Repeated for Direct Input/Output 14 |  |  |  |  |  |
| 94A8 | ...Repeated for Direct Input/Output 15 |  |  |  |  |  |
| 94B4 | ...Repeated for Direct Input/Output 16 |  |  |  |  |  |
| 94C0 | ...Repeated for Direct Input/Output 17 |  |  |  |  |  |
| 94CC | ...Repeated for Direct Input/Output 18 |  |  |  |  |  |
| 94D8 | ...Repeated for Direct Input/Output 19 |  |  |  |  |  |
| 94E4 | ...Repeated for Direct Input/Output 20 |  |  |  |  |  |
| 94F0 | ...Repeated for Direct Input/Output 21 |  |  |  |  |  |
| 94FC | ...Repeated for Direct Input/Output 22 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 27 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9508 | ...Repeated for Direct Input/Output 23 |  |  |  |  |  |
| 9514 | ...Repeated for Direct Input/Output 24 |  |  |  |  |  |
| 9520 | ...Repeated for Direct Input/Output 25 |  |  |  |  |  |
| 952C | ...Repeated for Direct Input/Output 26 |  |  |  |  |  |
| 9538 | ...Repeated for Direct Input/Output 27 |  |  |  |  |  |
| 9544 | ...Repeated for Direct Input/Output 28 |  |  |  |  |  |
| 9550 | ...Repeated for Direct Input/Output 29 |  |  |  |  |  |
| 955C | ...Repeated for Direct Input/Output 30 |  |  |  |  |  |
| 9568 | ...Repeated for Direct Input/Output 31 |  |  |  |  |  |
| 9574 | ...Repeated for Direct Input/Output 32 |  |  |  |  |  |
| FlexElement Actuals (Read Only) (16 modules) |  |  |  |  |  |  |
| 9A01 | FlexElement ${ }^{\text {TM }} 1$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| 9A03 | FlexElement ${ }^{\text {TM }} 2$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| 9A05 | FlexElement ${ }^{\text {TM }} 3$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| 9 A 07 | FlexElement ${ }^{\text {TM }} 4$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| 9 A 09 | FlexElement ${ }^{\text {TM }} 5$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| 9A0B | FlexElement ${ }^{\text {TM }} 6$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| 9A0D | FlexElement ${ }^{\text {TM }} 7$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| 9A0F | FlexElement ${ }^{\text {TM }} 8$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| 9A11 | FlexElement ${ }^{\text {TM }} 9$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| 9 A 13 | FlexElement ${ }^{\text {TM }} 10$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| 9A15 | FlexElement ${ }^{\text {TM }} 11$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| 9 A 17 | FlexElement ${ }^{\text {TM }} 12$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| 9A19 | FlexElement ${ }^{\text {TM }} 13$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| 9A1B | FlexElement ${ }^{\text {TM }} 14$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| 9A1D | FlexElement ${ }^{\text {TM }} 15$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| 9A1F | FlexElement ${ }^{\text {TM }} 16$ Actual | -2147483.647 to 2147483.647 | --- | 0.001 | F004 | 0 |
| Teleprotection Inputs/Outputs (Read/Write Settings) |  |  |  |  |  |  |
| 9B00 | Teleprotection Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| 9B01 | Teleprotection Number of Terminals | 2 to 3 | --- | 1 | F001 | 2 |
| 9B02 | Teleprotection Number of Channels | 1 to 2 | --- | 1 | F001 | 1 |
| 9B03 | Teleprotection Local Relay ID | 0 to 255 | --- | 1 | F001 | 0 |
| 9B04 | Teleprotection Terminal 1 ID | 0 to 255 | --- | 1 | F001 | 0 |
| 9B05 | Teleprotection Terminal 2 ID | 0 to 255 | --- | 1 | F001 | 0 |
| 9B06 | Reserved (10 items) | 0 to 1 | --- | --- | F001 | 0 |
| 9B10 | Teleprotection Input 1-n Default States (16 items) | 0 to 3 | --- | 1 | F086 | 0 (Off) |
| 9B30 | Teleprotection Input 2-n Default States (16 items) | 0 to 3 | --- | 1 | F086 | 0 (Off) |
| 9B50 | Teleprotection Output 1-n Operand (16 items) | 0 to 65535 | --- | 1 | F300 | 0 |
| 9B70 | Teleprotection Output 2-n Operand (16 items) | 0 to 65535 | --- | 1 | F300 | 0 |
| Teleprotection Inputs/Outputs Commands (Read/Write Command) |  |  |  |  |  |  |
| 9B90 | Teleprotection Clear Lost Packets | 0 to 1 | --- | 1 | F126 | 0 (No) |
| Teleprotection Channel Tests (Read Only) |  |  |  |  |  |  |
| 9B91 | Teleprotection Channel 1 Status | 0 to 2 | --- | 1 | F134 | 1 (OK) |
| $9 \mathrm{B92}$ | Teleprotection Channel 1 Number of Lost Packets | 0 to 65535 | --- | 1 | F001 | 0 |
| 9B93 | Teleprotection Channel 2 Status | 0 to 2 | --- | 1 | F134 | 1 (OK) |
| 9B94 | Teleprotection Channel 2 Number of Lost Packets | 0 to 65535 | --- | 1 | F001 | 0 |
| 9B95 | Teleprotection Network Status | 0 to 2 | --- | 1 | F134 | 2 ( $\mathrm{n} / \mathrm{a}$ ) |
| 9BA0 | Teleprotection Channel 1 Input States | 0 to 1 | --- | 1 | F500 | 0 |
| 9BA1 | Teleprotection Channel 2 Input States | 0 to 1 | --- | 1 | F500 | 0 |
| 9BB0 | Teleprotection Input 1 States, 1 per register (16 items) | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| 9BC0 | Teleprotection Input 2 States, 1 per register (16 items) | 0 to 1 | --- | 1 | F108 | 0 (Off) |
| Selector Switch Actuals (Read Only) |  |  |  |  |  |  |
| A400 | Selector 1 Position | 1 to 7 | --- | 1 | F001 | 0 |
| A401 | Selector 2 Position | 1 to 7 | --- | 1 | F001 | 1 |

Table B-9: MODBUS MEMORY MAP (Sheet 28 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Selector Switch (Read/Write Setting) (2 modules) |  |  |  |  |  |  |
| A410 | Selector 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| A411 | Selector 1 Range | 1 to 7 | --- | 1 | F001 | 7 |
| A412 | Selector 1 Timeout | 3 to 60 | s | 0.1 | F001 | 50 |
| A413 | Selector 1 Step Up | 0 to 65535 | --- | 1 | F300 | 0 |
| A414 | Selector 1 Step Mode | 0 to 1 | --- | 1 | F083 | 0 (Time-out) |
| A415 | Selector 1 Acknowledge | 0 to 65535 | --- | 1 | F300 | 0 |
| A416 | Selector 1 Bit0 | 0 to 65535 | --- | 1 | F300 | 0 |
| A417 | Selector 1 Bit1 | 0 to 65535 | --- | 1 | F300 | 0 |
| A418 | Selector 1 Bit2 | 0 to 65535 | --- | 1 | F300 | 0 |
| A419 | Selector 1 Bit Mode | 0 to 1 | --- | 1 | F083 | 0 (Time-out) |
| A41A | Selector 1 Bit Acknowledge | 0 to 65535 | --- | 1 | F300 | 0 |
| A41B | Selector 1 Power Up Mode | 0 to 2 | --- | 1 | F084 | 0 (Restore) |
| A41C | Selector 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| A41D | Selector 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| A41E | Reserved (10 items) | --- | --- | 1 | F001 | 0 |
| A428 | ...Repeated for Selector 2 |  |  |  |  |  |
| DNP/IEC Points (Read/Write Setting) |  |  |  |  |  |  |
| A500 | DNP/IEC 60870-5-104 Binary Input Points (256 items) | 0 to 65535 | --- | 1 | F300 | 0 |
| A600 | DNP/IEC 60870-5-104 Analog Input Points (256 items) | 0 to 65535 | --- | 1 | F300 | 0 |
| Volts Per Hertz (Read/Write Grouped Setting) (2 modules) |  |  |  |  |  |  |
| AB00 | Volts Per Hertz 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| AB01 | Volts Per Hertz 1 Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| AB02 | Volts Per Hertz 1 Pickup | 0.8 to 4 | pu | 0.01 | F001 | 80 |
| AB03 | Volts Per Hertz 1 Curves | 0 to 7 | --- | 1 | F240 | 0 (Definite Time) |
| AB04 | Volts Per Hertz 1 TD Multiplier | 0.05 to 600 | --- | 0.01 | F001 | 100 |
| AB05 | Volts Per Hertz 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| AB08 | Volts Per Hertz 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| AB09 | Volts Per Hertz 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| AB0A | Volts Per Hertz 1 T Reset | 0 to 1000 | s | 0.1 | F001 | 10 |
| ABOB | ...Repeated for Volts Per Hertz 2 |  |  |  |  |  |
| Volts Per Hertz Actuals (Read Only) (2 modules) |  |  |  |  |  |  |
| AB20 | Volts Per Hertz 1 | 0 to 65.535 | pu | 0.001 | F001 | 0 |
| AB21 | Volts Per Hertz 2 | 0 to 65.535 | pu | 0.001 | F001 | 0 |
| Flexcurves C and D (Read/Write Setting) |  |  |  |  |  |  |
| AC00 | FlexCurve C (120 items) | 0 to 65535 | ms | 1 | F011 | 0 |
| AC78 | FlexCurve D (120 items) | 0 to 65535 | ms | 1 | F011 | 0 |
| Non Volatile Latches (Read/Write Setting) (16 modules) |  |  |  |  |  |  |
| AD00 | Non-Volatile Latch 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| AD01 | Non-Volatile Latch 1 Type | 0 to 1 | --- | 1 | F519 | 0 (Reset Dominant) |
| AD02 | Non-Volatile Latch 1 Set | 0 to 65535 | --- | 1 | F300 | 0 |
| AD03 | Non-Volatile Latch 1 Reset | 0 to 65535 | --- | 1 | F300 | 0 |
| AD04 | Non-Volatile Latch 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| AD05 | Non-Volatile Latch 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| AD06 | Reserved (4 items) | --- | --- | --- | F001 | 0 |
| AD0A | ...Repeated for Non-Volatile Latch 2 |  |  |  |  |  |
| AD14 | ...Repeated for Non-Volatile Latch 3 |  |  |  |  |  |
| AD1E | ...Repeated for Non-Volatile Latch 4 |  |  |  |  |  |
| AD28 | ...Repeated for Non-Volatile Latch 5 |  |  |  |  |  |
| AD32 | ...Repeated for Non-Volatile Latch 6 |  |  |  |  |  |
| AD3C | ...Repeated for Non-Volatile Latch 7 |  |  |  |  |  |
| AD46 | ...Repeated for Non-Volatile Latch 8 |  |  |  |  |  |
| AD50 | ...Repeated for Non-Volatile Latch 9 |  |  |  |  |  |
| AD5A | ...Repeated for Non-Volatile Latch 10 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 29 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AD64 | ...Repeated for Non-Volatile Latch 11 |  |  |  |  |  |
| AD6E | ...Repeated for Non-Volatile Latch 12 |  |  |  |  |  |
| AD78 | ...Repeated for Non-Volatile Latch 13 |  |  |  |  |  |
| AD82 | ...Repeated for Non-Volatile Latch 14 |  |  |  |  |  |
| AD8C | ...Repeated for Non-Volatile Latch 15 |  |  |  |  |  |
| AD96 | ...Repeated for Non-Volatile Latch 16 |  |  |  |  |  |
| Digital Counter (Read/Write Setting) (8 modules) |  |  |  |  |  |  |
| B300 | Digital Counter 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| B301 | Digital Counter 1 Name | --- | --- | --- | F205 | "Counter 1" |
| B307 | Digital Counter 1 Units | --- | --- | --- | F206 | (none) |
| B30A | Digital Counter 1 Block | 0 to 65535 | --- | 1 | F300 | 0 |
| B30B | Digital Counter 1 Up | 0 to 65535 | --- | 1 | F300 | 0 |
| B30C | Digital Counter 1 Down | 0 to 65535 | --- | 1 | F300 | 0 |
| B30D | Digital Counter 1 Preset | -2147483647 to 2147483647 | --- | 1 | F004 | 0 |
| B30F | Digital Counter 1 Compare | -2147483647 to 2147483647 | --- | 1 | F004 | 0 |
| B311 | Digital Counter 1 Reset | 0 to 65535 | --- | 1 | F300 | 0 |
| B312 | Digital Counter 1 Freeze/Reset | 0 to 65535 | --- | 1 | F300 | 0 |
| B313 | Digital Counter 1 Freeze/Count | 0 to 65535 | --- | 1 | F300 | 0 |
| B314 | Digital Counter 1 Set To Preset | 0 to 65535 | --- | 1 | F300 | 0 |
| B315 | Reserved (11 items) | --- | --- | --- | F001 | 0 |
| B320 | ...Repeated for Digital Counter 2 |  |  |  |  |  |
| B340 | ...Repeated for Digital Counter 3 |  |  |  |  |  |
| B360 | ...Repeated for Digital Counter 4 |  |  |  |  |  |
| B380 | ...Repeated for Digital Counter 5 |  |  |  |  |  |
| B3A0 | ...Repeated for Digital Counter 6 |  |  |  |  |  |
| B3C0 | ...Repeated for Digital Counter 7 |  |  |  |  |  |
| B3E0 | ...Repeated for Digital Counter 8 |  |  |  |  |  |
| IEC 61850 GSSE Configuration (Read/Write Setting) |  |  |  |  |  |  |
| B680 | Default GSSE Update Time | 1 to 60 | s | 1 | F001 | 60 |
| B681 | Remote Input/Output Transfer Method | 0 to 2 | --- | 1 | F226 | 1 (GSSE) |
| B682 | IEC 61850 GOOSE VLAN Transmit Priority | 0 to 7 | --- | 1 | F001 | 4 |
| B683 | IEC 61850 GOOSE VLAN ID | 0 to 4095 | --- | 1 | F001 | 0 |
| B684 | IEC 61850 GOOSE ETYPE APPID | 0 to 16383 | --- | 1 | F001 | 0 |
| B685 | Reserved (22 items) | 0 to 1 | --- | 1 | F001 | 0 |
| IEC 61850 Server Configuration (Read/Write Settings/Commands) |  |  |  |  |  |  |
| B6A0 | TCP Port Number for the IEC 61850 Protocol | 1 to 65535 | --- | 1 | F001 | 102 |
| B6A1 | IEC 61850 Logical Device Name | --- | --- | --- | F213 | "IECDevice" |
| B6B1 | Include Non-IEC 61850 Data | 0 to 1 | --- | 1 | F102 | 1 (Enabled) |
| B6B2 | Number of Status Indications in GGIO1 | 8 to 128 | --- | 8 | F001 | 8 |
| B6B3 | IEC 61850 Server Data Scanning Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| B6B4 | Command to Clear XCBR1 OpCnt Counter | 0 to 1 | --- | 1 | F126 | 0 (No) |
| B6B5 | Command to Clear XCBR2 OpCnt Counter | 0 to 1 | --- | 1 | F126 | 0 (No) |
| B6B6 | Reserved (10 items) | 0 to 1 | --- | 1 | F001 | 0 |
| IEC 61850 Logical Node Name Prefixes (Read/Write Setting) |  |  |  |  |  |  |
| B700 | IEC 61850 Logical Node PIOCx Name Prefix (72 items) | 0 to 65534 | --- | 1 | F206 | (None) |
| B7D8 | IEC 61850 Logical Node PTOCx Name Prefix (24 items) | 0 to 65534 | --- | 1 | F206 | (None) |
| B820 | IEC 61850 Logical Node PTUVx Name Prefix (12 items) | 0 to 65534 | --- | 1 | F206 | (None) |
| B844 | IEC 61850 Logical Node PTOVx Name Prefix (8 items) | 0 to 65534 | --- | 1 | F206 | (None) |
| B85C | IEC 61850 Logical Node PDISx Name Prefix (10 items) | 0 to 65534 | --- | 1 | F206 | (None) |
| B87A | IEC 61850 Logical Node RRBFx Name Prefix (24 items) | 0 to 65534 | --- | 1 | F206 | (None) |
| B8C2 | IEC 61850 Logical Node RPSBx Name Prefix | 0 to 65534 | --- | 1 | F206 | (None) |
| B8C5 | IEC 61850 Logical Node RRECx Name Prefix (6 items) | 0 to 65534 | --- | 1 | F206 | (None) |
| B8D7 | IEC 61850 Logical Node MMXUx Name Prefix (6 items) | 0 to 65534 | --- | 1 | F206 | (None) |
| B8E9 | IEC 61850 Logical Node GGIOx Name Prefix (2 items) | 0 to 65534 | --- | 1 | F206 | (None) |

Table B-9: MODBUS MEMORY MAP (Sheet 30 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B8EF | IEC 61850 Logical Node RFLOx Name Prefix (5 items) | 0 to 65534 | --- | 1 | F206 | (None) |
| B8FE | IEC 61850 Logical Node XCBRx Name Prefix (2 items) | 0 to 65534 | --- | 1 | F206 | (None) |
| B904 | IEC 61850 Logical Node PTRCx Name Prefix (2 items) | 0 to 65534 | --- | 1 | F206 | (None) |
| B90A | IEC 61850 Logical Node PDIFx Name Prefix (4 items) | 0 to 65534 | --- | 1 | F206 | (None) |
| B916 | IEC 61850 Logical Node MMXNx Name Prefix (37 items) | 0 to 65534 | --- | 1 | F206 | (None) |
| IEC 61850 MMXU Deadbands (Read/Write Setting) (6 modules) |  |  |  |  |  |  |
| BA00 | IEC 61850 MMXU TotW Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA02 | IEC 61850 MMXU TotVAr Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA04 | IEC 61850 MMXU TotVA Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA06 | IEC 61850 MMXU TotPF Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA08 | IEC 61850 MMXU Hz Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BAOA | IEC 61850 MMXU PPV.phsAB Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BAOC | IEC 61850 MMXU PPV.phsBC Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BAOE | IEC 61850 MMXU PPV.phsCA Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA10 | IEC 61850 MMXU PhV.phsADeadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA12 | IEC 61850 MMXU PhV.phsB Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA14 | IEC 61850 MMXU PhV.phsC Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA16 | IEC 61850 MMXU A.phsA Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA18 | IEC 61850 MMXU A.phsB Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA1A | IEC 61850 MMXU A.phsC Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA1C | IEC 61850 MMXU A.neut Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA1E | IEC 61850 MMXU W.phsA Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA20 | IEC 61850 MMXU W.phsB Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA22 | IEC 61850 MMXU W.phsC Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA24 | IEC 61850 MMXU VAr.phsA Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA26 | IEC 61850 MMXU VAr.phsB Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA28 | IEC 61850 MMXU VAr.phsC Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA2A | IEC 61850 MMXU VA.phsA Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA2C | IEC 61850 MMXU VA.phsB Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA2E | IEC 61850 MMXU VA.phsC Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA30 | IEC 61850 MMXU PF.phsA Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA32 | IEC 61850 MMXU PF.phsB Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA34 | IEC 61850 MMXU PF.phsC Deadband 1 | 0.001 to 100 | \% | 0.001 | F003 | 10000 |
| BA36 | ...Repeated for Deadband 2 |  |  |  |  |  |
| BA6C | ...Repeated for Deadband 3 |  |  |  |  |  |
| BAA2 | ...Repeated for Deadband 4 |  |  |  |  |  |
| BAD8 | ...Repeated for Deadband 5 |  |  |  |  |  |
| BB0E | ...Repeated for Deadband 6 |  |  |  |  |  |
| IEC 61850 GGIO2 Control Configuration (Read/Write Setting) (64 modules) |  |  |  |  |  |  |
| BC00 | IEC 61850 GGIO2.CF.SPCSO1.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC01 | IEC 61850 GGIO2.CF.SPCSO2.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC02 | IEC 61850 GGIO2.CF.SPCSO3.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC03 | IEC 61850 GGIO2.CF.SPCSO4.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC04 | IEC 61850 GGIO2.CF.SPCSO5.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC05 | IEC 61850 GGIO2.CF.SPCSO6.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC06 | IEC 61850 GGIO2.CF.SPCSO7.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC07 | IEC 61850 GGIO2.CF.SPCSO8.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC08 | IEC 61850 GGIO2.CF.SPCSO9.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC09 | IEC 61850 GGIO2.CF.SPCSO10.ctIModel Value | 0 to 2 | -- | 1 | F001 | 2 |
| BCOA | IEC 61850 GGIO2.CF.SPCSO11.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BCOB | IEC 61850 GGIO2.CF.SPCSO12.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BCOC | IEC 61850 GGIO2.CF.SPCSO13.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BCOD | IEC 61850 GGIO2.CF.SPCSO14.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC0E | IEC 61850 GGIO2.CF.SPCSO15.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |

Table B-9: MODBUS MEMORY MAP (Sheet 31 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BCOF | IEC 61850 GGIO2.CF.SPCSO16.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC10 | IEC 61850 GGIO2.CF.SPCSO17.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC11 | IEC 61850 GGIO2.CF.SPCSO18.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC12 | IEC 61850 GGIO2.CF.SPCSO19.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC13 | IEC 61850 GGIO2.CF.SPCSO20.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC14 | IEC 61850 GGIO2.CF.SPCSO21.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC15 | IEC 61850 GGIO2.CF.SPCSO22.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC16 | IEC 61850 GGIO2.CF.SPCSO23.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC17 | IEC 61850 GGIO2.CF.SPCSO24.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC18 | IEC 61850 GGIO2.CF.SPCSO25.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC19 | IEC 61850 GGIO2.CF.SPCSO26.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC1A | IEC 61850 GGIO2.CF.SPCSO27.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC1B | IEC 61850 GGIO2.CF.SPCSO28.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC1C | IEC 61850 GGIO2.CF.SPCSO29.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC1D | IEC 61850 GGIO2.CF.SPCSO30.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC1E | IEC 61850 GGIO2.CF.SPCSO31.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC1F | IEC 61850 GGIO2.CF.SPCSO32.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC20 | IEC 61850 GGIO2.CF.SPCSO33.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC21 | IEC 61850 GGIO2.CF.SPCSO34.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC22 | IEC 61850 GGIO2.CF.SPCSO35.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC23 | IEC 61850 GGIO2.CF.SPCSO36.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC24 | IEC 61850 GGIO2.CF.SPCSO37.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC25 | IEC 61850 GGIO2.CF.SPCSO38.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC26 | IEC 61850 GGIO2.CF.SPCSO39.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC27 | IEC 61850 GGIO2.CF.SPCSO40.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC28 | IEC 61850 GGIO2.CF.SPCSO41.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC29 | IEC 61850 GGIO2.CF.SPCSO42.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC2A | IEC 61850 GGIO2.CF.SPCSO43.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC2B | IEC 61850 GGIO2.CF.SPCSO44.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC2C | IEC 61850 GGIO2.CF.SPCSO45.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC2D | IEC 61850 GGIO2.CF.SPCSO46.ctIModel Value | 0 to 2 | - | 1 | F001 | 2 |
| BC2E | IEC 61850 GGIO2.CF.SPCSO47.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC2F | IEC 61850 GGIO2.CF.SPCSO48.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC30 | IEC 61850 GGIO2.CF.SPCSO49.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC31 | IEC 61850 GGIO2.CF.SPCSO50.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC32 | IEC 61850 GGIO2.CF.SPCSO51.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC33 | IEC 61850 GGIO2.CF.SPCSO52.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC34 | IEC 61850 GGIO2.CF.SPCSO53.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC35 | IEC 61850 GGIO2.CF.SPCSO54.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC36 | IEC 61850 GGIO2.CF.SPCSO55.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC37 | IEC 61850 GGIO2.CF.SPCSO56.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC38 | IEC 61850 GGIO2.CF.SPCSO57.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC39 | IEC 61850 GGIO2.CF.SPCSO58.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC3A | IEC 61850 GGIO2.CF.SPCSO59.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC3B | IEC 61850 GGIO2.CF.SPCSO60.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC3C | IEC 61850 GGIO2.CF.SPCSO61.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC3D | IEC 61850 GGIO2.CF.SPCSO62.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC3E | IEC 61850 GGIO2.CF.SPCSO63.ctIModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| BC3F | IEC 61850 GGIO2.CF.SPCSO64.ctlModel Value | 0 to 2 | --- | 1 | F001 | 2 |
| Contact Inputs (Read/Write Setting) (96 modules) |  |  |  |  |  |  |
| C000 | Contact Input 1 Name | --- | --- | --- | F205 | "Cont Ip 1" |
| C006 | Contact Input 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| C007 | Contact Input 1 Debounce Time | 0 to 16 | ms | 0.5 | F001 | 20 |
| C008 | ...Repeated for Contact Input 2 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 32 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C010 | ...Repeated for Contact Input 3 |  |  |  |  |  |
| C018 | ...Repeated for Contact Input 4 |  |  |  |  |  |
| C020 | ...Repeated for Contact Input 5 |  |  |  |  |  |
| C028 | ...Repeated for Contact Input 6 |  |  |  |  |  |
| C030 | ...Repeated for Contact Input 7 |  |  |  |  |  |
| C038 | ...Repeated for Contact Input 8 |  |  |  |  |  |
| C040 | ...Repeated for Contact Input 9 |  |  |  |  |  |
| C048 | ...Repeated for Contact Input 10 |  |  |  |  |  |
| C050 | ...Repeated for Contact Input 11 |  |  |  |  |  |
| C058 | ...Repeated for Contact Input 12 |  |  |  |  |  |
| C060 | ...Repeated for Contact Input 13 |  |  |  |  |  |
| C068 | ...Repeated for Contact Input 14 |  |  |  |  |  |
| C070 | ...Repeated for Contact Input 15 |  |  |  |  |  |
| C078 | ...Repeated for Contact Input 16 |  |  |  |  |  |
| C080 | ...Repeated for Contact Input 17 |  |  |  |  |  |
| C088 | ...Repeated for Contact Input 18 |  |  |  |  |  |
| C090 | ...Repeated for Contact Input 19 |  |  |  |  |  |
| C098 | ...Repeated for Contact Input 20 |  |  |  |  |  |
| C0A0 | ...Repeated for Contact Input 21 |  |  |  |  |  |
| C0A8 | ...Repeated for Contact Input 22 |  |  |  |  |  |
| C0B0 | ...Repeated for Contact Input 23 |  |  |  |  |  |
| C0B8 | ...Repeated for Contact Input 24 |  |  |  |  |  |
| C0C0 | ...Repeated for Contact Input 25 |  |  |  |  |  |
| C0C8 | ...Repeated for Contact Input 26 |  |  |  |  |  |
| C0D0 | ...Repeated for Contact Input 27 |  |  |  |  |  |
| C0D8 | ...Repeated for Contact Input 28 |  |  |  |  |  |
| C0E0 | ...Repeated for Contact Input 29 |  |  |  |  |  |
| C0E8 | ...Repeated for Contact Input 30 |  |  |  |  |  |
| COF0 | ...Repeated for Contact Input 31 |  |  |  |  |  |
| C0F8 | ...Repeated for Contact Input 32 |  |  |  |  |  |
| C100 | ...Repeated for Contact Input 33 |  |  |  |  |  |
| C108 | ...Repeated for Contact Input 34 |  |  |  |  |  |
| C110 | ...Repeated for Contact Input 35 |  |  |  |  |  |
| C118 | ...Repeated for Contact Input 36 |  |  |  |  |  |
| C120 | ...Repeated for Contact Input 37 |  |  |  |  |  |
| C128 | ...Repeated for Contact Input 38 |  |  |  |  |  |
| C130 | ...Repeated for Contact Input 39 |  |  |  |  |  |
| C138 | ...Repeated for Contact Input 40 |  |  |  |  |  |
| C140 | ...Repeated for Contact Input 41 |  |  |  |  |  |
| C148 | ...Repeated for Contact Input 42 |  |  |  |  |  |
| C150 | ...Repeated for Contact Input 43 |  |  |  |  |  |
| C158 | ...Repeated for Contact Input 44 |  |  |  |  |  |
| C160 | ...Repeated for Contact Input 45 |  |  |  |  |  |
| C168 | ...Repeated for Contact Input 46 |  |  |  |  |  |
| C170 | ...Repeated for Contact Input 47 |  |  |  |  |  |
| C178 | ...Repeated for Contact Input 48 |  |  |  |  |  |
| C180 | ...Repeated for Contact Input 49 |  |  |  |  |  |
| C188 | ...Repeated for Contact Input 50 |  |  |  |  |  |
| C190 | ...Repeated for Contact Input 51 |  |  |  |  |  |
| C198 | ...Repeated for Contact Input 52 |  |  |  |  |  |
| C1A0 | ...Repeated for Contact Input 53 |  |  |  |  |  |
| C1A8 | ...Repeated for Contact Input 54 |  |  |  |  |  |
| C1B0 | ...Repeated for Contact Input 55 |  |  |  |  |  |
| C1B8 | ...Repeated for Contact Input 56 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 33 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C1C0 | ...Repeated for Contact Input 57 |  |  |  |  |  |
| C1C8 | ...Repeated for Contact Input 58 |  |  |  |  |  |
| C1D0 | ...Repeated for Contact Input 59 |  |  |  |  |  |
| C1D8 | ...Repeated for Contact Input 60 |  |  |  |  |  |
| C1E0 | ...Repeated for Contact Input 61 |  |  |  |  |  |
| C1E8 | ...Repeated for Contact Input 62 |  |  |  |  |  |
| C1F0 | ...Repeated for Contact Input 63 |  |  |  |  |  |
| C1F8 | ...Repeated for Contact Input 64 |  |  |  |  |  |
| C200 | ...Repeated for Contact Input 65 |  |  |  |  |  |
| C208 | ...Repeated for Contact Input 66 |  |  |  |  |  |
| C210 | ...Repeated for Contact Input 67 |  |  |  |  |  |
| C218 | ...Repeated for Contact Input 68 |  |  |  |  |  |
| C220 | ...Repeated for Contact Input 69 |  |  |  |  |  |
| C228 | ...Repeated for Contact Input 70 |  |  |  |  |  |
| C230 | ...Repeated for Contact Input 71 |  |  |  |  |  |
| C238 | ...Repeated for Contact Input 72 |  |  |  |  |  |
| C240 | ...Repeated for Contact Input 73 |  |  |  |  |  |
| C248 | ...Repeated for Contact Input 74 |  |  |  |  |  |
| C250 | ...Repeated for Contact Input 75 |  |  |  |  |  |
| C258 | ...Repeated for Contact Input 76 |  |  |  |  |  |
| C260 | ...Repeated for Contact Input 77 |  |  |  |  |  |
| C268 | ...Repeated for Contact Input 78 |  |  |  |  |  |
| C270 | ...Repeated for Contact Input 79 |  |  |  |  |  |
| C278 | ...Repeated for Contact Input 80 |  |  |  |  |  |
| C280 | ...Repeated for Contact Input 81 |  |  |  |  |  |
| C288 | ...Repeated for Contact Input 82 |  |  |  |  |  |
| C290 | ...Repeated for Contact Input 83 |  |  |  |  |  |
| C298 | ...Repeated for Contact Input 84 |  |  |  |  |  |
| C2A0 | ...Repeated for Contact Input 85 |  |  |  |  |  |
| C2A8 | ...Repeated for Contact Input 86 |  |  |  |  |  |
| C2B0 | ...Repeated for Contact Input 87 |  |  |  |  |  |
| C2B8 | ...Repeated for Contact Input 88 |  |  |  |  |  |
| C2C0 | ...Repeated for Contact Input 89 |  |  |  |  |  |
| C2C8 | ...Repeated for Contact Input 90 |  |  |  |  |  |
| C2D0 | ...Repeated for Contact Input 91 |  |  |  |  |  |
| C2D8 | ...Repeated for Contact Input 92 |  |  |  |  |  |
| C2E0 | ...Repeated for Contact Input 93 |  |  |  |  |  |
| C2E8 | ...Repeated for Contact Input 94 |  |  |  |  |  |
| C2F0 | ...Repeated for Contact Input 95 |  |  |  |  |  |
| C2F8 | ...Repeated for Contact Input 96 |  |  |  |  |  |
| Contact Input Thresholds (Read/Write Setting) |  |  |  |  |  |  |
| C600 | Contact Input $n$ Threshold, $n=1$ to 24 (24 items) | 0 to 3 | --- | 1 | F128 | 1 (33 Vdc) |
| Virtual Inputs (Read/Write Setting) (64 modules) |  |  |  |  |  |  |
| C690 | Virtual Input 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| C691 | Virtual Input 1 Name | --- | --- | --- | F205 | "Virt Ip 1" |
| C69B | Virtual Input 1 Programmed Type | 0 to 1 | --- | 1 | F127 | 0 (Latched) |
| C69C | Virtual Input 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| C69D | Reserved (3 items) | --- | --- | --- | F001 | 0 |
| C6A0 | ...Repeated for Virtual Input 2 |  |  |  |  |  |
| C6B0 | ...Repeated for Virtual Input 3 |  |  |  |  |  |
| C6C0 | ...Repeated for Virtual Input 4 |  |  |  |  |  |
| C6D0 | ...Repeated for Virtual Input 5 |  |  |  |  |  |
| C6E0 | ...Repeated for Virtual Input 6 |  |  |  |  |  |
| C6F0 | ...Repeated for Virtual Input 7 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 34 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C700 | ...Repeated for Virtual Input 8 |  |  |  |  |  |
| C710 | ...Repeated for Virtual Input 9 |  |  |  |  |  |
| C720 | ...Repeated for Virtual Input 10 |  |  |  |  |  |
| C730 | ...Repeated for Virtual Input 11 |  |  |  |  |  |
| C740 | ...Repeated for Virtual Input 12 |  |  |  |  |  |
| C750 | ...Repeated for Virtual Input 13 |  |  |  |  |  |
| C760 | ...Repeated for Virtual Input 14 |  |  |  |  |  |
| C770 | ...Repeated for Virtual Input 15 |  |  |  |  |  |
| C780 | ...Repeated for Virtual Input 16 |  |  |  |  |  |
| C790 | ...Repeated for Virtual Input 17 |  |  |  |  |  |
| C7A0 | ...Repeated for Virtual Input 18 |  |  |  |  |  |
| C7B0 | ...Repeated for Virtual Input 19 |  |  |  |  |  |
| C7C0 | ...Repeated for Virtual Input 20 |  |  |  |  |  |
| C7D0 | ...Repeated for Virtual Input 21 |  |  |  |  |  |
| C7E0 | ...Repeated for Virtual Input 22 |  |  |  |  |  |
| C7F0 | ...Repeated for Virtual Input 23 |  |  |  |  |  |
| C800 | ...Repeated for Virtual Input 24 |  |  |  |  |  |
| C810 | ...Repeated for Virtual Input 25 |  |  |  |  |  |
| C820 | ...Repeated for Virtual Input 26 |  |  |  |  |  |
| C830 | ...Repeated for Virtual Input 27 |  |  |  |  |  |
| C840 | ...Repeated for Virtual Input 28 |  |  |  |  |  |
| C850 | ...Repeated for Virtual Input 29 |  |  |  |  |  |
| C860 | ...Repeated for Virtual Input 30 |  |  |  |  |  |
| C870 | ...Repeated for Virtual Input 31 |  |  |  |  |  |
| C880 | ...Repeated for Virtual Input 32 |  |  |  |  |  |
| C890 | ...Repeated for Virtual Input 33 |  |  |  |  |  |
| C8A0 | ...Repeated for Virtual Input 34 |  |  |  |  |  |
| C8B0 | ...Repeated for Virtual Input 35 |  |  |  |  |  |
| C8C0 | ...Repeated for Virtual Input 36 |  |  |  |  |  |
| C8D0 | ...Repeated for Virtual Input 37 |  |  |  |  |  |
| C8E0 | ...Repeated for Virtual Input 38 |  |  |  |  |  |
| C8F0 | ...Repeated for Virtual Input 39 |  |  |  |  |  |
| C900 | ...Repeated for Virtual Input 40 |  |  |  |  |  |
| C910 | ...Repeated for Virtual Input 41 |  |  |  |  |  |
| C920 | ...Repeated for Virtual Input 42 |  |  |  |  |  |
| C930 | ...Repeated for Virtual Input 43 |  |  |  |  |  |
| C940 | ...Repeated for Virtual Input 44 |  |  |  |  |  |
| C950 | ...Repeated for Virtual Input 45 |  |  |  |  |  |
| C960 | ...Repeated for Virtual Input 46 |  |  |  |  |  |
| C970 | ...Repeated for Virtual Input 47 |  |  |  |  |  |
| C980 | ...Repeated for Virtual Input 48 |  |  |  |  |  |
| C990 | ...Repeated for Virtual Input 49 |  |  |  |  |  |
| C9A0 | ...Repeated for Virtual Input 50 |  |  |  |  |  |
| C9B0 | ...Repeated for Virtual Input 51 |  |  |  |  |  |
| C9C0 | ...Repeated for Virtual Input 52 |  |  |  |  |  |
| C9D0 | ...Repeated for Virtual Input 53 |  |  |  |  |  |
| C9E0 | ...Repeated for Virtual Input 54 |  |  |  |  |  |
| C9F0 | ...Repeated for Virtual Input 55 |  |  |  |  |  |
| CA00 | ...Repeated for Virtual Input 56 |  |  |  |  |  |
| CA10 | ...Repeated for Virtual Input 57 |  |  |  |  |  |
| CA20 | ...Repeated for Virtual Input 58 |  |  |  |  |  |
| CA30 | ...Repeated for Virtual Input 59 |  |  |  |  |  |
| CA40 | ...Repeated for Virtual Input 60 |  |  |  |  |  |
| CA50 | ...Repeated for Virtual Input 61 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 35 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CA60 | ...Repeated for Virtual Input 62 |  |  |  |  |  |
| CA70 | ...Repeated for Virtual Input 63 |  |  |  |  |  |
| CA80 | ...Repeated for Virtual Input 64 |  |  |  |  |  |
| Virtual Outputs (Read/Write Setting) (96 modules) |  |  |  |  |  |  |
| CC90 | Virtual Output 1 Name | --- | --- | --- | F205 | "Virt Op 1 " |
| CC9A | Virtual Output 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| CC9B | Reserved | --- | --- | --- | F001 | 0 |
| CC9C | ...Repeated for Virtual Output 2 |  |  |  |  |  |
| CCA8 | ...Repeated for Virtual Output 3 |  |  |  |  |  |
| CCB4 | ...Repeated for Virtual Output 4 |  |  |  |  |  |
| CCC0 | ...Repeated for Virtual Output 5 |  |  |  |  |  |
| CCCC | ...Repeated for Virtual Output 6 |  |  |  |  |  |
| CCD8 | ...Repeated for Virtual Output 7 |  |  |  |  |  |
| CCE4 | ...Repeated for Virtual Output 8 |  |  |  |  |  |
| CCFO | ...Repeated for Virtual Output 9 |  |  |  |  |  |
| CCFC | ...Repeated for Virtual Output 10 |  |  |  |  |  |
| CD08 | ...Repeated for Virtual Output 11 |  |  |  |  |  |
| CD14 | ...Repeated for Virtual Output 12 |  |  |  |  |  |
| CD20 | ...Repeated for Virtual Output 13 |  |  |  |  |  |
| CD2C | ...Repeated for Virtual Output 14 |  |  |  |  |  |
| CD38 | ...Repeated for Virtual Output 15 |  |  |  |  |  |
| CD44 | ...Repeated for Virtual Output 16 |  |  |  |  |  |
| CD50 | ...Repeated for Virtual Output 17 |  |  |  |  |  |
| CD5C | ...Repeated for Virtual Output 18 |  |  |  |  |  |
| CD68 | ...Repeated for Virtual Output 19 |  |  |  |  |  |
| CD74 | ...Repeated for Virtual Output 20 |  |  |  |  |  |
| CD80 | ...Repeated for Virtual Output 21 |  |  |  |  |  |
| CD8C | ...Repeated for Virtual Output 22 |  |  |  |  |  |
| CD98 | ...Repeated for Virtual Output 23 |  |  |  |  |  |
| CDA4 | ...Repeated for Virtual Output 24 |  |  |  |  |  |
| CDB0 | ...Repeated for Virtual Output 25 |  |  |  |  |  |
| CDBC | ...Repeated for Virtual Output 26 |  |  |  |  |  |
| CDC8 | ...Repeated for Virtual Output 27 |  |  |  |  |  |
| CDD4 | ...Repeated for Virtual Output 28 |  |  |  |  |  |
| CDE0 | ...Repeated for Virtual Output 29 |  |  |  |  |  |
| CDEC | ...Repeated for Virtual Output 30 |  |  |  |  |  |
| CDF8 | ...Repeated for Virtual Output 31 |  |  |  |  |  |
| CE04 | ...Repeated for Virtual Output 32 |  |  |  |  |  |
| CE10 | ...Repeated for Virtual Output 33 |  |  |  |  |  |
| CE1C | ...Repeated for Virtual Output 34 |  |  |  |  |  |
| CE28 | ...Repeated for Virtual Output 35 |  |  |  |  |  |
| CE34 | ...Repeated for Virtual Output 36 |  |  |  |  |  |
| CE40 | ...Repeated for Virtual Output 37 |  |  |  |  |  |
| CE4C | ...Repeated for Virtual Output 38 |  |  |  |  |  |
| CE58 | ...Repeated for Virtual Output 39 |  |  |  |  |  |
| CE64 | ...Repeated for Virtual Output 40 |  |  |  |  |  |
| CE70 | ...Repeated for Virtual Output 41 |  |  |  |  |  |
| CE7C | ...Repeated for Virtual Output 42 |  |  |  |  |  |
| CE88 | ...Repeated for Virtual Output 43 |  |  |  |  |  |
| CE94 | ...Repeated for Virtual Output 44 |  |  |  |  |  |
| CEAO | ...Repeated for Virtual Output 45 |  |  |  |  |  |
| CEAC | ...Repeated for Virtual Output 46 |  |  |  |  |  |
| CEB8 | ...Repeated for Virtual Output 47 |  |  |  |  |  |
| CEC4 | ...Repeated for Virtual Output 48 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 36 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CED0 | ...Repeated for Virtual Output 49 |  |  |  |  |  |
| CEDC | ...Repeated for Virtual Output 50 |  |  |  |  |  |
| CEE8 | ...Repeated for Virtual Output 51 |  |  |  |  |  |
| CEF4 | ...Repeated for Virtual Output 52 |  |  |  |  |  |
| CFOO | ...Repeated for Virtual Output 53 |  |  |  |  |  |
| CFOC | ...Repeated for Virtual Output 54 |  |  |  |  |  |
| CF18 | ...Repeated for Virtual Output 55 |  |  |  |  |  |
| CF24 | ...Repeated for Virtual Output 56 |  |  |  |  |  |
| CF30 | ...Repeated for Virtual Output 57 |  |  |  |  |  |
| CF3C | ...Repeated for Virtual Output 58 |  |  |  |  |  |
| CF48 | ...Repeated for Virtual Output 59 |  |  |  |  |  |
| CF54 | ...Repeated for Virtual Output 60 |  |  |  |  |  |
| CF60 | ...Repeated for Virtual Output 61 |  |  |  |  |  |
| CF6C | ...Repeated for Virtual Output 62 |  |  |  |  |  |
| CF78 | ...Repeated for Virtual Output 63 |  |  |  |  |  |
| CF84 | ...Repeated for Virtual Output 64 |  |  |  |  |  |
| CF90 | ...Repeated for Virtual Output 65 |  |  |  |  |  |
| CF9C | ...Repeated for Virtual Output 66 |  |  |  |  |  |
| CFA8 | ...Repeated for Virtual Output 67 |  |  |  |  |  |
| CFB4 | ...Repeated for Virtual Output 68 |  |  |  |  |  |
| CFC0 | ...Repeated for Virtual Output 69 |  |  |  |  |  |
| CFCC | ...Repeated for Virtual Output 70 |  |  |  |  |  |
| CFD8 | ...Repeated for Virtual Output 71 |  |  |  |  |  |
| CFE4 | ...Repeated for Virtual Output 72 |  |  |  |  |  |
| CFFO | ...Repeated for Virtual Output 73 |  |  |  |  |  |
| CFFC | ...Repeated for Virtual Output 74 |  |  |  |  |  |
| D008 | ...Repeated for Virtual Output 75 |  |  |  |  |  |
| D014 | ...Repeated for Virtual Output 76 |  |  |  |  |  |
| D020 | ...Repeated for Virtual Output 77 |  |  |  |  |  |
| D02C | ...Repeated for Virtual Output 78 |  |  |  |  |  |
| D038 | ...Repeated for Virtual Output 79 |  |  |  |  |  |
| D044 | ...Repeated for Virtual Output 80 |  |  |  |  |  |
| D050 | ...Repeated for Virtual Output 81 |  |  |  |  |  |
| D05C | ...Repeated for Virtual Output 82 |  |  |  |  |  |
| D068 | ...Repeated for Virtual Output 83 |  |  |  |  |  |
| D074 | ...Repeated for Virtual Output 84 |  |  |  |  |  |
| D080 | ...Repeated for Virtual Output 85 |  |  |  |  |  |
| D08C | ...Repeated for Virtual Output 86 |  |  |  |  |  |
| D098 | ...Repeated for Virtual Output 87 |  |  |  |  |  |
| D0A4 | ...Repeated for Virtual Output 88 |  |  |  |  |  |
| DOB0 | ...Repeated for Virtual Output 89 |  |  |  |  |  |
| DOBC | ...Repeated for Virtual Output 90 |  |  |  |  |  |
| D0C8 | ...Repeated for Virtual Output 91 |  |  |  |  |  |
| D0D4 | ...Repeated for Virtual Output 92 |  |  |  |  |  |
| D0E0 | ...Repeated for Virtual Output 93 |  |  |  |  |  |
| DOEC | ...Repeated for Virtual Output 94 |  |  |  |  |  |
| D0F8 | ...Repeated for Virtual Output 95 |  |  |  |  |  |
| D104 | ...Repeated for Virtual Output 96 |  |  |  |  |  |
| Mandatory (Read/Write Setting) |  |  |  |  |  |  |
| D280 | Test Mode Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| Mandatory (Read/Write) |  |  |  |  |  |  |
| D281 | Force VFD and LED | 0 to 1 | --- | 1 | F126 | 0 (No) |
| Mandatory (Read/Write Setting) |  |  |  |  |  |  |
| D282 | Test Mode Initiate | 0 to 65535 | --- | 1 | F300 | 1 |

Table B-9: MODBUS MEMORY MAP (Sheet 37 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mandatory (Read/Write Command) |  |  |  |  |  |  |
| D283 | Clear All Relay Records Command | 0 to 1 | --- | 1 | F126 | 0 (No) |
| Contact Outputs (Read/Write Setting) (64 modules) |  |  |  |  |  |  |
| D290 | Contact Output 1 Name | --- | --- | --- | F205 | "Cont Op 1" |
| D29A | Contact Output 1 Operation | 0 to 65535 | --- | 1 | F300 | 0 |
| D29B | Contact Output 1 Seal In | 0 to 65535 | --- | 1 | F300 | 0 |
| D29C | Latching Output 1 Reset | 0 to 65535 | --- | 1 | F300 | 0 |
| D29D | Contact Output 1 Events | 0 to 1 | --- | 1 | F102 | 1 (Enabled) |
| D29E | Latching Output 1 Type | 0 to 1 | --- | 1 | F090 | 0 (Operate-dominant) |
| D29F | Reserved | --- | --- | --- | F001 | 0 |
| D2A0 | ...Repeated for Contact Output 2 |  |  |  |  |  |
| D2B0 | ...Repeated for Contact Output 3 |  |  |  |  |  |
| D2C0 | ...Repeated for Contact Output 4 |  |  |  |  |  |
| D2D0 | ...Repeated for Contact Output 5 |  |  |  |  |  |
| D2E0 | ...Repeated for Contact Output 6 |  |  |  |  |  |
| D2F0 | ...Repeated for Contact Output 7 |  |  |  |  |  |
| D300 | ...Repeated for Contact Output 8 |  |  |  |  |  |
| D310 | ...Repeated for Contact Output 9 |  |  |  |  |  |
| D320 | ...Repeated for Contact Output 10 |  |  |  |  |  |
| D330 | ...Repeated for Contact Output 11 |  |  |  |  |  |
| D340 | ...Repeated for Contact Output 12 |  |  |  |  |  |
| D350 | ...Repeated for Contact Output 13 |  |  |  |  |  |
| D360 | ...Repeated for Contact Output 14 |  |  |  |  |  |
| D370 | ...Repeated for Contact Output 15 |  |  |  |  |  |
| D380 | ...Repeated for Contact Output 16 |  |  |  |  |  |
| D390 | ...Repeated for Contact Output 17 |  |  |  |  |  |
| D3A0 | ...Repeated for Contact Output 18 |  |  |  |  |  |
| D3B0 | ...Repeated for Contact Output 19 |  |  |  |  |  |
| D3C0 | ...Repeated for Contact Output 20 |  |  |  |  |  |
| D3D0 | ...Repeated for Contact Output 21 |  |  |  |  |  |
| D3E0 | ...Repeated for Contact Output 22 |  |  |  |  |  |
| D3F0 | ...Repeated for Contact Output 23 |  |  |  |  |  |
| D400 | ...Repeated for Contact Output 24 |  |  |  |  |  |
| D410 | ...Repeated for Contact Output 25 |  |  |  |  |  |
| D420 | ...Repeated for Contact Output 26 |  |  |  |  |  |
| D430 | ...Repeated for Contact Output 27 |  |  |  |  |  |
| D440 | ...Repeated for Contact Output 28 |  |  |  |  |  |
| D450 | ...Repeated for Contact Output 29 |  |  |  |  |  |
| D460 | ...Repeated for Contact Output 30 |  |  |  |  |  |
| D470 | ...Repeated for Contact Output 31 |  |  |  |  |  |
| D480 | ...Repeated for Contact Output 32 |  |  |  |  |  |
| D490 | ...Repeated for Contact Output 33 |  |  |  |  |  |
| D4A0 | ...Repeated for Contact Output 34 |  |  |  |  |  |
| D4B0 | ...Repeated for Contact Output 35 |  |  |  |  |  |
| D4C0 | ...Repeated for Contact Output 36 |  |  |  |  |  |
| D4D0 | ...Repeated for Contact Output 37 |  |  |  |  |  |
| D4E0 | ...Repeated for Contact Output 38 |  |  |  |  |  |
| D4F0 | ...Repeated for Contact Output 39 |  |  |  |  |  |
| D500 | ...Repeated for Contact Output 40 |  |  |  |  |  |
| D510 | ...Repeated for Contact Output 41 |  |  |  |  |  |
| D520 | ...Repeated for Contact Output 42 |  |  |  |  |  |
| D530 | ...Repeated for Contact Output 43 |  |  |  |  |  |
| D540 | ...Repeated for Contact Output 44 |  |  |  |  |  |
| D550 | ...Repeated for Contact Output 45 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 38 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D560 | ...Repeated for Contact Output 46 |  |  |  |  |  |
| D570 | ...Repeated for Contact Output 47 |  |  |  |  |  |
| D580 | ...Repeated for Contact Output 48 |  |  |  |  |  |
| D590 | ...Repeated for Contact Output 49 |  |  |  |  |  |
| D5A0 | ...Repeated for Contact Output 50 |  |  |  |  |  |
| D5B0 | ...Repeated for Contact Output 51 |  |  |  |  |  |
| D5C0 | ...Repeated for Contact Output 52 |  |  |  |  |  |
| D5D0 | ...Repeated for Contact Output 53 |  |  |  |  |  |
| D5E0 | ...Repeated for Contact Output 54 |  |  |  |  |  |
| D5F0 | ...Repeated for Contact Output 55 |  |  |  |  |  |
| D600 | ...Repeated for Contact Output 56 |  |  |  |  |  |
| D610 | ...Repeated for Contact Output 57 |  |  |  |  |  |
| D620 | ...Repeated for Contact Output 58 |  |  |  |  |  |
| D630 | ...Repeated for Contact Output 59 |  |  |  |  |  |
| D640 | ...Repeated for Contact Output 60 |  |  |  |  |  |
| D650 | ...Repeated for Contact Output 61 |  |  |  |  |  |
| D660 | ...Repeated for Contact Output 62 |  |  |  |  |  |
| D670 | ...Repeated for Contact Output 63 |  |  |  |  |  |
| D680 | ...Repeated for Contact Output 64 |  |  |  |  |  |
| Reset (Read/Write Setting) |  |  |  |  |  |  |
| D800 | FlexLogic ${ }^{\text {TM }}$ operand which initiates a reset | 0 to 65535 | --- | 1 | F300 | 0 |
| Control Pushbuttons (Read/Write Setting) (7 modules) |  |  |  |  |  |  |
| D810 | Control Pushbutton 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| D811 | Control Pushbutton 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| D812 | ...Repeated for Control Pushbutton 2 |  |  |  |  |  |
| D814 | ...Repeated for Control Pushbutton 3 |  |  |  |  |  |
| D816 | ...Repeated for Control Pushbutton 4 |  |  |  |  |  |
| D818 | ...Repeated for Control Pushbutton 5 |  |  |  |  |  |
| D81A | ...Repeated for Control Pushbutton 6 |  |  |  |  |  |
| D81C | ...Repeated for Control Pushbutton 7 |  |  |  |  |  |
| Clear Records (Read/Write Setting) |  |  |  |  |  |  |
| D821 | Clear User Fault Reports operand | 0 to 65535 | --- | 1 | F300 | 0 |
| D822 | Clear Event Records operand | 0 to 65535 | --- | 1 | F300 | 0 |
| D823 | Clear Oscillography operand | 0 to 65535 | --- | 1 | F300 | 0 |
| D824 | Clear Data Logger operand | 0 to 65535 | --- | 1 | F300 | 0 |
| D825 | Clear Breaker 1 Arcing Current operand | 0 to 65535 | --- | 1 | F300 | 0 |
| D826 | Clear Breaker 2 Arcing Current operand | 0 to 65535 | --- | 1 | F300 | 0 |
| D827 | Clear Breaker 3 Arcing Current operand | 0 to 65535 | --- | 1 | F300 | 0 |
| D828 | Clear Breaker 4 Arcing Current operand | 0 to 65535 | --- | 1 | F300 | 0 |
| D82B | Clear Demand operand | 0 to 65535 | --- | 1 | F300 | 0 |
| D82D | Clear Energy operand | 0 to 65535 | --- | 1 | F300 | 0 |
| D82F | Clear Unauthorized Access operand | 0 to 65535 | --- | 1 | F300 | 0 |
| D831 | Clear Platform Direct Input/Output Statistics operand | 0 to 65535 | --- | 1 | F300 | 0 |
| D833 | Reserved (13 items) | --- | --- | --- | F001 | 0 |
| Force Contact Inputs (Read/Write Setting) |  |  |  |  |  |  |
| D8B0 | Force Contact Input $x$ State (96 items) | 0 to 2 | --- | 1 | F144 | 0 (Disabled) |
| Force Contact Outputs (Read/Write Setting) |  |  |  |  |  |  |
| D910 | Force Contact Output $x$ State (64 items) | 0 to 3 | --- | 1 | F131 | 0 (Disabled) |
| Direct Inputs/Outputs (Read/Write Setting) |  |  |  |  |  |  |
| DB40 | Direct Device ID | 1 to 16 | --- | 1 | F001 | 1 |
| DB41 | Direct I/O Channel 1 Ring Configuration Function | 0 to 1 | --- | 1 | F126 | 0 (No) |
| DB42 | Platform Direct I/O Data Rate | 64 to 128 | kbps | 64 | F001 | 64 |
| DB43 | Direct I/O Channel 2 Ring Configuration Function | 0 to 1 | --- | 1 | F126 | 0 (No) |
| DB44 | Platform Direct I/O Crossover Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |

Table B-9: MODBUS MEMORY MAP (Sheet 39 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Direct input/output commands (Read/Write Command) |  |  |  |  |  |  |
| DB48 | Direct input/output clear counters command | 0 to 1 | --- | 1 | F126 | 0 (No) |
| Direct inputs (Read/Write Setting) (96 modules) |  |  |  |  |  |  |
| DB50 | Direct Input 1 Device Number | 0 to 16 | --- | 1 | F001 | 0 |
| DB51 | Direct Input 1 Number | 0 to 96 | --- | 1 | F001 | 0 |
| DB52 | Direct Input 1 Default State | 0 to 3 | --- | 1 | F086 | 0 (Off) |
| DB53 | Direct Input 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| DB54 | ...Repeated for Direct Input 2 |  |  |  |  |  |
| DB58 | ...Repeated for Direct Input 3 |  |  |  |  |  |
| DB5C | ...Repeated for Direct Input 4 |  |  |  |  |  |
| DB60 | ...Repeated for Direct Input 5 |  |  |  |  |  |
| DB64 | ...Repeated for Direct Input 6 |  |  |  |  |  |
| DB68 | ...Repeated for Direct Input 7 |  |  |  |  |  |
| DB6C | ...Repeated for Direct Input 8 |  |  |  |  |  |
| DB70 | ...Repeated for Direct Input 9 |  |  |  |  |  |
| DB74 | ...Repeated for Direct Input 10 |  |  |  |  |  |
| DB78 | ...Repeated for Direct Input 11 |  |  |  |  |  |
| DB7C | ...Repeated for Direct Input 12 |  |  |  |  |  |
| DB80 | ...Repeated for Direct Input 13 |  |  |  |  |  |
| DB84 | ...Repeated for Direct Input 14 |  |  |  |  |  |
| DB88 | ...Repeated for Direct Input 15 |  |  |  |  |  |
| DB8C | ...Repeated for Direct Input 16 |  |  |  |  |  |
| DB90 | ...Repeated for Direct Input 17 |  |  |  |  |  |
| DB94 | ...Repeated for Direct Input 18 |  |  |  |  |  |
| DB98 | ...Repeated for Direct Input 19 |  |  |  |  |  |
| DB9C | ...Repeated for Direct Input 20 |  |  |  |  |  |
| DBA0 | ...Repeated for Direct Input 21 |  |  |  |  |  |
| DBA4 | ...Repeated for Direct Input 22 |  |  |  |  |  |
| DBA8 | ...Repeated for Direct Input 23 |  |  |  |  |  |
| DBAC | ...Repeated for Direct Input 24 |  |  |  |  |  |
| DBB0 | ...Repeated for Direct Input 25 |  |  |  |  |  |
| DBB4 | ...Repeated for Direct Input 26 |  |  |  |  |  |
| DBB8 | ...Repeated for Direct Input 27 |  |  |  |  |  |
| DBBC | ...Repeated for Direct Input 28 |  |  |  |  |  |
| DBC0 | ...Repeated for Direct Input 29 |  |  |  |  |  |
| DBC4 | ...Repeated for Direct Input 30 |  |  |  |  |  |
| DBC8 | ...Repeated for Direct Input 31 |  |  |  |  |  |
| DBCC | ...Repeated for Direct Input 32 |  |  |  |  |  |
| Platform Direct Outputs (Read/Write Setting) (96 modules) |  |  |  |  |  |  |
| DD00 | Direct Output 1 Operand | 0 to 65535 | --- | 1 | F300 | 0 |
| DD01 | Direct Output 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| DD02 | ...Repeated for Direct Output 2 |  |  |  |  |  |
| DD04 | ...Repeated for Direct Output 3 |  |  |  |  |  |
| DD06 | ...Repeated for Direct Output 4 |  |  |  |  |  |
| DD08 | ...Repeated for Direct Output 5 |  |  |  |  |  |
| DD0A | ...Repeated for Direct Output 6 |  |  |  |  |  |
| DD0C | ...Repeated for Direct Output 7 |  |  |  |  |  |
| DD0E | ...Repeated for Direct Output 8 |  |  |  |  |  |
| DD10 | ...Repeated for Direct Output 9 |  |  |  |  |  |
| DD12 | ...Repeated for Direct Output 10 |  |  |  |  |  |
| DD14 | ...Repeated for Direct Output 11 |  |  |  |  |  |
| DD16 | ...Repeated for Direct Output 12 |  |  |  |  |  |
| DD18 | ...Repeated for Direct Output 13 |  |  |  |  |  |
| DD1A | ...Repeated for Direct Output 14 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 40 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DD1C | ...Repeated for Direct Output 15 |  |  |  |  |  |
| DD1E | ...Repeated for Direct Output 16 |  |  |  |  |  |
| DD20 | ...Repeated for Direct Output 17 |  |  |  |  |  |
| DD22 | ...Repeated for Direct Output 18 |  |  |  |  |  |
| DD24 | ...Repeated for Direct Output 19 |  |  |  |  |  |
| DD26 | ...Repeated for Direct Output 20 |  |  |  |  |  |
| DD28 | ...Repeated for Direct Output 21 |  |  |  |  |  |
| DD2A | ...Repeated for Direct Output 22 |  |  |  |  |  |
| DD2C | ...Repeated for Direct Output 23 |  |  |  |  |  |
| DD2E | ...Repeated for Direct Output 24 |  |  |  |  |  |
| DD30 | ...Repeated for Direct Output 25 |  |  |  |  |  |
| DD32 | ...Repeated for Direct Output 26 |  |  |  |  |  |
| DD34 | ...Repeated for Direct Output 27 |  |  |  |  |  |
| DD36 | ...Repeated for Direct Output 28 |  |  |  |  |  |
| DD38 | ...Repeated for Direct Output 29 |  |  |  |  |  |
| DD3A | ...Repeated for Direct Output 30 |  |  |  |  |  |
| DD3C | ...Repeated for Direct Output 31 |  |  |  |  |  |
| DD3E | ...Repeated for Direct Output 32 |  |  |  |  |  |
| Direct Input/Output Alarms (Read/Write Setting) |  |  |  |  |  |  |
| DE00 | Direct Input/Output Channel 1 CRC Alarm Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| DE01 | Direct I/O Channel 1 CRC Alarm Message Count | 100 to 10000 | --- | 1 | F001 | 600 |
| DE02 | Direct Input/Output Channel 1 CRC Alarm Threshold | 1 to 1000 | --- | 1 | F001 | 10 |
| DE03 | Direct Input/Output Channel 1 CRC Alarm Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| DE04 | Reserved (4 items) | 1 to 1000 | --- | 1 | F001 | 10 |
| DE08 | Direct Input/Output Channel 2 CRC Alarm Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| DE09 | Direct I/O Channel 2 CRC Alarm Message Count | 100 to 10000 | --- | 1 | F001 | 600 |
| DE0A | Direct Input/Output Channel 2 CRC Alarm Threshold | 1 to 1000 | --- | 1 | F001 | 10 |
| DEOB | Direct Input/Output Channel 2 CRC Alarm Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| DEOC | Reserved (4 items) | 1 to 1000 | --- | 1 | F001 | 10 |
| DE10 | Direct I/O Ch 1 Unreturned Messages Alarm Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| DE11 | Direct I/O Ch 1 Unreturned Messages Alarm Msg Count | 100 to 10000 | --- | 1 | F001 | 600 |
| DE12 | Direct I/O Ch 1 Unreturned Messages Alarm Threshold | 1 to 1000 | --- | 1 | F001 | 10 |
| DE13 | Direct I/O Ch 1 Unreturned Messages Alarm Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| DE14 | Reserved (4 items) | 1 to 1000 | --- | 1 | F001 | 10 |
| DE18 | Direct IO Ch 2 Unreturned Messages Alarm Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| DE19 | Direct I/O Ch 2 Unreturned Messages Alarm Msg Count | 100 to 10000 | --- | 1 | F001 | 600 |
| DE1A | Direct I/O Ch 2 Unreturned Messages Alarm Threshold | 1 to 1000 | --- | 1 | F001 | 10 |
| DE1B | Direct I/O Channel 2 Unreturned Messages Alarm Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| DE1C | Reserved (4 items) | 1 to 1000 | --- | 1 | F001 | 10 |
| Remote Devices (Read/Write Setting) (16 modules) |  |  |  |  |  |  |
| E000 | Remote Device 1 ID | --- | --- | --- | F202 | "Remote Device 1" |
| E00A | Remote Device 1 Virtual LAN Identifier | 0 to 4095 | --- | 1 | F001 | 0 |
| E00B | Remote Device 1 Ethernet APPID | 0 to 16383 | --- | 1 | F001 | 0 |
| E00C | ...Repeated for Device 2 |  |  |  |  |  |
| E018 | ...Repeated for Device 3 |  |  |  |  |  |
| E024 | ...Repeated for Device 4 |  |  |  |  |  |
| E030 | ...Repeated for Device 5 |  |  |  |  |  |
| E03C | ...Repeated for Device 6 |  |  |  |  |  |
| E048 | ...Repeated for Device 7 |  |  |  |  |  |
| E054 | ...Repeated for Device 8 |  |  |  |  |  |
| E060 | ...Repeated for Device 9 |  |  |  |  |  |
| E06C | ...Repeated for Device 10 |  |  |  |  |  |
| E078 | ...Repeated for Device 11 |  |  |  |  |  |
| E084 | ...Repeated for Device 12 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 41 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E090 | ...Repeated for Device 13 |  |  |  |  |  |
| E09C | ...Repeated for Device 14 |  |  |  |  |  |
| E0A8 | ...Repeated for Device 15 |  |  |  |  |  |
| E0B4 | ...Repeated for Device 16 |  |  |  |  |  |
| Remote Inputs (Read/Write Setting) (64 modules) |  |  |  |  |  |  |
| E100 | Remote Input 1 Device | 1 to 16 | --- | 1 | F001 | 1 |
| E101 | Remote Input 1 Bit Pair | 0 to 64 | --- | 1 | F156 | 0 (None) |
| E102 | Remote Input 1 Default State | 0 to 3 | --- | 1 | F086 | 0 (Off) |
| E103 | Remote Input 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| E104 | Remote Input 1 Name | 1 to 64 | --- | 1 | F205 | "Rem Ip 1" |
| E10A | ...Repeated for Remote Input 2 |  |  |  |  |  |
| E114 | ...Repeated for Remote Input 3 |  |  |  |  |  |
| E11E | ...Repeated for Remote Input 4 |  |  |  |  |  |
| E128 | ...Repeated for Remote Input 5 |  |  |  |  |  |
| E132 | ...Repeated for Remote Input 6 |  |  |  |  |  |
| E13C | ...Repeated for Remote Input 7 |  |  |  |  |  |
| E146 | ...Repeated for Remote Input 8 |  |  |  |  |  |
| E150 | ...Repeated for Remote Input 9 |  |  |  |  |  |
| E15A | ...Repeated for Remote Input 10 |  |  |  |  |  |
| E164 | ...Repeated for Remote Input 11 |  |  |  |  |  |
| E16E | ...Repeated for Remote Input 12 |  |  |  |  |  |
| E178 | ...Repeated for Remote Input 13 |  |  |  |  |  |
| E182 | ...Repeated for Remote Input 14 |  |  |  |  |  |
| E18C | ...Repeated for Remote Input 15 |  |  |  |  |  |
| E196 | ...Repeated for Remote Input 16 |  |  |  |  |  |
| E1A0 | ...Repeated for Remote Input 17 |  |  |  |  |  |
| E1AA | ...Repeated for Remote Input 18 |  |  |  |  |  |
| E1B4 | ...Repeated for Remote Input 19 |  |  |  |  |  |
| E1BE | ...Repeated for Remote Input 20 |  |  |  |  |  |
| E1C8 | ...Repeated for Remote Input 21 |  |  |  |  |  |
| E1D2 | ...Repeated for Remote Input 22 |  |  |  |  |  |
| E1DC | ...Repeated for Remote Input 23 |  |  |  |  |  |
| E1E6 | ...Repeated for Remote Input 24 |  |  |  |  |  |
| E1F0 | ...Repeated for Remote Input 25 |  |  |  |  |  |
| E1FA | ...Repeated for Remote Input 26 |  |  |  |  |  |
| E204 | ...Repeated for Remote Input 27 |  |  |  |  |  |
| E20E | ...Repeated for Remote Input 28 |  |  |  |  |  |
| E218 | ...Repeated for Remote Input 29 |  |  |  |  |  |
| E222 | ...Repeated for Remote Input 30 |  |  |  |  |  |
| E22C | ...Repeated for Remote Input 31 |  |  |  |  |  |
| E236 | ...Repeated for Remote Input 32 |  |  |  |  |  |
| E240 | ...Repeated for Remote Input 33 |  |  |  |  |  |
| E24A | ...Repeated for Remote Input 34 |  |  |  |  |  |
| E254 | ...Repeated for Remote Input 35 |  |  |  |  |  |
| E25E | ...Repeated for Remote Input 36 |  |  |  |  |  |
| E268 | ...Repeated for Remote Input 37 |  |  |  |  |  |
| E272 | ...Repeated for Remote Input 38 |  |  |  |  |  |
| E27C | ...Repeated for Remote Input 39 |  |  |  |  |  |
| E286 | ...Repeated for Remote Input 40 |  |  |  |  |  |
| E290 | ...Repeated for Remote Input 41 |  |  |  |  |  |
| E29A | ...Repeated for Remote Input 42 |  |  |  |  |  |
| E2A4 | ...Repeated for Remote Input 43 |  |  |  |  |  |
| E2AE | ...Repeated for Remote Input 44 |  |  |  |  |  |
| E2B8 | ...Repeated for Remote Input 45 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 42 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E2C2 | ...Repeated for Remote Input 46 |  |  |  |  |  |
| E2CC | ...Repeated for Remote Input 47 |  |  |  |  |  |
| E2D6 | ...Repeated for Remote Input 48 |  |  |  |  |  |
| E2E0 | ...Repeated for Remote Input 49 |  |  |  |  |  |
| E2EA | ...Repeated for Remote Input 50 |  |  |  |  |  |
| E2F4 | ...Repeated for Remote Input 51 |  |  |  |  |  |
| E2FE | ...Repeated for Remote Input 52 |  |  |  |  |  |
| E308 | ...Repeated for Remote Input 53 |  |  |  |  |  |
| E312 | ...Repeated for Remote Input 54 |  |  |  |  |  |
| E31C | ...Repeated for Remote Input 55 |  |  |  |  |  |
| E326 | ...Repeated for Remote Input 56 |  |  |  |  |  |
| E330 | ...Repeated for Remote Input 57 |  |  |  |  |  |
| E33A | ...Repeated for Remote Input 58 |  |  |  |  |  |
| E344 | ...Repeated for Remote Input 59 |  |  |  |  |  |
| E34E | ...Repeated for Remote Input 60 |  |  |  |  |  |
| E358 | ...Repeated for Remote Input 61 |  |  |  |  |  |
| E362 | ...Repeated for Remote Input 62 |  |  |  |  |  |
| E36C | ...Repeated for Remote Input 63 |  |  |  |  |  |
| E376 | ...Repeated for Remote Input 64 |  |  |  |  |  |
| Remote Output DNA Pairs (Read/Write Setting) (32 modules) |  |  |  |  |  |  |
| E600 | Remote Output DNA 1 Operand | 0 to 65535 | --- | 1 | F300 | 0 |
| E601 | Remote Output DNA 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| E602 | Reserved (2 items) | 0 to 1 | --- | 1 | F001 | 0 |
| E604 | ...Repeated for Remote Output 2 |  |  |  |  |  |
| E608 | ...Repeated for Remote Output 3 |  |  |  |  |  |
| E60C | ...Repeated for Remote Output 4 |  |  |  |  |  |
| E610 | ...Repeated for Remote Output 5 |  |  |  |  |  |
| E614 | ...Repeated for Remote Output 6 |  |  |  |  |  |
| E618 | ...Repeated for Remote Output 7 |  |  |  |  |  |
| E61C | ...Repeated for Remote Output 8 |  |  |  |  |  |
| E620 | ...Repeated for Remote Output 9 |  |  |  |  |  |
| E624 | ...Repeated for Remote Output 10 |  |  |  |  |  |
| E628 | ...Repeated for Remote Output 11 |  |  |  |  |  |
| E62C | ...Repeated for Remote Output 12 |  |  |  |  |  |
| E630 | ...Repeated for Remote Output 13 |  |  |  |  |  |
| E634 | ...Repeated for Remote Output 14 |  |  |  |  |  |
| E638 | ...Repeated for Remote Output 15 |  |  |  |  |  |
| E63C | ...Repeated for Remote Output 16 |  |  |  |  |  |
| E640 | ...Repeated for Remote Output 17 |  |  |  |  |  |
| E644 | ...Repeated for Remote Output 18 |  |  |  |  |  |
| E648 | ...Repeated for Remote Output 19 |  |  |  |  |  |
| E64C | ...Repeated for Remote Output 20 |  |  |  |  |  |
| E650 | ...Repeated for Remote Output 21 |  |  |  |  |  |
| E654 | ...Repeated for Remote Output 22 |  |  |  |  |  |
| E658 | ...Repeated for Remote Output 23 |  |  |  |  |  |
| E65C | ...Repeated for Remote Output 24 |  |  |  |  |  |
| E660 | ...Repeated for Remote Output 25 |  |  |  |  |  |
| E664 | ...Repeated for Remote Output 26 |  |  |  |  |  |
| E668 | ...Repeated for Remote Output 27 |  |  |  |  |  |
| E66C | ...Repeated for Remote Output 28 |  |  |  |  |  |
| E670 | ...Repeated for Remote Output 29 |  |  |  |  |  |
| E674 | ...Repeated for Remote Output 30 |  |  |  |  |  |
| E678 | ...Repeated for Remote Output 31 |  |  |  |  |  |
| E67C | ...Repeated for Remote Output 32 |  |  |  |  |  |

Table B-9: MODBUS MEMORY MAP (Sheet 43 of 43)

| ADDR | REGISTER NAME | RANGE | UNITS | STEP | FORMAT | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Remote Output UserSt Pairs (Read/Write Setting) (32 modules) |  |  |  |  |  |  |
| E680 | Remote Output UserSt 1 Operand | 0 to 65535 | --- | 1 | F300 | 0 |
| E681 | Remote Output UserSt 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| E682 | Reserved (2 items) | 0 to 1 | --- | 1 | F001 | 0 |
| E684 | ...Repeated for Remote Output 2 |  |  |  |  |  |
| E688 | ...Repeated for Remote Output 3 |  |  |  |  |  |
| E68C | ...Repeated for Remote Output 4 |  |  |  |  |  |
| E690 | ...Repeated for Remote Output 5 |  |  |  |  |  |
| E694 | ...Repeated for Remote Output 6 |  |  |  |  |  |
| E698 | ...Repeated for Remote Output 7 |  |  |  |  |  |
| E69C | ...Repeated for Remote Output 8 |  |  |  |  |  |
| E6A0 | ...Repeated for Remote Output 9 |  |  |  |  |  |
| E6A4 | ...Repeated for Remote Output 10 |  |  |  |  |  |
| E6A8 | ...Repeated for Remote Output 11 |  |  |  |  |  |
| E6AC | ...Repeated for Remote Output 12 |  |  |  |  |  |
| E6B0 | ...Repeated for Remote Output 13 |  |  |  |  |  |
| E6B4 | ...Repeated for Remote Output 14 |  |  |  |  |  |
| E6B8 | ...Repeated for Remote Output 15 |  |  |  |  |  |
| E6BC | ...Repeated for Remote Output 16 |  |  |  |  |  |
| E6C0 | ...Repeated for Remote Output 17 |  |  |  |  |  |
| E6C4 | ...Repeated for Remote Output 18 |  |  |  |  |  |
| E6C8 | ...Repeated for Remote Output 19 |  |  |  |  |  |
| E6CC | ...Repeated for Remote Output 20 |  |  |  |  |  |
| E6D0 | ...Repeated for Remote Output 21 |  |  |  |  |  |
| E6D4 | ...Repeated for Remote Output 22 |  |  |  |  |  |
| E6D8 | ...Repeated for Remote Output 23 |  |  |  |  |  |
| E6DC | ...Repeated for Remote Output 24 |  |  |  |  |  |
| E6E0 | ...Repeated for Remote Output 25 |  |  |  |  |  |
| E6E4 | ...Repeated for Remote Output 26 |  |  |  |  |  |
| E6E8 | ...Repeated for Remote Output 27 |  |  |  |  |  |
| E6EC | ...Repeated for Remote Output 28 |  |  |  |  |  |
| E6F0 | ...Repeated for Remote Output 29 |  |  |  |  |  |
| E6F4 | ...Repeated for Remote Output 30 |  |  |  |  |  |
| E6F8 | ...Repeated for Remote Output 31 |  |  |  |  |  |
| E6FC | ...Repeated for Remote Output 32 |  |  |  |  |  |
| Restricted Ground Fault (Read/Write Grouped Setting) (6 modules) |  |  |  |  |  |  |
| EF00 | Restricted Ground Fault 1 Function | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| EF01 | Restricted Ground Fault 1 Source | 0 to 5 | --- | 1 | F167 | 0 (SRC 1) |
| EF02 | Restricted Ground Fault 1 Pickup | 0 to 30 | pu | 0.001 | F001 | 80 |
| EF03 | Restricted Ground Fault 1 Slope | 0 to 100 | \% | 1 | F001 | 40 |
| EF04 | Restricted Ground Fault 1 Delay | 0 to 600 | S | 0.01 | F001 | 0 |
| EF05 | Restricted Ground Fault 1 Reset Delay | 0 to 600 | S | 0.01 | F001 | 0 |
| EF06 | Restricted Ground Fault 1 Block | --- | --- | --- | F001 | 0 |
| EF07 | Restricted Ground Fault 1 Target | 0 to 2 | --- | 1 | F109 | 0 (Self-reset) |
| EF08 | Restricted Ground Fault 1 Events | 0 to 1 | --- | 1 | F102 | 0 (Disabled) |
| EF09 | ...Repeated for Restricted Ground Fault 2 |  |  |  |  |  |
| EF12 | ...Repeated for Restricted Ground Fault 3 |  |  |  |  |  |
| EF1B | ...Repeated for Restricted Ground Fault 4 |  |  |  |  |  |
| EF24 | ...Repeated for Restricted Ground Fault 5 |  |  |  |  |  |
| EF2D | ...Repeated for Restricted Ground Fault 6 |  |  |  |  |  |


| F001 |
| :--- |
| UR_UINT16 UNSIGNED 16 BIT INTEGER |
| F002 |
| UR_SINT16 SIGNED 16 BIT INTEGER |
| F003 |
| UR_UINT32 UNSIGNED 32 BIT INTEGER (2 registers) |
| High order word is stored in the first register. |
| Low order word is stored in the second register. |
| F004 |
| UR_SINT32 SIGNED 32 BIT INTEGER (2 registers) |
| High order word is stored in the first register/ |
| Low order word is stored in the second register. |
| F005 |
| UR_UINT8 UNSIGNED 8 BIT INTEGER |
| F006 |
| UR_SINT8 SIGNED 8 BIT INTEGER |
| F011 |
| UR_UINT16 FLEXCURVE DATA (120 points) |
| A FlexCurve is an array of 120 consecutive data points ( $x, y$ y) which |
| are interpolated to generate a smooth curve. The y-axis is the user |
| defined trip or operation time setting; the x-axis is the pickup ratio |
| and is pre-defined. Refer to format F119 for a listing of the pickup |
| ratios; the enumeration value for the pickup ratio indicates the off- |
| set into the FlexCurve base address where the corresponding time |
| value is stored. |

## F012

DISPLAY_SCALE DISPLAY SCALING
(unsigned 16-bit integer)
MSB indicates the SI units as a power of ten. LSB indicates the number of decimal points to display.
Example: Current values are stored as 32 bit numbers with three decimal places and base units in Amps. If the retrieved value is 12345.678 A and the display scale equals $0 \times 0302$ then the displayed value on the unit is 12.35 kA .

## F013 <br> POWER_FACTOR (SIGNED 16 BIT INTEGER)

Positive values indicate lagging power factor; negative values indicate leading.

## F040

UR_UINT48 48-BIT UNSIGNED INTEGER

## F050

UR_UINT32 TIME and DATE (UNSIGNED 32 BIT INTEGER)
Gives the current time in seconds elapsed since 00:00:00 January 1, 1970.

## F051

UR_UINT32 DATE in SR format (alternate format for F050)
First 16 bits are Month/Day (MM/DD/xxxx). Month: 1=January, 2=February,...,12=December; Day: 1 to 31 in steps of 1 Last 16 bits are Year (xx/xx/YYYY): 1970 to 2106 in steps of 1

```
F052
UR_UINT32 TIME in SR format (alternate format for F050)
First 16 bits are Hours/Minutes (HH:MM:xx.xxx).
Hours: 0=12am, 1=1am,..,12=12pm,...23=11pm;
Minutes: 0 to 59 in steps of 1
Last 16 bits are Seconds (xx:xx:.SS.SSS): 0=00.000s,
1=00.001,..,59999=59.999s)
F060
FLOATING_POINT IEEE FLOATING POINT (32 bits)
```


## F070

HEX2 2 BYTES - 4 ASCII DIGITS

## F071

HEX4 4 BYTES - 8 ASCII DIGITS

## F072

HEX6 6 BYTES - 12 ASCII DIGITS

## F073

HEX8 8 BYTES - 16 ASCII DIGITS

F074
HEX20 20 BYTES - 40 ASCII DIGITS

F083
ENUMERATION: SELECTOR MODES
0 = Time-Out, 1 = Acknowledge

## F084

ENUMERATION: SELECTOR POWER UP
$0=$ Restore, 1 = Synchronize, 2 = Sync/Restore

## F086

ENUMERATION: DIGITAL INPUT DEFAULT STATE
0 = Off, 1 = On, 2= Latest/Off, 3 = Latest/On

## F090

ENUMERATION: LATCHING OUTPUT TYPE
0 = Operate-dominant, 1 = Reset-dominant

F100
ENUMERATION: VT CONNECTION TYPE
0 = Wye; 1 = Delta

## F101

ENUMERATION: MESSAGE DISPLAY INTENSITY
$0=25 \%, 1=50 \%, 2=75 \%, 3=100 \%$

## F102

ENUMERATION: DISABLED/ENABLED
0 = Disabled; 1 = Enabled

## F103

ENUMERATION: CURVE SHAPES

| bitmask | curve shape |
| :---: | :--- |
| 0 | IEEE Mod Inv |
| 1 | IEEE Very Inv |
| 2 | IEEE Ext Inv |
| 3 | IEC Curve A |
| 4 | IEC Curve B |
| 5 | IEC Curve C |
| 6 | IEC Short Inv |
| 7 | IAC Ext Inv |
| 8 | IAC Very Inv |


| bitmask | curve shape |
| :---: | :--- |
| 9 | IAC Inverse |
| 10 | IAC Short Inv |
| 11 | I2t |
| 12 | Definite Time |
| 13 | FlexCurve $^{\text {TM }}$ A |
| 14 | FlexCurve $^{\text {TM }}$ B |
| 15 | FlexCurve $^{\text {TM }} \mathrm{C}$ |
| 16 | FlexCurve $^{\text {TM }} \mathrm{D}$ |

## F104

ENUMERATION: RESET TYPE
$0=$ Instantaneous, 1 = Timed, 2 = Linear

## F105

ENUMERATION: LOGIC INPUT
$0=$ Disabled, $1=$ Input $1,2=$ Input 2

F106
ENUMERATION: PHASE ROTATION
$0=\mathrm{ABC}, 1$ = ACB

F108
ENUMERATION: OFF/ON
$0=$ Off, $1=\mathrm{On}$

F109
ENUMERATION: CONTACT OUTPUT OPERATION
0 = Self-reset, 1 = Latched, 2 = Disabled

F110
ENUMERATION: CONTACT OUTPUT LED CONTROL
0 = Trip, 1 = Alarm, 2 = None

F111
ENUMERATION: UNDERVOLTAGE CURVE SHAPES
0 = Definite Time, 1 = Inverse Time

F112
ENUMERATION: RS485 BAUD RATES

| bitmask | value |
| :---: | :--- |
| 0 | 300 |
| 1 | 1200 |
| 2 | 2400 |
| 3 | 4800 |$\quad$| bitmask | value |
| :---: | :--- | :--- | :--- |
| 4 | 9600 |
| 5 | 19200 |
| 6 | 38400 |
| 7 | 57600 |$\quad$| bitmask | value |
| :---: | :---: | :--- |
| 9 | 115200 |
| 9 | 14400 |
| 10 | 28800 |
| 11 | 33600 |

F113
ENUMERATION: PARITY
$0=$ None, $1=$ Odd, $2=$ Even

F114
ENUMERATION: IRIG-B SIGNAL TYPE
0 = None, 1 = DC Shift, 2 = Amplitude Modulated

## F117

ENUMERATION: NUMBER OF OSCILLOGRAPHY RECORDS
$0=1 \times 72$ cycles, $1=3 \times 36$ cycles, $2=7 \times 18$ cycles, $3=15 \times 9$ cycles

F118
ENUMERATION: OSCILLOGRAPHY MODE
0 = Automatic Overwrite, 1 = Protected

F119
ENUMERATION: FLEXCURVETM PICKUP RATIOS

| mask | value | mask | value | mask | value | mask | value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.00 | 30 | 0.88 | 60 | 2.90 | 90 | 5.90 |
| 1 | 0.05 | 31 | 0.90 | 61 | 3.00 | 91 | 6.00 |
| 2 | 0.10 | 32 | 0.91 | 62 | 3.10 | 92 | 6.50 |
| 3 | 0.15 | 33 | 0.92 | 63 | 3.20 | 93 | 7.00 |
| 4 | 0.20 | 34 | 0.93 | 64 | 3.30 | 94 | 7.50 |
| 5 | 0.25 | 35 | 0.94 | 65 | 3.40 | 95 | 8.00 |
| 6 | 0.30 | 36 | 0.95 | 66 | 3.50 | 96 | 8.50 |
| 7 | 0.35 | 37 | 0.96 | 67 | 3.60 | 97 | 9.00 |
| 8 | 0.40 | 38 | 0.97 | 68 | 3.70 | 98 | 9.50 |
| 9 | 0.45 | 39 | 0.98 | 69 | 3.80 | 99 | 10.00 |
| 10 | 0.48 | 40 | 1.03 | 70 | 3.90 | 100 | 10.50 |
| 11 | 0.50 | 41 | 1.05 | 71 | 4.00 | 101 | 11.00 |
| 12 | 0.52 | 42 | 1.10 | 72 | 4.10 | 102 | 11.50 |
| 13 | 0.54 | 43 | 1.20 | 73 | 4.20 | 103 | 12.00 |
| 14 | 0.56 | 44 | 1.30 | 74 | 4.30 | 104 | 12.50 |
| 15 | 0.58 | 45 | 1.40 | 75 | 4.40 | 105 | 13.00 |
| 16 | 0.60 | 46 | 1.50 | 76 | 4.50 | 106 | 13.50 |
| 17 | 0.62 | 47 | 1.60 | 77 | 4.60 | 107 | 14.00 |
| 18 | 0.64 | 48 | 1.70 | 78 | 4.70 | 108 | 14.50 |
| 19 | 0.66 | 49 | 1.80 | 79 | 4.80 | 109 | 15.00 |
| 20 | 0.68 | 50 | 1.90 | 80 | 4.90 | 110 | 15.50 |
| 21 | 0.70 | 51 | 2.00 | 81 | 5.00 | 111 | 16.00 |
| 22 | 0.72 | 52 | 2.10 | 82 | 5.10 | 112 | 16.50 |
| 23 | 0.74 | 53 | 2.20 | 83 | 5.20 | 113 | 17.00 |
| 24 | 0.76 | 54 | 2.30 | 84 | 5.30 | 114 | 17.50 |
| 25 | 0.78 | 55 | 2.40 | 85 | 5.40 | 115 | 18.00 |
| 26 | 0.80 | 56 | 2.50 | 86 | 5.50 | 116 | 18.50 |
| 27 | 0.82 | 57 | 2.60 | 87 | 5.60 | 117 | 19.00 |
| 28 | 0.84 | 58 | 2.70 | 88 | 5.70 | 118 | 19.50 |
| 29 | 0.86 | 59 | 2.80 | 89 | 5.80 | 119 | 20.00 |

F122
ENUMERATION: ELEMENT INPUT SIGNAL TYPE

```
0 = Phasor, 1 = RMS
```


## F123

ENUMERATION: CT SECONDARY
$0=1 \mathrm{~A}, 1=5 \mathrm{~A}$

## F124

ENUMERATION: LIST OF ELEMENTS

| bitmask | element |
| :---: | :--- |
| 0 | Phase Instantaneous Overcurrent 1 |
| 1 | Phase Instantaneous Overcurrent 2 |
| 2 | Phase Instantaneous Overcurrent 3 |
| 3 | Phase Instantaneous Overcurrent 4 |
| 4 | Phase Instantaneous Overcurrent 5 |


| bitmask | element |
| :---: | :---: |
| 5 | Phase Instantaneous Overcurrent 6 |
| 6 | Phase Instantaneous Overcurrent 7 |
| 7 | Phase Instantaneous Overcurrent 8 |
| 8 | Phase Instantaneous Overcurrent 9 |
| 9 | Phase Instantaneous Overcurrent 10 |
| 10 | Phase Instantaneous Overcurrent 11 |
| 11 | Phase Instantaneous Overcurrent 12 |
| 16 | Phase Time Overcurrent 1 |
| 17 | Phase Time Overcurrent 2 |
| 18 | Phase Time Overcurrent 3 |
| 19 | Phase Time Overcurrent 4 |
| 20 | Phase Time Overcurrent 5 |
| 21 | Phase Time Overcurrent 6 |
| 24 | Phase Directional Overcurrent 1 |
| 25 | Phase Directional Overcurrent 2 |
| 32 | Neutral Instantaneous Overcurrent 1 |
| 33 | Neutral Instantaneous Overcurrent 2 |
| 34 | Neutral Instantaneous Overcurrent 3 |
| 35 | Neutral Instantaneous Overcurrent 4 |
| 36 | Neutral Instantaneous Overcurrent 5 |
| 37 | Neutral Instantaneous Overcurrent 6 |
| 38 | Neutral Instantaneous Overcurrent 7 |
| 39 | Neutral Instantaneous Overcurrent 8 |
| 40 | Neutral Instantaneous Overcurrent 9 |
| 41 | Neutral Instantaneous Overcurrent 10 |
| 42 | Neutral Instantaneous Overcurrent 11 |
| 43 | Neutral Instantaneous Overcurrent 12 |
| 48 | Neutral Time Overcurrent 1 |
| 49 | Neutral Time Overcurrent 2 |
| 50 | Neutral Time Overcurrent 3 |
| 51 | Neutral Time Overcurrent 4 |
| 52 | Neutral Time Overcurrent 5 |
| 53 | Neutral Time Overcurrent 6 |
| 56 | Neutral Directional Overcurrent 1 |
| 57 | Neutral Directional Overcurrent 2 |
| 60 | Negative Sequence Directional Overcurrent 1 |
| 61 | Negative Sequence Directional Overcurrent 2 |
| 64 | Ground Instantaneous Overcurrent 1 |
| 65 | Ground Instantaneous Overcurrent 2 |
| 66 | Ground Instantaneous Overcurrent 3 |
| 67 | Ground Instantaneous Overcurrent 4 |
| 68 | Ground Instantaneous Overcurrent 5 |
| 69 | Ground Instantaneous Overcurrent 6 |
| 70 | Ground Instantaneous Overcurrent 7 |
| 71 | Ground Instantaneous Overcurrent 8 |
| 72 | Ground Instantaneous Overcurrent 9 |
| 73 | Ground Instantaneous Overcurrent 10 |
| 74 | Ground Instantaneous Overcurrent 11 |
| 75 | Ground Instantaneous Overcurrent 12 |
| 80 | Ground Time Overcurrent 1 |
| 81 | Ground Time Overcurrent 2 |
| 82 | Ground Time Overcurrent 3 |
| 83 | Ground Time Overcurrent 4 |


| bitmask | element |
| :---: | :---: |
| 84 | Ground Time Overcurrent 5 |
| 85 | Ground Time Overcurrent 6 |
| 86 | Restricted Ground Fault 1 |
| 87 | Restricted Ground Fault 2 |
| 88 | Restricted Ground Fault 3 |
| 89 | Restricted Ground Fault 4 |
| 90 | Restricted Ground Fault 5 |
| 91 | Restricted Ground Fault 6 |
| 96 | Negative Sequence Instantaneous Overcurrent 1 |
| 97 | Negative Sequence Instantaneous Overcurrent 2 |
| 112 | Negative Sequence Time Overcurrent 1 |
| 113 | Negative Sequence Time Overcurrent 2 |
| 120 | Negative Sequence Overvoltage |
| 140 | Auxiliary Undervoltage 1 |
| 144 | Phase Undervoltage 1 |
| 145 | Phase Undervoltage 2 |
| 148 | Auxiliary Overvoltage 1 |
| 152 | Phase Overvoltage 1 |
| 156 | Neutral Overvoltage 1 |
| 180 | Load Enchroachment |
| 190 | Power Swing Detect |
| 202 | Transformer Hottest Spot |
| 203 | Transformer Aging Factor |
| 204 | Transformer Loss of Life |
| 208 | Transformer Instantaneous |
| 209 | Transformer Percent Differential |
| 210 | Volt per Hertz 1 |
| 211 | Volt per Hertz 2 |
| 280 | Breaker Failure 1 |
| 281 | Breaker Failure 2 |
| 280 | Breaker Failure 3 |
| 281 | Breaker Failure 4 |
| 288 | Breaker Arcing Current 1 |
| 289 | Breaker Arcing Current 2 |
| 290 | Breaker Arcing Current 3 |
| 291 | Breaker Arcing Current 4 |
| 292 | Breaker Arcing Current 5 |
| 293 | Breaker Arcing Current 6 |
| 336 | Setting Group |
| 337 | Reset |
| 385 | Selector 1 |
| 386 | Selector 2 |
| 390 | Control Pushbutton 1 |
| 391 | Control Pushbutton 2 |
| 392 | Control Pushbutton 3 |
| 393 | Control Pushbutton 4 |
| 394 | Control Pushbutton 5 |
| 395 | Control Pushbutton 6 |
| 396 | Control Pushbutton 7 |
| 400 | FlexElement ${ }^{\text {TM }} 1$ |
| 401 | FlexElement ${ }^{\text {TM }} 2$ |
| 402 | FlexElement ${ }^{\text {TM }} 3$ |
| 403 | FlexElement ${ }^{\text {TM }} 4$ |


| bitmask | element |
| :---: | :---: |
| 404 | FlexElement ${ }^{\text {TM }} 5$ |
| 405 | FlexElement ${ }^{\text {TM }} 6$ |
| 406 | FlexElement ${ }^{\text {™ }} 7$ |
| 407 | FlexElement ${ }^{\text {™ }} 8$ |
| 408 | FlexElement ${ }^{\text {TM }} 9$ |
| 409 | FlexElement ${ }^{\text {TM }} 10$ |
| 410 | FlexElement ${ }^{\text {TM }} 11$ |
| 411 | FlexElement ${ }^{\text {TM }} 12$ |
| 412 | FlexElement ${ }^{\text {TM }} 13$ |
| 413 | FlexElement ${ }^{\text {TM }} 14$ |
| 414 | FlexElement ${ }^{\text {TM }} 15$ |
| 415 | FlexElement ${ }^{\text {TM }} 16$ |
| 420 | Non-volatile Latch 1 |
| 421 | Non-volatile Latch 2 |
| 422 | Non-volatile Latch 3 |
| 423 | Non-volatile Latch 4 |
| 424 | Non-volatile Latch 5 |
| 425 | Non-volatile Latch 6 |
| 426 | Non-volatile Latch 7 |
| 427 | Non-volatile Latch 8 |
| 428 | Non-volatile Latch 9 |
| 429 | Non-volatile Latch 10 |
| 430 | Non-volatile Latch 11 |
| 431 | Non-volatile Latch 12 |
| 432 | Non-volatile Latch 13 |
| 433 | Non-volatile Latch 14 |
| 434 | Non-volatile Latch 15 |
| 435 | Non-volatile Latch 16 |
| 544 | Digital Counter 1 |
| 545 | Digital Counter 2 |
| 546 | Digital Counter 3 |
| 547 | Digital Counter 4 |
| 548 | Digital Counter 5 |
| 549 | Digital Counter 6 |
| 550 | Digital Counter 7 |
| 551 | Digital Counter 8 |
| 680 | User-Programmable Pushbutton 1 |
| 681 | User-Programmable Pushbutton 2 |
| 682 | User-Programmable Pushbutton 3 |
| 683 | User-Programmable Pushbutton 4 |
| 684 | User-Programmable Pushbutton 5 |
| 685 | User-Programmable Pushbutton 6 |
| 686 | User-Programmable Pushbutton 7 |
| 687 | User-Programmable Pushbutton 8 |
| 688 | User-Programmable Pushbutton 9 |
| 689 | User-Programmable Pushbutton 10 |
| 690 | User-Programmable Pushbutton 11 |
| 691 | User-Programmable Pushbutton 12 |
| 692 | Digital Element 1 |
| 693 | Digital Element 2 |
| 694 | Digital Element 3 |
| 695 | Digital Element 4 |
| 696 | Digital Element 5 |


| bitmask | element |
| :---: | :---: |
| 697 | Digital Element 6 |
| 698 | Digital Element 7 |
| 699 | Digital Element 8 |
| 700 | Digital Element 9 |
| 701 | Digital Element 10 |
| 702 | Digital Element 11 |
| 703 | Digital Element 12 |
| 704 | Digital Element 13 |
| 705 | Digital Element 14 |
| 706 | Digital Element 15 |
| 707 | Digital Element 16 |
| 708 | Digital Element 17 |
| 709 | Digital Element 18 |
| 710 | Digital Element 19 |
| 711 | Digital Element 20 |
| 712 | Digital Element 21 |
| 713 | Digital Element 22 |
| 714 | Digital Element 23 |
| 715 | Digital Element 24 |
| 716 | Digital Element 25 |
| 717 | Digital Element 26 |
| 718 | Digital Element 27 |
| 719 | Digital Element 28 |
| 720 | Digital Element 29 |
| 721 | Digital Element 30 |
| 722 | Digital Element 31 |
| 723 | Digital Element 32 |
| 724 | Digital Element 33 |
| 725 | Digital Element 34 |
| 726 | Digital Element 35 |
| 727 | Digital Element 36 |
| 728 | Digital Element 37 |
| 729 | Digital Element 38 |
| 730 | Digital Element 39 |
| 731 | Digital Element 40 |
| 732 | Digital Element 41 |
| 733 | Digital Element 42 |
| 734 | Digital Element 43 |
| 735 | Digital Element 44 |
| 736 | Digital Element 45 |
| 737 | Digital Element 46 |
| 738 | Digital Element 47 |
| 739 | Digital Element 48 |

## F125

ENUMERATION: ACCESS LEVEL
$0=$ Restricted; 1 = Command, 2 = Setting, 3 = Factory Service

F126
ENUMERATION: NO/YES CHOICE
$0=$ No, $1=$ Yes

## F127

ENUMERATION: LATCHED OR SELF-RESETTING
0 = Latched, 1 = Self-Reset

F128
ENUMERATION: CONTACT INPUT THRESHOLD
$0=17 \vee D C, 1=33 \vee D C, 2=84 \vee D C, 3=166 \vee D C$

F129
ENUMERATION: FLEXLOGIC TIMER TYPE
$0=$ millisecond, $1=$ second, $2=$ minute

## F130

ENUMERATION: SIMULATION MODE
0 = Off. 1 = Pre-Fault, 2 = Fault, 3 = Post-Fault

## F131

ENUMERATION: FORCED CONTACT OUTPUT STATE
$0=$ Disabled, 1 = Energized, $2=$ De-energized, 3 = Freeze

## F132

ENUMERATION: DEMAND INTERVAL
$0=5 \mathrm{~min}, 1=10 \mathrm{~min}, 2=15 \mathrm{~min}, 3=20 \mathrm{~min}, 4=30 \mathrm{~min}$, $5=60 \mathrm{~min}$

## F133

## ENUMERATION: PROGRAM STATE

$0=$ Not Programmed, $1=$ Programmed

## F134

ENUMERATION: PASS/FAIL
$0=$ Fail, $1=\mathrm{OK}, 2=\mathrm{n} / \mathrm{a}$

## F135

ENUMERATION: GAIN CALIBRATION
$0=0 \times 1,1=1 \times 16$

## F136

ENUMERATION: NUMBER OF OSCILLOGRAPHY RECORDS
$0=31 \times 8$ cycles, $1=15 \times 16$ cycles, $2=7 \times 32$ cycles
$3=3 \times 64$ cycles, $4=1 \times 128$ cycles

## F138 <br> ENUMERATION: OSCILLOGRAPHY FILE TYPE <br> $0=$ Data File, $1=$ Configuration File, $2=$ Header File

## F139

ENUMERATION: DEMAND CALCULATIONS
$0=$ Thermal Exponential, 1 = Block Interval, 2 = Rolling Demand

## F140

ENUMERATION: CURRENT, SENS CURRENT, VOLTAGE, DISABLED
$0=$ Disabled, $1=$ Current $46 \mathrm{~A}, 2=$ Voltage 280 V ,
$3=$ Current 4.6 A, $4=$ Current $2 \mathrm{~A}, 5=$ Notched 4.6 A ,
$6=$ Notched 2 A

## F141

ENUMERATION: SELF TEST ERROR

| bitmask | error |
| :---: | :---: |
| 0 | Any Self Tests |
| 1 | IRIG-B Failure |
| 2 | DSP Error |
| 4 | No DSP Interrupts |
| 5 | Unit Not Calibrated |
| 9 | Prototype Firmware |
| 10 | Flexlogic Error Token |
| 11 | Equipment Mismatch |
| 13 | Unit Not Programmed |
| 14 | System Exception |
| 15 | Latching Out Error |
| 18 | SNTP Failure |
| 19 | Battery Failure |
| 20 | Primary Ethernet Failure |
| 21 | Secondary Ethernet Failure |
| 22 | EEPROM Data Error |
| 23 | SRAM Data Error |
| 24 | Program Memory |
| 25 | Watchdog Error |
| 26 | Low On Memory |
| 27 | Remote Device Off |
| 28 | Direct Device Off |
| 29 | Direct Ring Break |
| 30 | Any Minor Error |
| 31 | Any Major Error |

## F142

ENUMERATION: EVENT RECORDER ACCESS FILE TYPE
$0=$ All Record Data, $1=$ Headers Only, $2=$ Numeric Event Cause

F143
UR_UINT32: 32 BIT ERROR CODE (F141 specifies bit number)
A bit value of $0=$ no error, $1=$ error

## F144

ENUMERATION: FORCED CONTACT INPUT STATE
0 = Disabled, 1 = Open, 2 = Closed

F145
ENUMERATION: ALPHABET LETTER

| bitmask | type | bitmask | type | bitmask | type | bitmask | type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | null | 7 | G | 14 | N | 21 | U |
| 1 | A | 8 | H | 15 | 0 | 22 | V |
| 2 | B | 9 | 1 | 16 | P | 23 | W |
| 3 | C | 10 | J | 17 | Q | 24 | X |
| 4 | D | 11 | K | 18 | R | 25 | Y |
| 5 | E | 12 | L | 19 | S | 26 | Z |
| 6 | F | 13 | M | 20 | T |  |  |

F146
ENUMERATION: MISC. EVENT CAUSES

| bitmask | definition |
| :---: | :--- |
| 0 | Events Cleared |
| 1 | Oscillography Triggered |
| 2 | Date/time Changed |
| 3 | Default Settings Loaded |
| 4 | Test Mode On |
| 5 | Test Mode Off |
| 6 | Power On |
| 7 | Power Off |
| 8 | Relay In Service |
| 9 | Relay Out Of Service |
| 10 | Watchdog Reset |
| 11 | Oscillography Clear |
| 12 | Reboot Command |
| 13 | Led Test Initiated |
| 14 | Flash Programming |
| 15 | Fault Report Trigger |
| 16 | User Programmable Fault Report Trigger |
| 17 | Corrupt DSP Program |
| 18 | Reload DSP Settings |
|  |  |

## F151

ENUMERATION: RTD SELECTION

| bitmask | RTD\# | bitmask | RTD\# | bitmask | RTD\# |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | NONE | 17 | RTD 17 | 33 | RTD 33 |
| 1 | RTD 1 | 18 | RTD 18 | 34 | RTD 34 |
| 2 | RTD 2 | 19 | RTD 19 | 35 | RTD 35 |
| 3 | RTD 3 | 20 | RTD 20 | 36 | RTD 36 |
| 4 | RTD 4 | 21 | RTD 21 | 37 | RTD 37 |
| 5 | RTD 5 | 22 | RTD 22 | 38 | RTD 38 |
| 6 | RTD 6 | 23 | RTD 23 | 39 | RTD 39 |
| 7 | RTD 7 | 24 | RTD 24 | 40 | RTD 40 |
| 8 | RTD 8 | 25 | RTD 25 | 41 | RTD 41 |
| 9 | RTD 9 | 26 | RTD 26 | 42 | RTD 42 |
| 10 | RTD 10 | 27 | RTD 27 | 43 | RTD 43 |
| 11 | RTD 11 | 28 | RTD 28 | 44 | RTD 44 |
| 12 | RTD 12 | 29 | RTD 29 | 45 | RTD 45 |
| 13 | RTD 13 | 30 | RTD 30 | 46 | RTD 46 |
| 14 | RTD 14 | 31 | RTD 31 | 47 | RTD 47 |
| 15 | RTD 15 | 32 | RTD 32 | 48 | RTD 48 |
| 16 | RTD 16 |  |  |  |  |

## F152

ENUMERATION: SETTING GROUP
$0=$ Active Group, $1=$ Group 1, $2=$ Group 2, $3=$ Group 3
$4=$ Group 4, $5=$ Group 5, $6=$ Group 6

## F153

ENUMERATION: DISTANCE TRANSFORMER CONNECTION

| bitmask | type |
| :---: | :---: |
| 0 | None |
| 1 | Dy1 |
| 2 | Dy3 |
| 3 | Dy5 |
| 4 | Dy7 |


| bitmask | type |
| :---: | :---: |
| 5 | Dy9 |
| 6 | Dy11 |
| 7 | Yd1 |
| 8 | Yd3 |
| 9 | Yd 5 |


| bitmask | type |
| :---: | :---: |
| 10 | Yd7 |
| 11 | $Y d 9$ |
| 12 | $Y d 11$ |

F155
ENUMERATION: REMOTE DEVICE STATE
0 = Offline, 1 = Online

F156
ENUMERATION: REMOTE INPUT BIT PAIRS

| bitmask | RTD\# | bitmask | RTD\# | bitmask | RTD\# |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | NONE | 22 | DNA-22 | 44 | UserSt-12 |
| 1 | DNA-1 | 23 | DNA-23 | 45 | UserSt-13 |
| 2 | DNA-2 | 24 | DNA-24 | 46 | UserSt-14 |
| 3 | DNA-3 | 25 | DNA-25 | 47 | UserSt-15 |
| 4 | DNA-4 | 26 | DNA-26 | 48 | UserSt-16 |
| 5 | DNA-5 | 27 | DNA-27 | 49 | UserSt-17 |
| 6 | DNA-6 | 28 | DNA-28 | 50 | UserSt-18 |
| 7 | DNA-7 | 29 | DNA-29 | 51 | UserSt-19 |
| 8 | DNA-8 | 30 | DNA-30 | 52 | UserSt-20 |
| 9 | DNA-9 | 31 | DNA-31 | 53 | UserSt-21 |
| 10 | DNA-10 | 32 | DNA-32 | 54 | UserSt-22 |
| 11 | DNA-11 | 33 | UserSt-1 | 55 | UserSt-23 |
| 12 | DNA-12 | 34 | UserSt-2 | 56 | UserSt-24 |
| 13 | DNA-13 | 35 | UserSt-3 | 57 | UserSt-25 |
| 14 | DNA-14 | 36 | UserSt-4 | 58 | UserSt-26 |
| 15 | DNA-15 | 37 | UserSt-5 | 59 | UserSt-27 |
| 16 | DNA-16 | 38 | UserSt-6 | 60 | UserSt-28 |
| 17 | DNA-17 | 39 | UserSt-7 | 61 | UserSt-29 |
| 18 | DNA-18 | 40 | UserSt-8 | 62 | UserSt-30 |
| 19 | DNA-19 | 41 | UserSt-9 | 63 | UserSt-31 |
| 20 | DNA-20 | 42 | UserSt-10 | 64 | UserSt-32 |
| 21 | DNA-21 | 43 | UserSt-11 |  |  |

## F160

ENUMERATION: TRANSFORMER PHASE COMPENSATION
0 = Internal (software), 1 = External (with CTs)

## F161

ENUMERATION: TRANSFORMER RATED WINDING TEMPERATURE RISE
$0=55^{\circ} \mathrm{C}$ (oil), $1=65^{\circ} \mathrm{C}$ (oil), $2=80^{\circ} \mathrm{C}$ (dry), $3=115^{\circ} \mathrm{C}$ (dry), $4=150^{\circ} \mathrm{C}$ (dry)

## F162

ENUMERATION: TRANSFORMER TYPE OF COOLING
$0=\mathrm{OA}, 1=\mathrm{FA}, 2=$ Non-directed FOA/FOW,
3 = Directed FOA/FOW, 4 = Sealed Self Cooled,
$5=$ Vented Self Cooled, $6=$ Forced Cooled

F163
ENUMERATION: TRANSFORMER WINDING CONNECTION
0 = Wye, 1 = Delta, 2 = Zig-zag

F164
ENUMERATION: TRANSFORMER WINDING GROUNDING
$0=$ Not within zone, $1=$ Within zone

F165
ENUMERATION: TRANSFORMER TAP INPUT
$0=$ None, $1=$ Tap Input 1, $2=$ Tap Input 2, 3 = Auto-detect

## F166

ENUMERATION: AUXILIARY VT CONNECTION TYPE
$0=\mathrm{Vn}, 1=\mathrm{Vag}, 2=\mathrm{Vbg}, 3=\mathrm{Vcg}, 4=\mathrm{Vab}, 5=\mathrm{Vbc}, 6=\mathrm{Vca}$

## F167

ENUMERATION: SIGNAL SOURCE
$0=\operatorname{SRC} 1,1=\operatorname{SRC} 2,2=\operatorname{SRC} 3,3=\operatorname{SRC} 4$,
$4=$ SRC 5, $5=$ SRC 6

F168
ENUMERATION: INRUSH INHIBIT FUNCTION
0 = Disabled, 1 = Adapt. 2nd, 2 = Trad. 2nd

## F169

ENUMERATION: OVEREXCITATION INHIBIT FUNCTION
$0=$ Disabled, 1 = 5th

## F170

ENUMERATION: LOW/HIGH OFFSET and GAIN TRANSDUCER INPUT/OUTPUT SELECTION
$0=$ LOW, $1=\mathrm{HIGH}$

## F171

ENUMERATION: TRANSDUCER CHANNEL INPUT TYPE
$0=$ dcmA $\operatorname{IN}, 1=$ Ohms IN, $2=$ RTD IN, $3=$ dcmA OUT

## F172

ENUMERATION: SLOT LETTERS

| bitmask | slot |
| :---: | :---: |
| 0 | F |
| 1 | G |
| 2 | H |
| 3 | J |


| bitmask | slot |
| :---: | :---: |
| 4 | K |
| 5 | L |
| 6 | M |
| 7 | N |


| bitmask | slot |
| :---: | :---: |
| 8 | P |
| 9 | R |
| 10 | S |
| 11 | T |


| bitmask | slot |
| :---: | :---: |
| 12 | U |
| 13 | V |
| 14 | W |
| 15 | X |

## F173

ENUMERATION: TRANSDUCER DCMA I/O RANGE

| bitmask | dcmA I/O range |
| :---: | :---: |
| 0 | 0 to -1 mA |
| 1 | 0 to 1 mA |
| 2 | -1 to 1 mA |
| 3 | 0 to 5 mA |
| 4 | 0 to 10 mA |
| 5 | 0 to 20 mA |
| 6 | 4 to 20 mA |

F174
ENUMERATION: TRANSDUCER RTD INPUT TYPE
$0=100$ Ohm Platinum, $1=120$ Ohm Nickel,
$2=100$ Ohm Nickel, $3=10$ Ohm Copper

## F175

ENUMERATION: PHASE LETTERS
$0=\mathrm{A}, 1=\mathrm{B}, 2=\mathrm{C}$

## F177

ENUMERATION: COMMUNICATION PORT
$0=$ None, 1 = COM1-RS485, 2 = COM2-RS485, 3 = Front Panel-RS232, 4 = Network

F180
ENUMERATION: PHASE/GROUND
$0=$ PHASE, $1=$ GROUND

F181
ENUMERATION: ODD/EVEN/NONE
$0=\mathrm{ODD}, 1$ = EVEN, $2=\mathrm{NONE}$

F183
ENUMERATION: AC INPUT WAVEFORMS

| bitmask | definition |
| :---: | :--- |
| 0 | Off |
| 1 | 8 samples/cycle |
| 2 | 16 samples/cycle |
| 3 | 32 samples/cycle |
| 4 | 64 samples/cycle |

F185
ENUMERATION: PHASE A,B,C, GROUND SELECTOR
$0=\mathrm{A}, 1=\mathrm{B}, 2=\mathrm{C}, 3=\mathrm{G}$

## F186

ENUMERATION: MEASUREMENT MODE
$0=$ Phase to Ground, $1=$ Phase to Phase

F189
ENUMERATION: INRUSH INHIBIT MODE
$0=$ Per Phase, $1=2$-out-of-3, $2=$ Average

F190
ENUMERATION: SIMULATED KEYPRESS

| bitmsk | keypress |
| :---: | :--- |
| 0 | -- <br> use between real keys <br> 1 |
| 2 | 1 |
| 3 | 3 |
| 4 | 4 |
| 5 | 5 |
| 6 | 6 |
| 7 | 7 |
| 8 | 8 |
| 9 | 9 |
| 10 | 0 |
| 11 | Decimal Pt |
| 12 | Plus/Minus |
| 13 | Value Up |
| 14 | Value Down |
| 15 | Message Up |
| 16 | Message Down |
| 17 | Message Left |
| 18 | Message Right |
| 19 | Menu |
| 20 | Help |
|  |  |


| bitmsk | keypress |
| :---: | :--- |
| 21 | Escape |
| 22 | Enter |
| 23 | Reset |
| 24 | User 1 |
| 25 | User 2 |
| 26 | User 3 |
| 27 | User-programmable key 1 |
| 28 | User-programmable key 2 |
| 29 | User-programmable key 3 |
| 30 | User-programmable key 4 |
| 31 | User-programmable key 5 |
| 32 | User-programmable key 6 |
| 33 | User-programmable key 7 |
| 34 | User-programmable key 8 |
| 35 | User-programmable key 9 |
| 36 | User-programmable key 10 |
| 37 | User-programmable key 11 |
| 38 | User-programmable key 12 |
| 39 | User 4 (control pushbutton) |
| 40 | User 5 (control pushbutton) |
| 41 | User 6 (control pushbutton) |
| 42 | User 7 (control pushbutton) |

## F192

ENUMERATION: ETHERNET OPERATION MODE

```
0 = Half-Duplex, 1 = Full-Duplex
```


## F194

ENUMERATION: DNP SCALE
A bitmask of $0=0.01,1=0.1,2=1,3=10,4=100,5=1000$, $6=10000,7=100000,8=0.001$

## F199 <br> ENUMERATION: DISABLED/ENABLED/CUSTOM

0 = Disabled, 1 = Enabled, 2 = Custom

## F200

TEXT40: 40-CHARACTER ASCII TEXT
20 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

## F201

TEXT8: 8-CHARACTER ASCII PASSCODE
4 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

F202
TEXT20: 20-CHARACTER ASCII TEXT
10 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

## F203

TEXT16: 16-CHARACTER ASCII TEXT

```
F204
TEXT80: 80-CHARACTER ASCII TEXT
```


## F205 <br> TEXT12: 12-CHARACTER ASCII TEXT

F206
TEXT6: 6-CHARACTER ASCII TEXT

F207
TEXT4: 4-CHARACTER ASCII TEXT

## F208

TEXT2: 2-CHARACTER ASCII TEXT

## F222

ENUMERATION: TEST ENUMERATION
$0=$ Test Enumeration 0, $1=$ Test Enumeration 1

## F226 <br> ENUMERATION: REMOTE INPUTIOUTPUT TRANSFER METHOD

```
0 = None, 1 = GSSE, 2 = GOOSE
```


## F227

ENUMERATION: RELAY SERVICE STATUS
0 = Unknown, 1 = Relay In Service, 2 = Relay Out Of Service

## F230

ENUMERATION: DIRECTIONAL POLARIZING
$0=$ Voltage, $1=$ Current, $2=$ Dual

F231
ENUMERATION: POLARIZING VOLTAGE
0 = Calculated V0, 1 = Measured VX

## F240

ENUMERATION: VIHZ CURVES
0 = Definite Time, 1 = Inverse A, 2 = Inverse B, 3 = Inverse C $4=$ FlexCurve $^{\text {TM }}$ A, $5=$ FlexCurve $^{\text {TM }} \mathrm{B}, 6=$ FlexCurve $^{\text {TM }} \mathrm{C}$, 7 = FlexCurve ${ }^{\text {TM }}$ D

## F300

UR_UINT16: FLEXLOGIC ${ }^{\text {TM }}$ BASE TYPE (6-bit type)
The FlexLogic ${ }^{\text {TM }}$ BASE type is 6 bits and is combined with a 9 bit descriptor and 1 bit for protection element to form a 16 bit value. The combined bits are of the form: PTTTTTTDDDDDDDDD, where $P$ bit if set, indicates that the FlexLogic ${ }^{\text {TM }}$ type is associated with a protection element state and $T$ represents bits for the BASE type, and $D$ represents bits for the descriptor.
The values in square brackets indicate the base type with $P$ prefix [PTTTTTT] and the values in round brackets indicate the descriptor range.
[0] Off(0) - this is boolean FALSE value
[ 0 ] On (1) - this is boolean TRUE value
[2] CONTACT INPUTS (1 to 96)
[3] CONTACT INPUTS OFF (1 to 96)
[4] VIRTUAL INPUTS (1 to 64)
[6] VIRTUAL OUTPUTS (1 to 96)
[10] CONTACT OUTPUTS VOLTAGE DETECTED (1 to 64)
[11] CONTACT OUTPUTS VOLTAGE OFF DETECTED (1 to 64)
[12] CONTACT OUTPUTS CURRENT DETECTED (1 to 64)
[13] CONTACT OUTPUTS CURRENT OFF DETECTED (1 to 64)
[14] REMOTE INPUTS (1 to 32)
[28] INSERT (via keypad only)
[32] END
[34] NOT (1 INPUT)
[36] 2 INPUT XOR (0)
[38] LATCH SET/RESET (2 inputs)
[40] OR (2 to 16 inputs)
[42] AND (2 to 16 inputs)
[44] NOR (2 to 16 inputs)
[46] NAND (2 to 16 inputs)
[48] TIMER (1 to 32)
[50] ASSIGN VIRTUAL OUTPUT (1 to 96)
[52] SELF-TEST ERROR (see F141 for range)
[56] ACTIVE SETTING GROUP (1 to 6)
[62] MISCELLANEOUS EVENTS (see F146 for range)
[64 to 127] ELEMENT STATES

F400
UR_UINT16: CT/VT BANK SELECTION

| bitmask | bank selection |
| :---: | :--- |
| 0 | Card 1 Contact 1 to 4 |
| 1 | Card 1 Contact 5 to 8 |
| 2 | Card 2 Contact 1 to 4 |
| 3 | Card 2 Contact 5 to 8 |
| 4 | Card 3 Contact 1 to 4 |
| 5 | Card 3 Contact 5 to 8 |

## F500

UR_UINT16: PACKED BITFIELD
First register indicates input/output state with bits 0 (MSB) to 15 (LSB) corresponding to input/output state 1 to 16 . The second register indicates input/output state with bits 0 to 15 corresponding to input/output state 17 to 32 (if required) The third register indicates input/output state with bits 0 to 15 corresponding to input/output
state 33 to 48 (if required). The fourth register indicates input/output state with bits 0 to 15 corresponding to input/output state 49 to 64 (if required).

The number of registers required is determined by the specific data item. A bit value of $0=O f f$ and $1=O n$.

## F501 <br> UR_UINT16: LED STATUS

Low byte of register indicates LED status with bit 0 representing the top LED and bit 7 the bottom LED. A bit value of 1 indicates the LED is on, 0 indicates the LED is off.

## F502 <br> BITFIELD: ELEMENT OPERATE STATES

Each bit contains the operate state for an element. See the F124 format code for a list of element IDs. The operate bit for element ID $X$ is bit [ $X$ mod 16] in register [ $X / 16$ ].

F504
BITFIELD: 3-PHASE ELEMENT STATE

| bitmask | element state |
| :---: | :--- |
| 0 | Pickup |
| 1 | Operate |
| 2 | Pickup Phase A |
| 3 | Pickup Phase B |
| 4 | Pickup Phase C |
| 5 | Operate Phase A |
| 6 | Operate Phase B |
| 7 | Operate Phase C |

## F505

BITFIELD: CONTACT OUTPUT STATE
$0=$ Contact State, $1=$ Voltage Detected, $2=$ Current Detected

## F506|

BITFIELD: 1 PHASE ELEMENT STATE
0 = Pickup, 1 = Operate

## F507 <br> BITFIELD: COUNTER ELEMENT STATE

$0=$ Count Greater Than, $1=$ Count Equal To, $2=$ Count Less Than

F509
BITFIELD: SIMPLE ELEMENT STATE
0 = Operate

## F511

BITFIELD: 3-PHASE SIMPLE ELEMENT STATE
$0=$ Operate, $1=$ Operate $A, 2=$ Operate $B, 3=$ Operate $C$

F512
ENUMERATION: HARMONIC NUMBER

| bitmask | harmonic |
| :---: | :---: |
| 0 | 2ND |
| 1 | 3 RD |
| 2 | 4 TH |
| 3 | 5 TH |
| 4 | 6 TH |
| 5 | 7 TH |
| 6 | 8 TH |
| 7 | 9 TH |
| 8 | 10 TH |
| 9 | 11 TH |
| 10 | 12 TH |
| 11 | 13 TH |


| bitmask | harmonic |
| :---: | :---: |
| 12 | 14 TH |
| 13 | 15 TH |
| 14 | 16 TH |
| 15 | 17 TH |
| 16 | 18 TH |
| 17 | 19 TH |
| 18 | 20 TH |
| 19 | 21 ST |
| 20 | 22 ND |
| 21 | 23 RD |
| 22 | 24 TH |
| 23 | 25 TH |

## F515

ENUMERATION ELEMENT INPUT MODE
$0=$ Signed, $1=$ Absolute

F516
ENUMERATION ELEMENT COMPARE MODE
0 = Level, 1 = Delta

## F517

ENUMERATION: ELEMENT DIRECTION OPERATION
0 = Over, 1 = Under

## F518

ENUMERATION: FLEXELEMENT ${ }^{\text {TM }}$ UNITS
0 = Milliseconds, 1 = Seconds, 2 = Minutes

## F519

ENUMERATION: NON-VOLATILE LATCH
0 = Reset-Dominant, 1 = Set-Dominant

F520
ENUMERATION: TRANSFORMER REFERENCE WINDING

| bitmask | Transformer Reference Winding |
| :---: | :--- |
| 0 | Automatic Selection |
| 1 | Winding 1 |
| 2 | Winding 2 |
| 3 | Winding 3 |
| 4 | Winding 4 |
| 5 | Winding 5 |
| 6 | Winding 6 |

F522
ENUMERATION: TRANSDUCER DCMA OUTPUT RANGE
$0=-1$ to $1 \mathrm{~mA} ; 1=0$ to $1 \mathrm{~mA} ; 2=4$ to 20 mA

F523
ENUMERATION: DNP OBJECTS 20, 22, AND 23 DEFAULT VARIATION

| bitmask | Default Variation |
| :---: | :---: |
| 0 | 1 |
| 1 | 2 |
| 2 | 5 |
| 3 | 6 |

## F524

ENUMERATION: DNP OBJECT 21 DEFAULT VARIATION

| bitmask | Default Variation |
| :---: | :---: |
| 0 | 1 |
| 1 | 2 |
| 2 | 9 |
| 3 | 10 |

F525
ENUMERATION: DNP OBJECT 32 DEFAULT VARIATION

| bitmask | Default Variation |
| :---: | :---: |
| 0 | 1 |
| 1 | 2 |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |
| 5 | 7 |

F530
ENUMERATION: FRONT PANEL INTERFACE KEYPRESS

| bitmask | keypress |
| :---: | :---: |
| 0 | None |
| 1 | Menu |
| 2 | Message Up |
| 3 | 7 |
| 4 | 8 |
| 5 | 9 |
| 6 | Help |
| 7 | Message Left |
| 8 | 4 |
| 9 | 5 |
| 10 | 6 |
| 11 | Escape |
| 12 | Message Right |
| 13 | 1 |
| 14 | 2 |
| 15 | 3 |
| 16 | Enter |
| 17 | Message Down |
| 18 | 0 |
| 19 | Decimal |
| 20 | $+/-$ |
| 21 | Value Up |


| bitmask | keypress |
| :---: | :---: |
| 22 | Value Down |
| 23 | Reset |
| 24 | User 1 |
| 25 | User 2 |
| 26 | User 3 |
| 31 | User PB 1 |
| 32 | User PB 2 |
| 33 | User PB 3 |
| 34 | User PB 4 |
| 35 | User PB 5 |
| 36 | User PB 6 |
| 37 | User PB 7 |
| 38 | User PB 8 |
| 39 | User PB 9 |
| 40 | User PB 10 |
| 41 | User PB 11 |
| 42 | User PB 12 |
| 44 | User 4 |
| 45 | User 5 |
| 46 | User 6 |
| 47 | User 7 |

F531
ENUMERATION: LANGUAGE
0 = English, 1 = French, 2 = Chinese, 3 = Russian

## F600 <br> UR_UINT16: FLEXANALOG PARAMETER

Corresponds to the modbus address of the value used when this parameter is selected. Only certain values may be used as FlexAnalogs (basically all metering quantities used in protection).

The IEC 61850 standard is the result of years of work by electric utilities and vendors of electronic equipment to produce standardized communications systems. IEC 61850 is a series of standards describing client/server and peer-to-peer communications, substation design and configuration, testing, environmental and project standards. The complete set includes:

- IEC 61850-1: Introduction and overview
- IEC 61850-2: Glossary
- IEC 61850-3: General requirements
- IEC 61850-4: System and project management
- IEC 61850-5: Communications and requirements for functions and device models
- IEC 61850-6: Configuration description language for communication in electrical substations related to IEDs
- IEC 61850-7-1: Basic communication structure for substation and feeder equipment - Principles and models
- IEC 61850-7-2: Basic communication structure for substation and feeder equipment - Abstract communication service interface (ACSI)
- IEC 61850-7-3: Basic communication structure for substation and feeder equipment - Common data classes
- IEC 61850-7-4: Basic communication structure for substation and feeder equipment - Compatible logical node classes and data classes
- IEC 61850-8-1: Specific Communication Service Mapping (SCSM) - Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3
- IEC 61850-9-1: Specific Communication Service Mapping (SCSM) - Sampled values over serial unidirectional multidrop point to point link
- IEC 61850-9-2: Specific Communication Service Mapping (SCSM) - Sampled values over ISO/IEC 8802-3
- IEC 61850-10: Conformance testing

These documents can be obtained from the IEC (http://www.iec.ch). It is strongly recommended that all those involved with any IEC 61850 implementation obtain this document set.
C.1.2 COMMUNICATION PROFILES

The T60 relay supports IEC 61850 server services over both TCP/IP and TP4/CLNP (OSI) communication protocol stacks. The TP4/CLNP profile requires the T60 to have a network address or Network Service Access Point (NSAP) to establish a communication link. The TCP/IP profile requires the T60 to have an IP address to establish communications. These addresses are located in the SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ NETWORK menu. Note that the T60 supports IEC 61850 over the TP4/CLNP or TCP/IP stacks, and also operation over both stacks simultaneously. It is possible to have up to four simultaneous connections (in addition to DNP and Modbus/TCP (non-IEC 61850) connections).
C.1.3 MMS PROTOCOL

IEC 61850 specifies the use of the Manufacturing Message Specification (MMS) at the upper (application) layer for transfer of real-time data. This protocol has been in existence for a number of years and provides a set of services suitable for the transfer of data within a substation LAN environment. Actual MMS protocol services are mapped to IEC 61850 abstract services in IEC 61850-8-1.

## C.1.4 PEER-TO-PEER COMMUNICATION

Peer-to-peer communication of digital state information (remote inputs/outputs) is supported using the IEC 61850 GSSE and GOOSE services. This feature allows digital points to be exchanged between IEC 61850 conforming devices.
C.1.5 FILE SERVICES

MMS file services are supported to allow transfer of oscillography, event record, or other files from a T60 relay.

The exact structure and values of the supported IEC 61850 logical nodes can be seen by connecting to a T60 relay with an MMS browser, such as the "MMS Object Explorer and AXS4-MMS" DDE/OPC server from Sisco Inc.

## C.1.7 NON-IEC 61850 DATA

The T60 relay makes available a number of non-IEC 61850 data items. These data items can be accessed through the "UR" MMS domain. IEC 61850 data can be accessed through the "IECDevice" MMS domain (IEC 61850 logical device).

## C.1.8 TCP CONNECTION TIMING

A built-in TCP/IP connection timeout of two minutes is employed by the T60 to detect 'dead' connections. If there is no data traffic on a TCP connection for greater than two minutes, the connection will be aborted by the T60. This frees up the connection to be used by other clients. Therefore, when using IEC 61850 reporting, clients should configure report control block items such that an integrity report will be issued at least every 2 minutes ( 120000 ms ). This ensures that the T60 will not abort the connection. If other MMS data is being polled on the same connection at least once every 2 minutes, this timeout will not apply.
C.1.9 LOGICAL NODE MMXU DATA MAPPING

The mapping of T60 relay data to IEC 61850 MMXU data is performed on a per-source basis. MMXU1 data originates from T60 source 1, MMXU2 data originates from T60 source 2, etc.

## C.1.10 LOGICAL NODE GGIO DATA MAPPING

Logical node GGIO1 data is mapped using the T60 Flexstate parameters. Each single point indication in GGIO1 can be selected using the corresponding Flexstate parameter setting. For example, the value of GGIO1 point "Ind3" is determined from the FlexLogic ${ }^{\text {TM }}$ operand selected in the Flexstate parameter 3 setting. Thus, GGIO1 data can originate as any FlexLogic ${ }^{\text {TM }}$ parameter.

Logical node GGIO2 data is mapped to the T60 virtual inputs. Each single point control in GGIO2 is mapped to a virtual input. For example, GGIO2 control point SPCSO3 is mapped to virtual input 3.
C.1.11 OTHER LOGICAL NODE MAPPING

All other IEC 61850 logical nodes (with the exception of PTRC) are associated with standard UR-series relay protection elements and features. The following mapping is used (for applicable elements):

- PIOC: phase instantaneous overcurrent, neutral instantaneous overcurrent, ground instantaneous overcurrent, negative sequence instantaneous overcurrent
- PTOC: phase time overcurrent, neutral time overcurrent, ground time overcurrent, negative sequence time overcurrent, neutral directional overcurrent, negative sequence directional overcurrent
- PTUV: phase undervoltage, auxiliary undervoltage, third harmonic neutral undervoltage
- PTOV: phase overvoltage, neutral overvoltage, auxiliary overvoltage, negative sequence overvoltage

| SERVICES |  | SERVERI PUBLISHER | UR-FAMILY |
| :---: | :---: | :---: | :---: |
| CLIENT-SERVER ROLES |  |  |  |
| B11 | Server side (of Two-party Application-Association) | c1 | Yes |
| B12 | Client side (of Two-party Application-Association) | --- |  |
| SCSMS SUPPORTED |  |  |  |
| B21 | SCSM: IEC 61850-8-1 used |  | Yes |
| B22 | SCSM: IEC 61850-9-1 used |  |  |
| B23 | SCSM: IEC 61850-9-2 used |  |  |
| B24 | SCSM: other |  |  |
| GENERIC SUBSTATION EVENT MODEL (GSE) |  |  |  |
| B31 | Publisher side | 0 | Yes |
| B32 | Subscriber side | --- | Yes |
| TRANSMISSION OF SAMPLED VALUE MODEL (SVC) |  |  |  |
| B41 | Publisher side | 0 |  |
| B42 | Subscriber side | --- |  |

c1: shall be "M" if support for LOGICAL-DEVICE model has been declared
O: Optional
M: Mandatory

| SERVICES | SERVERI <br> PUBLISHER |  | UR-FAMILY |
| :--- | :--- | :---: | :---: |
| IF SERVER SIDE (B11) SUPPORTED | c2 | Yes |  |
| M1 | Logical device | c3 | Yes |
| M2 | Logical node | c4 | Yes |
| M3 | Data | c5 | Yes |
| M4 | Data set | O |  |
| M5 | Substitution | O |  |
| M6 | Setting group control |  |  |
|  | REPORTING | O | Yes |
| M7 | Buffered report control |  |  |
| M7-1 | sequence-number |  |  |
| M7-2 | report-time-stamp |  |  |
| M7-3 | reason-for-inclusion |  |  |
| M7-4 | data-set-name |  |  |
| M7-5 | data-reference |  |  |
| M7-6 | buffer-overflow |  |  |
| M7-7 | entryID |  |  |
| M7-8 | BufTm |  |  |
| M7-9 | IntgPd |  |  |
| M7-10 | Gl |  |  |
| M8 | Unbuffered report control |  |  |
| M8-1 | sequence-number |  |  |
| M8-2 | report-time-stamp |  |  |
| M8-3 | reason-for-inclusion |  |  |


| SERVICES |  | SERVERI | UR-FAMILY |
| :---: | :---: | :---: | :---: |
| M8-4 | data-set-name |  |  |
| M8-5 | data-reference |  |  |
| M8-6 | BufTm |  |  |
| M8-7 | IntgPd |  |  |
| M8-8 | GI |  |  |
|  | Logging | 0 |  |
| M9 | Log control | 0 |  |
| M9-1 | IntgPd |  |  |
| M10 | Log | 0 |  |
| M11 | Control | M | Yes |
| IF GSE (B31/32) IS SUPPORTED |  |  |  |
|  | GOOSE | 0 | Yes |
| M12-1 | entryID |  |  |
| M12-2 | DataReflnc |  |  |
| M13 | GSSE | 0 | Yes |
| IF SVC (B41/B42) IS SUPPORTED |  |  |  |
| M14 | Multicast SVC | 0 |  |
| M15 | Unicast SVC | 0 |  |
| M16 | Time | M | Yes |
| M17 | File transfer | 0 | Yes |

c2: shall be "M" if support for LOGICAL-NODE model has been declared
c3: shall be " M " if support for DATA model has been declared
c4: shall be "M" if support for DATA-SET, Substitution, Report, Log Control, or Time models has been declared c5: shall be " M " if support for Report, GSE, or SMV models has been declared M: Mandatory

In the table below, the acronym AA refers to Application Associations (TP: Two Party / MC: Multicast). The c6 to c10 entries are defined in the notes following the table.

| SERVICES |  | AA: TP/MC | SERVERI PUBLISHER | UR FAMILY |
| :---: | :---: | :---: | :---: | :---: |
| SERVER (CLAUSE 6) |  |  |  |  |
| S1 | ServerDirectory | TP | M | Yes |
| APPLICATION ASSOCIATION (CLAUSE 7) |  |  |  |  |
| S2 | Associate |  | M | Yes |
| S3 | Abort |  | M | Yes |
| S4 | Release |  | M | Yes |
| LOGICAL DEVICE (CLAUSE 8) |  |  |  |  |
| S5 | LogicalDeviceDirectory | TP | M | Yes |
| LOGICAL NODE (CLAUSE 9) |  |  |  |  |
| S6 | LogicalNodeDirectory | TP | M | Yes |
| S7 | GetAllDataValues | TP | M | Yes |
| DATA (CLAUSE 10) |  |  |  |  |
| S8 | GetDataValues | TP | M | Yes |
| S9 | SetDataValues | TP | O | Yes |
| S10 | GetDataDirectory | TP | M | Yes |
| S11 | GetDataDefinition | TP | M | Yes |


| SERVICES |  | AA: TP/MC | SERVERI PUBLISHER | UR FAMILY |
| :---: | :---: | :---: | :---: | :---: |
| DATA SET (CLAUSE 11) |  |  |  |  |
| S12 | GetDataSetValues | TP | M | Yes |
| S13 | SetDataSetValues | TP | 0 |  |
| S14 | CreateDataSet | TP | 0 |  |
| S15 | DeleteDataSet | TP | 0 |  |
| S16 | GetDataSetDirectory | TP | 0 | Yes |
| SUBSTITUTION (CLAUSE 12) |  |  |  |  |
| S17 | SetDataValues | TP | M |  |
| SETTING GROUP CONTROL (CLAUSE 13) |  |  |  |  |
| S18 | SelectActiveSG | TP | 0 |  |
| S19 | SelectEditSG | TP | 0 |  |
| S20 | SetSGValues | TP | 0 |  |
| S21 | ConfirmEditSGValues | TP | 0 |  |
| S22 | GetSGValues | TP | 0 |  |
| S23 | GetSGCBValues | TP | 0 |  |
| REPORTING (CLAUSE 14) |  |  |  |  |
|  | BUFFERED REPORT CONTROL BLOCK (BRCB) |  |  |  |
| S24 | Report | TP | c6 | Yes |
| S24-1 | data-change (dchg) |  |  | Yes |
| S24-2 | qchg-change (qchg) |  |  |  |
| S24-3 | data-update (dupd) |  |  |  |
| S25 | GetBRCBValues | TP | c6 | Yes |
| S26 | SetBRCBValues | TP | c6 | Yes |
| UNBUFFERED REPORT CONTROL BLOCK (URCB) |  |  |  |  |
| S27 | Report | TP | c6 | Yes |
| S27-1 | data-change (dchg) |  |  | Yes |
| S27-2 | qchg-change (qchg) |  |  |  |
| S27-3 | data-update (dupd) |  |  |  |
| S28 | GetURCBValues | TP | c6 | Yes |
| S29 | SetURCBValues | TP | c6 | Yes |
| LOGGING (CLAUSE 14) |  |  |  |  |
|  | LOG CONTROL BLOCK |  |  |  |
| S30 | GetLCBValues | TP | M |  |
| S31 | SetLCBValues | TP | M |  |
|  | LOG |  |  |  |
| S32 | QueryLogByTime | TP | M |  |
| S33 | QueryLogByEntry | TP | M |  |
| S34 | GetLogStatusValues | TP | M |  |
| GENERIC SUBSTATION EVENT MODEL (GSE) (CLAUSE 14.3.5.3.4) |  |  |  |  |
|  | GOOSE-CONTROL-BLOCK |  |  |  |
| S35 | SendGOOSEMessage | MC | c8 | Yes |
| S36 | GetReference | TP | c9 |  |
| S37 | GetGOOSEElementNumber | TP | c9 |  |
| S38 | GetGoCBValues | TP | O | Yes |
| S39 | SetGoCBValues | TP | 0 | Yes |
|  | GSSE-CONTROL-BLOCK |  |  |  |
| S40 | SendGSSEMessage | MC | c8 | Yes |
| S41 | GetReference | TP | c9 |  |


| SERVICES |  | AA: TP/MC | SERVERI | UR FAMILY |
| :---: | :---: | :---: | :---: | :---: |
| S42 | GetGSSEElementNumber | TP | c9 |  |
| S43 | GetGsCBValues | TP | 0 | Yes |
| S44 | SetGsCBValues | TP | 0 | Yes |
| TRANSMISSION OF SAMPLE VALUE MODEL (SVC) (CLAUSE 16) |  |  |  |  |
|  | MULTICAST SVC |  |  |  |
| S45 | SendMSVMessage | MC | c10 |  |
| S46 | GetMSVCBValues | TP | O |  |
| S47 | SetMSVCBValues | TP | 0 |  |
|  | UNICAST SVC |  |  |  |
| S48 | SendUSVMessage | MC | c10 |  |
| S49 | GetUSVCBValues | TP | 0 |  |
| S50 | SetUSVCBValues | TP | 0 |  |
| CONTROL (CLAUSE 16.4.8) |  |  |  |  |
| S51 | Select |  | 0 | Yes |
| S52 | SelectWithValue | TP | 0 |  |
| S53 | Cancel | TP | 0 | Yes |
| S54 | Operate | TP | M | Yes |
| S55 | Command-Termination | TP | 0 |  |
| S56 | TimeActivated-Operate | TP | 0 |  |
| FILE TRANSFER (CLAUSE 20) |  |  |  |  |
| S57 | GetFile | TP | M | Yes |
| S58 | SetFile | TP | 0 |  |
| S59 | DeleteFile | TP | 0 |  |
| S60 | GetFileAttributeValues | TP | M | Yes |
| TIME (CLAUSE 5.5) |  |  |  |  |
| T1 | Time resolution of internal clock (nearest negative power of 2 in seconds) |  |  | 20 |
| T2 | Time accuracy of internal clock |  |  |  |
| T3 | supported TimeStamp resolution (nearest value of $2^{-n}$ in seconds, accoridng to 5.5 .3 .7 .3 .3 ) |  |  | 20 |

c6: shall declare support for at least one (BRCB or URCB)
c7: shall declare support for at least one (QueryLogByTime or QueryLogAfter)
c8: shall declare support for at least one (SendGOOSEMessage or SendGSSEMessage)
c9: shall declare support if TP association is available
c10: shall declare support for at least one (SendMSVMessage or SendUSVMessage)

The UR-series of relays supports IEC 61850 logical nodes as indicated in the following table. Note that the actual instantiation of each logical node is determined by the product order code. For example. the logical node "PDIS" (distance protection) is available only in the D60 Line Distance Relay.

| NODES | UR-FAMILY |
| :---: | :---: |
| L: SYSTEM LOGICAL NODES |  |
| LPHD: Physical device information | Yes |
| LLN0: Logical node zero | Yes |
| P: LOGICAL NODES FOR PROTECTION FUNCTIONS |  |
| PDIF: Differential | --- |
| PDIR: Direction comparison | --- |
| PDIS: Distance | Yes |
| PDOP: Directional overpower | --- |
| PDUP: Directional underpower | --- |
| PFRC: Rate of change of frequency | --- |
| PHAR: Harmonic restraint | --- |
| PHIZ: Ground detector | --- |
| PIOC: Instantaneous overcurrent | Yes |
| PMRI Motor restart inhibition | --- |
| PMSS: Motor starting time supervision | --- |
| POPF: Over power factor | --- |
| PPAM: Phase angle measuring | --- |
| PSCH: Protection scheme | --- |
| PSDE: Sensitive directional earth fault | --- |
| PTEF: Transient earth fault | --- |
| PTOC: Time overcurrent | Yes |
| PTOF: Overfrequency | --- |
| PTOV: Overvoltage | Yes |
| PTRC: Protection trip conditioning | Yes |
| PTTR: Thermal overload | Yes |
| PTUC: Undercurrent | --- |
| PTUV: Undervoltage | Yes |
| PUPF: Underpower factor | --- |
| PTUF: Underfrequency | --- |
| PVOC: Voltage controlled time overcurrent | --- |
| PVPH: Volts per Hz | --- |
| PZSU: Zero speed or underspeed | --- |
| R: LOGICAL NODES FOR PROTECTION RELATED FUNCTIONS |  |
| RDRE: Disturbance recorder function | --- |
| RADR: Disturbance recorder channel analogue | --- |
| RBDR: Disturbance recorder channel binary | --- |
| RDRS: Disturbance record handling | --- |
| RBRF: Breaker failure | Yes |
| RDIR: Directional element | --- |
| RFLO: Fault locator | Yes |
| RPSB: Power swing detection/blocking | Yes |
| RREC: Autoreclosing | Yes |


| NODES | UR-FAMILY |
| :---: | :---: |
| RSYN: Synchronism-check or synchronizing | --- |
| C: LOGICAL NODES FOR CONTROL |  |
| CALH: Alarm handling | --- |
| CCGR: Cooling group control | --- |
| CILO: Interlocking | --- |
| CPOW: Point-on-wave switching | --- |
| CSWI: Switch controller | --- |
| G: LOGICAL NODES FOR GENERIC REFERENCES |  |
| GAPC: Generic automatic process control | --- |
| GGIO: Generic process I/O | Yes |
| GSAL: Generic security application | --- |
| I: LOGICAL NODES FOR INTERFACING AND ARCHIVING |  |
| IARC: Archiving | --- |
| IHMI: Human machine interface | --- |
| ITCI: Telecontrol interface | --- |
| ITMI: Telemonitoring interface | --- |
| A: LOGICAL NODES FOR AUTOMATIC CONTROL |  |
| ANCR: Neutral current regulator | --- |
| ARCO: Reactive power control | --- |
| ATCC: Automatic tap changer controller | --- |
| AVCO: Voltage control | --- |
| M: LOGICAL NODES FOR METERING AND MEASUREMENT |  |
| MDIF: Differential measurements | --- |
| MHAI: Harmonics or interharmonics | --- |
| MHAN: Non phase related harmonics or interharmonic | --- |
| MMTR: Metering | --- |
| MMXN: Non phase related measurement | Yes |
| MMXU: Measurement | Yes |
| MSQI: Sequence and imbalance | --- |
| MSTA: Metering statistics | --- |
| S: LOGICAL NODES FOR SENSORS AND MONITORING |  |
| SARC: Monitoring and diagnostics for arcs | --- |
| SIMG: Insulation medium supervision (gas) | --- |
| SIML: Insulation medium supervision (liquid) | --- |
| SPDC: Monitoring and diagnostics for partial discharges | --- |
| X: LOGICAL NODES FOR SWITCHGEAR |  |
| XCBR: Circuit breaker | Yes |
| XSWI: Circuit switch | --- |
| T: LOGICAL NODES FOR INSTRUMENT TRANSFORMERS |  |
| TCTR: Current transformer | --- |
| TVTR: Voltage transformer | --- |


| NODES | UR-FAMILY |
| :--- | :---: |
| Y: LOGICAL NODES FOR POWER TRANSFORMERS |  |
| YEFN: Earth fault neutralizer (Peterson coil) | --- |
| YLTC: Tap changer | --- |
| YPSH: Power shunt | --- |
| YPTR: Power transformer | --- |
| Z: LOGICAL NODES FOR FURTHER POWER SYSTEM <br> EQUIPMENT |  |
| ZAXN: Auxiliary network | --- |
| ZBAT: Battery | --- |
| ZBSH: Bushing | --- |
| ZCAB: Power cable | --- |
| ZCAP: Capacitor bank | --- |
| ZCON: Converter | --- |
| ZGEN: Generator | --- |
| ZGIL: Gas insulated line | --- |
| ZLIN: Power overhead line | --- |
| ZMOT: Motor | --- |
| ZREA: Reactor | --- |
| ZRRC: Rotating reactive component | --- |
| ZSAR: Surge arrestor | --- |
| ZTCF: Thyristor controlled frequency converter |  |
| ZTRC: Thyristor controlled reactive component | - |

This document is adapted from the IEC 60870-5-104 standard. For ths section the boxes indicate the following: used in standard direction; $\square$ - not used; $\square$ - cannot be selected in IEC 60870-5-104 standard.

1. SYSTEM OR DEVICE:System Definition
$\square$ Controlling Station Definition (Master)
Controlled Station Definition (Slave)
2. NETWORK CONFIGURATION:
$\square$ Point-to-Point
Aultiple Point to-Point
Multipoint
Multipoint Star
3. PHYSICAL LAYER

Transmission Speed (control direction):

| Unbalanced Interchange Circuit V.24/V. 28 Standard: | Unbalanced Interchange Circuit V.24/V. 28 Recommended if $\mathbf{> 1 2 0 0}$ bits/s: | Balanced Interchange Circuit X.24/X.27: |
| :---: | :---: | :---: |
| $\square 100$ bitslsec. 200 bitslsec. 300 bitslsec. 600 bitslsec. 1200 bitslsec. | - 2400 bits/sec. 4800 bits/sec. 9600 bits/see. | 2400 -bits/sec. 4800 -bits/sec. 9600 -bits/sec. 19200 -bits/sec. 38400 bits/sec. 56000 bits/sec. 64000 bits/sec. |

## Transmission Speed (monitor direction):

| Unbalanced Interchange Circuit V.24/V. 28 Standard: | Unbalanced Interchange Circuit V.24/V. 28 Recommended if $>1200$ bits/s: | Balanced Interchange Circuit X.24/X.27: |
| :---: | :---: | :---: |
| $\square 100$ bits/sec. 200 bits/sec. 300 bits/sec. 600 bits/sec. 1200 bits/sec. | - 2400 bits/sec. 4800 bits/sec. 9600 bits/sec. | 2400 -bits/sec. 4800 -bits/sec. 9600 bits/sec. 19200 bits/sec. 38400 bits/sec. 56000 bits/sec. 64000 bitslsec. |

4. LINK LAYER

| Link Transmission Procedure: | Address Field of the Link: |
| :--- | :--- |
| $\square$ Batanced Transmision | Alt Present (Batanced Transmission Only) |
| Unbatanced Transmission | One-Octet |
|  | Structured |
|  | Unstructured |
| Frame Length (maximum length, number of octets): Not selectable in companion IEC 60870-5-104 standard |  |

When using an unbalanced link layer, the following ADSU types are returned in class 2 messages (low priority) with the indicated causes of transmission:
$\square$ The-standard assignment of ADSUs to class 2 messages is used as follows:

- A special assignment of ADSUs to class 2 messages is used as follows:


## 5. APPLICATION LAYER

## Transmission Mode for Application Data:

Mode 1 (least significant octet first), as defined in Clause 4.10 of IEC 60870-5-4, is used exclusively in this companion stanadard.

## Common Address of ADSU:

$\square$ One Octet
X Two Octets
Information Object Address:

| $\square$ One-Octet Structured |  |
| :--- | :--- |
| Fwo-Octets | Unstructured |

X Three Octets

## Cause of Transmission:

One-Octet
Two Octets (with originator address). Originator address is set to zero if not used.
Maximum Length of APDU: 253 (the maximum length may be reduced by the system.

## Selection of standard ASDUs:

For the following lists, the boxes indicate the following: - used in standard direction; $\square$ - not used; $\square$ - cannot be selected in IEC 60870-5-104 standard.

Process information in monitor direction

| < $<1>$ := Single-point information | M_SP_NA_1 |
| :---: | :---: |
| - $<2>$ :- Single-point information with time tag | A_SP_TA_1 |
| $\square<3>$ : = Double-point information | M_DP_NA_1 |
| - $<4>$ : = Double point information with time tag | M_DP_TA_1 |
| $\square<5>$ := Step position information | M_ST_NA_1 |
| - $<6>$ : Step position information with time tag | M_ST_TA_1 |
| ] $<7>$ := Bitstring of 32 bits | M_BO_NA_1 |
| -8>:- Bitstring-of 32 bits with time tag | A_BO_TA_1 |
| $]<9>$ := Measured value, normalized value | M_ME_NA_1 |
| - $<10>$ : - Measured value, normalized value with time tag | A_-NE_TA_1 |
| ] <11> := Measured value, scaled value | M_ME_NB_1 |
| -<12>:- Measured value, scaled value with time tag | M_NE_TB_1 |
| <13> := Measured value, short floating point value | M_ME_NC_1 |
| - $<14>$ : = Measured value, short floating point value with time tag | M_NE_TC_1 |
| \ll15> := Integrated totals | M_IT_NA_1 |
| - 46$\rangle$ : Integrated totals with time tag | M_IT_TA_1 |
| - $<17\rangle$ : Event of protection equipment with time tag | A_EP_TA_1 |
| -18>:- Packed_start events of protection-equipment with time tag | A_EP_TB_4 |
| -19> : = Packed output circuit information of protection equipment with time tag | M_EP_TC_1 |
| $\square<20>$ := Packed single-point information with status change detection | M_SP_NA_1 |

$\left.\begin{array}{ll}\square<21> & \text { := Measured value, normalized value without quantity descriptor }\end{array}\right]$ M_ME_ND_1

Either the ASDUs of the set <2>, <4>, <6>, <8>, <10>, <12>, <14>, <16>, <17>, <18>, and <19> or of the set $<30>$ to $<40>$ are used.

## Process information in control direction

| $\square<45>$ | := Single command |
| :--- | :--- |
| $\square<46>$ := Double command | C_SC_NA_1 |
| $\square<47>$ | C_ Regulating step command |

Either the ASDUs of the set $<45>$ to $<51>$ or of the set $<58>$ to $<64>$ are used.

## System information in monitor direction

$$
<70>\text { := End of initialization }
$$

## System information in control direction

\ll100> := Interrogation command
<101> := Counter interrogation command
<102> := Read command
<103> := Clock synchronization command (see Clause 7.6 in standard)

- <104>:- Test command
<105> := Reset process command
<106> := Delay acquisition command
< $<107>$ := Test command with time tag CP56Time2a

C_IC_NA_1
M_EI_NA_1

C_CI_NA_1
C_RD_NA_1
C_CS_NA_1
G_TS_NA_1
C_RP_NA_1
C_CD_NA_1 C_TS_TA_1

Parameter in control direction
$\square<110>$ := Parameter of measured value, normalized value
$\square<111>$ := Parameter of measured value, scaled value
$<112>$ := Parameter of measured value, short floating point value
$\square<113>$ := Parameter activation

PE_ME_NA_1
PE_ME_NB_1
PE_ME_NC_1
PE_AC_NA_1

File transfer

| $\square<120>$ | := File Ready |
| :--- | :--- |
| $\square<121>$ | F_FR_NA_1 |
| $\square<122>$ | $:=$ Call directory, select file, call file, call section | F_SR_NA_1

Type identifier and cause of transmission assignments
(station-specific parameters)
In the following table:

- Shaded boxes are not required.
- Black boxes are not permitted in this companion standard.
- Blank boxes indicate functions or ASDU not used.
- ' $\mathbf{X}$ ' if only used in the standard direction

| TYPE IDENTIFICATION |  | CAUSE OF TRANSMISSION |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | UNKNOWN INFORMATION OBJECT ADDR |
| NO. | MNEMONIC | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | $\begin{aligned} & 20 \\ & \text { to } \\ & 36 \end{aligned}$ | $\begin{aligned} & 37 \\ & \text { to } \\ & 41 \end{aligned}$ | 44 | 45 | 46 | 47 |
| <1> | M_SP_NA_1 |  |  | X |  | X |  |  |  |  |  | X | X |  | X |  |  |  |  |  |
| <2> | M_SP_TA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <3> | M_DP_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <4> | M_DP_TA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <5> | M_ST_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <6> | M_ST_TA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <7> | M_BO_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <8> | M_BO_TA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| TYPE IDENTIFICATION |  | CAUSE OF TRANSMISSION |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & \stackrel{Q}{\underset{N}{N}} \\ & \frac{N}{\mathbb{~}} \\ & \stackrel{\rightharpoonup}{Z} \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  | UNKNOWN CAUSE OF TRANSMISSION |  |  |  |
| NO. | MNEMONIC | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | $\begin{array}{l\|} \hline 20 \\ \text { to } \\ 36 \end{array}$ | $\begin{array}{\|l\|} \hline 37 \\ \text { to } \\ 41 \end{array}$ | 44 | 45 | 46 | 47 |
| <9> | M_ME_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <10> | M_ME_TA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <11> | M_ME_NB_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <12> | M_ME_TB_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <13> | M_ME_NC_1 | X |  | X |  | X |  |  |  |  |  |  |  |  | X |  |  |  |  |  |
| <14> | M_ME_TC_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <15> | M_IT_NA_1 |  |  | X |  |  |  |  |  |  |  |  |  |  |  | X |  |  |  |  |
| <16> | M_IT_TA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <17> | M_EP_TA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <18> | M_EP_TB_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <19> | M_EP_TC_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <20> | M_PS_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <21> | M_ME_ND_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <30> | M_SP_TB_1 |  |  | x |  |  |  |  |  |  |  | x | x |  |  |  |  |  |  |  |
| <31> | M_DP_TB_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <32> | M_ST_TB_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <33> | M_BO_TB_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <34> | M_ME_TD_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <35> | M_ME_TE_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <36> | M_ME_TF_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <37> | M_IT_TB_1 |  |  | X |  |  |  |  |  |  |  |  |  |  |  | X |  |  |  |  |
| <38> | M_EP_TD_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <39> | M_EP_TE_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <40> | M_EP_TF_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <45> | C_SC_NA_1 |  |  |  |  |  | X | X | X | X | X |  |  |  |  |  |  |  |  |  |
| <46> | C_DC_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <47> | C_RC_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <48> | C_SE_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <49> | C_SE_NB_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| TYPE IDENTIFICATION |  | CAUSE OF TRANSMISSION |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & \stackrel{Q}{\underset{N}{N}} \\ & \frac{1}{\mathbb{1}} \\ & \frac{1}{Z} \end{aligned}$ |  |  |  |  | DEACTIVATION CONFIRMATION |  |  |  |  |  |  |  |  |  |  |
| NO. | MNEMONIC | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | $\begin{aligned} & 20 \\ & \text { to } \\ & 36 \end{aligned}$ | $\begin{aligned} & 37 \\ & \text { to } \\ & 41 \end{aligned}$ | 44 | 45 | 46 | 47 |
| <50> | C_SE_NC_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <51> | C_BO_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <58> | C_SC_TA_1 |  |  |  |  |  | X | X | X | X | X |  |  |  |  |  |  |  |  |  |
| <59> | C_DC_TA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <60> | C_RC_TA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <61> | C_SE_TA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <62> | C_SE_TB_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <63> | C_SE_TC_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <64> | C_BO_TA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <70> | M_El_NA_1*) |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <100> | C_IC_NA_1 |  |  |  |  |  | X | X | X | X | X |  |  |  |  |  |  |  |  |  |
| <101> | C_Cl_NA_1 |  |  |  |  |  | X | X |  |  | X |  |  |  |  |  |  |  |  |  |
| <102> | C_RD_NA_1 |  |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <103> | C_CS_NA_1 |  |  | X |  |  | X | X |  |  |  |  |  |  |  |  |  |  |  |  |
| <104> | C_TS_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <105> | C_RP_NA_1 |  |  |  |  |  | X | X |  |  |  |  |  |  |  |  |  |  |  |  |
| <106> | C_CD_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <107> | C_TS_TA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <110> | P_ME_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <111> | P_ME_NB_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <112> | P_ME_NC_1 |  |  |  |  |  | X | X |  |  |  |  |  |  | X |  |  |  |  |  |
| <113> | P_AC_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <120> | F_FR_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <121> | F_SR_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <122> | F_SC_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <123> | F_LS_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <124> | F_AF_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <125> | F_SG_NA_1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <126> | F_DR_TA_1*) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## 6. BASIC APPLICATION FUNCTIONS

## Station Initialization:

X Remote initialization
Cyclic Data Transmission:
Cyclic data transmission
Read Procedure:
Read procedure
Spontaneous Transmission:
Spontaneous transmission
Double transmission of information objects with cause of transmission spontaneous:
The following type identifications may be transmitted in succession caused by a single status change of an information object. The particular information object addresses for which double transmission is enabled are defined in a projectspecific list.
$\square$ Single point information: M_SP_NA_1, M_SP_TA_1, M_SP_TB_1, and M_PS_NA_1
$\square$ Double point information: M_DP_NA_1, M_DP_TA_1, and M_DP_TB_1
$\square$ Step position information: M_ST_NA_1, M_ST_TA_1, and M_ST_TB_1
$\square$ Bitstring of 32 bits: M_BO_NA_1, M_BO_TA_1, and M_BO_TB_1 (if defined for a specific project)
$\square$ Measured value, normalized value: M_ME_NA_1, M_ME_TA_1, M_ME_ND_1, and M_ME_TD_1
$\square$ Measured value, scaled value: M_ME_NB_1, M_ME_TB_1, and M_ME_TE_1
$\square$ Measured value, short floating point number: M_ME_NC_1, M_ME_TC_1, and M_ME_TF_1
Station interrogation:
Global
Group 1 Group 2 Group 5 Group 9

Clock synchronization:
Clock synchronization (optional, see Clause 7.6)
Command transmission:
Direct command transmission
$\square$ Direct setpoint command transmission
Select and execute command
$\square$ Select and execute setpoint command
X C_SE ACTTERM used
N No additional definition
Short pulse duration (duration determined by a system parameter in the outstation)
Long pulse duration (duration determined by a system parameter in the outstation)
Persistent output

X Supervision of maximum delay in command direction of commands and setpoint commands Maximum allowable delay of commands and setpoint commands: $\mathbf{1 0} \mathbf{s}$

## Transmission of integrated totals:

Mode A: Local freeze with spontaneous transmission
Mode B: Local freeze with counter interrogation
Mode C: Freeze and transmit by counter-interrogation commands
M Mode D: Freeze by counter-interrogation command, frozen values reported simultaneously

X Counter read
Counter freeze without reset
X Counter freeze with reset
X Counter reset

General request counter
Request counter group 1
Request counter group 2
Request counter group 3
Request counter group 4
Parameter loading:
Threshold value
$\square$ Smoothing factorLow limit for transmission of measured valuesHigh limit for transmission of measured values
Parameter activation:
$\square$ Activation/deactivation of persistent cyclic or periodic transmission of the addressed object
Test procedure:
$\square$ Test procedure
File transfer:
File transfer in monitor direction:Transparent fileTransmission of disturbance data of protection equipmentTransmission of sequences of eventsTransmission of sequences of recorded analog values
File transfer in control direction:Transparent file
Background scan:Background scan
Acquisition of transmission delay:

- Acquisition of transmission delay


## Definition of time outs:

| PARAMETER | DEFAULT <br> VALUE | REMARKS | SELECTED <br> VALUE |
| :---: | :---: | :--- | :---: |
| $t_{0}$ | 30 s | Timeout of connection establishment | 120 s |
| $t_{1}$ | 15 s | Timeout of send or test APDUs | 15 s |
| $t_{2}$ | 10 s | Timeout for acknowlegements in case of no data messages $t_{2}<t_{1}$ | 10 s |
| $t_{3}$ | 20 s | Timeout for sending test frames in case of a long idle state | 20 s |

Maximum range of values for all time outs: 1 to 255 s , accuracy 1 s

## Maximum number of outstanding l-format APDUs $\boldsymbol{k}$ and latest acknowledge APDUs ( $w$ ):

| PARAMETER | DEFAULT <br> VALUE | REMARKS | SELECTED <br> VALUE |
| :---: | :---: | :--- | :---: |
| $k$ | 12 APDUs | Maximum difference receive sequence number to send state variable | 12 APDUs |
| $w$ | 8 APDUs | Latest acknowledge after receiving $w$ l-format APDUs | 8 APDUs |

Maximum range of values $k$ : 1 to $32767\left(2^{15}-1\right)$ APDUs, accuracy 1 APDU
Maximum range of values $w$ : 1 to 32767 APDUs, accuracy 1 APDU
Recommendation: $w$ should not exceed two-thirds of $k$.
Portnumber:

| PARAMETER | VALUE | REMARKS |
| :---: | :---: | :--- |
| Portnumber | 2404 | In all cases |

RFC 2200 suite:
RFC 2200 is an official Internet Standard which describes the state of standardization of protocols used in the Internet as determined by the Internet Architecture Board (IAB). It offers a broad spectrum of actual standards used in the Internet. The suitable selection of documents from RFC 2200 defined in this standard for given projects has to be chosen by the user of this standard.

Ethernet 802.3Serial X. 21 interface
$\square$ Other selection(s) from RFC 2200 (list below if selected)

The IEC 60870-5-104 data points are configured through the SETTINGS $\Rightarrow$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ DNP $/$ IEC104 POINT LISTS menu. Refer to the Communications section of Chapter 5 for additional details.

## APPENDIX E

The following table provides a 'Device Profile Document' in the standard format defined in the DNP 3.0 Subset Definitions Document.

Table E-1: DNP V3.00 DEVICE PROFILE (Sheet 1 of 3)

| (Also see the IMPLEMENTATION TABLE in the following section) |  |
| :---: | :---: |
| Vendor Name: General Electric Multilin |  |
| Device Name: UR Series Relay |  |
| Highest DNP Level Supported: <br> For Requests: Level 2 <br> For Responses: Level 2 | Device Function: Master $\square$ Slave |
| Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP Levels Supported (the complete list is described in the attached table): <br> Binary Inputs (Object 1) <br> Binary Input Changes (Object 2) <br> Binary Outputs (Object 10) <br> Binary Counters (Object 20) <br> Frozen Counters (Object 21) <br> Counter Change Event (Object 22) <br> Frozen Counter Event (Object 23) <br> Analog Inputs (Object 30) <br> Analog Input Changes (Object 32) <br> Analog Deadbands (Object 34) <br> File Transfer (Object 70) |  |
| Maximum Data Link Frame Size (octets): <br> Transmitted: 292 <br> Received: 292 | Maximum Application Fragment Size (octets): <br> Transmitted: $\mathbf{2 4 0}$ <br> Received: 2048 |
| Maximum Data Link Re-tries: None Fixed at 2 Configurable | Maximum Application Layer Re-tries: <br> None <br> Configurable |
| Requires Data Link Layer Confirmation:NeverAlwaysSometimesConfigurable |  |

Table E-1: DNP V3.00 DEVICE PROFILE (Sheet 2 of 3)


## APPENDIX E

Table E-1: DNP V3.00 DEVICE PROFILE (Sheet 3 of 3)

| Reports Binary Input Change Events when no specific variation requested: Never Only time-tagged Only non-time-tagged Configurable | Reports time-tagged Binary Input Change Events when no specific variation requested: Never Binary Input Change With Time Binary Input Change With Relative Time Configurable (attach explanation) |
| :---: | :---: |
| Sends Unsolicited Responses: Never Configurable Only certain objects Sometimes (attach explanation) ENABLE/DISABLE unsolicited Function codes supported | Sends Static Data in Unsolicited Responses: Never When Device Restarts When Status Flags Change <br> No other options are permitted. |
| Default Counter Object/Variation: No Counters Reported Configurable (attach explanation) Default Object: 20 <br> Default Variation: 1 Point-by-point list attached | Counters Roll Over at: No Counters Reported Configurable (attach explanation) 16 Bits (Counter 8) 32 Bits (Counters 0 to 7, 9) Other Value: $\qquad$ Point-by-point list attached |
| Sends Multi-Fragment Responses: Yes No |  |

The following table identifies the variations, function codes, and qualifiers supported by the T60 in both request messages and in response messages. For static (non-change-event) objects, requests sent with qualifiers $00,01,06,07$, or 08 , will be responded with qualifiers 00 or 01 . Static object requests sent with qualifiers 17 or 28 will be responded with qualifiers 17 or 28. For change-event objects, qualifiers 17 or 28 are always responded.

Table E-2: IMPLEMENTATION TABLE (Sheet 1 of 4)

| OBJECT |  |  | REQUEST |  | RESPONSE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { OBJECT } \\ & \text { NO. } \end{aligned}$ | VARIATION NO. | DESCRIPTION | $\begin{array}{\|l} \hline \text { FUNCTION } \\ \text { CODES (DEC) } \end{array}$ | $\begin{aligned} & \hline \text { QUALIFIER } \\ & \text { CODES (HEX) } \end{aligned}$ | $\begin{aligned} & \hline \text { FUNCTION } \\ & \text { CODES (DEC) } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { QUALIFIER } \\ \text { CODES (HEX) } \\ \hline \end{array}$ |
| 1 | 0 | Binary Input (Variation 0 is used to request default variation) | $\begin{array}{\|l\|} \hline 1 \text { (read) } \\ 22 \text { (assign class) } \end{array}$ | 00, 01 (start-stop) <br> 06 (no range, or all) <br> 07, 08 (limited quantity) <br> 17, 28 (index) |  |  |
|  | 1 | Binary Input | $\begin{array}{\|l\|} \hline 1 \text { (read) } \\ 22 \text { (assign class) } \end{array}$ | 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) | 129 (response) | $\begin{gathered} \hline 00,01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$ |
|  | 2 | Binary Input with Status | $\begin{array}{\|l\|} \hline 1 \text { (read) } \\ 22 \text { (assign class) } \end{array}$ | 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) | 129 (response) | $\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$ |
| 2 | 0 | Binary Input Change (Variation 0 is used to request default variation) | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) |  |  |
|  | 1 | Binary Input Change without Time | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | 129 (response) 130 (unsol. resp.) | 17, 28 (index) |
|  | 2 | Binary Input Change with Time | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | $\begin{aligned} & 129 \text { (response } \\ & 130 \text { (unsol. resp.) } \end{aligned}$ | 17, 28 (index) |
|  | 3 (parse only) | Binary Input Change with Relative Time | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) |  |  |
| 10 | 0 | Binary Output Status (Variation 0 is used to request default variation) | 1 (read) | 00, 01 (start-stop) <br> 06 (no range, or all) <br> 07, 08 (limited quantity) <br> 17, 28 (index) |  |  |
|  | 2 | Binary Output Status | 1 (read) | 00, 01 (start-stop) <br> 06 (no range, or all) <br> 07, 08 (limited quantity) <br> 17, 28 (index) | 129 (response) | $\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$ |
| 12 | 1 | Control Relay Output Block | $\begin{aligned} & \hline 3 \text { (select) } \\ & 4 \text { (operate) } \\ & 5 \text { (direct op) } \\ & 6 \text { (dir. op, noack) } \end{aligned}$ | $\begin{aligned} & \text { 00, } 01 \text { (start-stop) } \\ & 07,08 \text { (limited quantity) } \\ & 17,28 \text { (index) } \end{aligned}$ | 129 (response) | echo of request |
| 20 | 0 | Binary Counter (Variation 0 is used to request default variation) | $\begin{array}{\|l\|} \hline 1 \text { (read) } \\ 7 \text { (freeze) } \\ 8 \text { (freeze noack) } \\ 9 \text { (freeze clear) } \\ 10 \text { (frz. cl. noack) } \\ 22 \text { (assign class) } \end{array}$ | 00, 01 (start-stop) 06(no range, or all) 07, 08(limited quantity) 17, 28(index) |  |  |
|  | 1 | 32-Bit Binary Counter | 1 (read) <br> 7 (freeze) <br> 8 (freeze noack) <br> 9 (freeze clear) <br> 10 (frz. cl. noack) <br> 22 (assign class) | 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) | 129 (response) | $\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$ |

Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class $0,1,2$, or 3 scans. The default variations for object types $1,2,20,21,22,23,30$, and 32 are selected via relay settings. Refer to the Communications section in Chapter 5 for details. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers $00,01,06,07$, or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the T60 is not restarted, but the DNP process is restarted.

Table E-2: IMPLEMENTATION TABLE (Sheet 2 of 4)

| OBJECT |  |  | REQUEST |  | RESPONSE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { OBJECT } \\ & \text { NO. } \end{aligned}$ | VARIATION NO. | DESCRIPTION | $\begin{aligned} & \hline \text { FUNCTION } \\ & \text { CODES (DEC) } \end{aligned}$ | $\begin{array}{\|l} \hline \text { QUALIFIER } \\ \text { CODES (HEX) } \end{array}$ | $\begin{array}{\|l\|} \hline \text { FUNCTION } \\ \text { CODES (DEC) } \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { QUALIFIER } \\ \text { CODES (HEX) } \end{array}$ |
| $\begin{gathered} 20 \\ \text { cont'd } \end{gathered}$ | 2 | 16-Bit Binary Counter | 1 (read) <br> 7 (freeze) <br> 8 (freeze noack) <br> 9 (freeze clear) <br> 10 (frz. cl. noack) <br> 22 (assign class) | 00, 01 (start-stop) <br> 06 (no range, or all) <br> 07, 08 (limited quantity) <br> 17, 28 (index) | 129 (response) | $\begin{gathered} \hline 00,01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$ |
|  | 5 | 32-Bit Binary Counter without Flag | 1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class) | 00, 01 (start-stop) 06 (no range, or all) <br> 07, 08 (limited quantity) <br> 17, 28 (index) | 129 (response) | $\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$ |
|  | 6 | 16-Bit Binary Counter without Flag | 1 (read) <br> 7 (freeze) <br> 8 (freeze noack) <br> 9 (freeze clear) <br> 10 (frz. cl. noack) <br> 22 (assign class) | 00, 01 (start-stop) 06 (no range, or all) <br> 07, 08 (limited quantity) <br> 17, 28 (index) | 129 (response) | $\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$ |
| 21 | 0 | Frozen Counter (Variation 0 is used to request default variation) | $\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$ | 00, 01 (start-stop) 06 (no range, or all) <br> 07, 08 (limited quantity) <br> 17, 28 (index) |  |  |
|  | 1 | 32-Bit Frozen Counter | $\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$ | 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) | 129 (response) | $\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$ |
|  | 2 | 16-Bit Frozen Counter | 1 (read) 22 (assign class) | 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) | 129 (response) | $\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$ |
|  | 9 | 32-Bit Frozen Counter without Flag | $\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$ | 00, 01 (start-stop) 06 (no range, or all) <br> 07, 08 (limited quantity) <br> 17, 28 (index) | 129 (response) | $\begin{gathered} \hline 00,01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$ |
|  | 10 | 16-Bit Frozen Counter without Flag | $\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$ | 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) | 129 (response) | 00, 01 (start-stop) <br> 17, 28 (index) (see Note 2) |
| 22 | 0 | Counter Change Event (Variation 0 is used to request default variation) | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) |  |  |
|  | 1 | 32-Bit Counter Change Event | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | $\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$ | 17, 28 (index) |
|  | 2 | 16-Bit Counter Change Event | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | $\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$ | 17, 28 (index) |
|  | 5 | 32-Bit Counter Change Event with Time | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | $\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$ | 17, 28 (index) |
|  | 6 | 16-Bit Counter Change Event with Time | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | 129 (response) 130 (unsol. resp.) | 17, 28 (index) |
| 23 | 0 | Frozen Counter Event (Variation 0 is used to request default variation) | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) |  |  |
|  | 1 | 32-Bit Frozen Counter Event | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | 129 (response) 130 (unsol. resp.) | 17, 28 (index) |
|  | 2 | 16-Bit Frozen Counter Event | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | $\begin{array}{\|l\|} \hline 129 \text { (response) } \\ 130 \text { (unsol. resp.) } \\ \hline \end{array}$ | 17, 28 (index) |

Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class $0,1,2$, or 3 scans. The default variations for object types $1,2,20,21,22,23,30$, and 32 are selected via relay settings. Refer to the Communications section in Chapter 5 for details. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers $00,01,06,07$, or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the T60 is not restarted, but the DNP process is restarted.

Table E-2: IMPLEMENTATION TABLE (Sheet 3 of 4)

| OBJECT |  |  | REQUEST |  | RESPONSE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { OBJECT } \\ & \text { NO. } \end{aligned}$ | VARIATION NO. | DESCRIPTION | $\begin{aligned} & \text { FUNCTION } \\ & \text { CODES (DEC) } \end{aligned}$ | $\begin{aligned} & \hline \text { QUALIFIER } \\ & \text { CODES (HEX) } \end{aligned}$ | $\begin{aligned} & \hline \text { FUNCTION } \\ & \text { CODES (DEC) } \\ & \hline \end{aligned}$ | $\begin{array}{\|l} \hline \text { QUALIFIER } \\ \text { CODES (HEX) } \\ \hline \end{array}$ |
| $\begin{gathered} 23 \\ \text { cont'd } \end{gathered}$ | 5 | 32-Bit Frozen Counter Event with Time | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | 129 (response) <br> 130 (unsol. resp.) | 17, 28 (index) |
|  | 6 | 16-Bit Frozen Counter Event with Time | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | $\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$ | 17, 28 (index) |
| 30 | 0 | Analog Input (Variation 0 is used to request default variation) | $\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$ | 00, 01 (start-stop) 06 (no range, or all) <br> 07, 08 (limited quantity) <br> 17, 28 (index) |  |  |
|  | 1 | 32-Bit Analog Input | 1 (read) 22 (assign class) | 00, 01 (start-stop) 06 (no range, or all) <br> 07, 08 (limited quantity) <br> 17, 28 (index) | 129 (response) | $\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$ |
|  | 2 | 16-Bit Analog Input | $\begin{array}{\|l\|} \hline 1 \text { (read) } \\ 22 \text { (assign class) } \end{array}$ | 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) | 129 (response) | $\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$ |
|  | 3 | 32-Bit Analog Input without Flag | $\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$ | 00, 01 (start-stop) 06 (no range, or all) <br> 07, 08 (limited quantity) <br> 17, 28 (index) | 129 (response) | 00, 01 (start-stop) <br> 17, 28 (index) (see Note 2) |
|  | 4 | 16-Bit Analog Input without Flag | 1 (read) 22 (assign class) | 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) | 129 (response) | $\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$ |
|  | 5 | short floating point | $\begin{aligned} & 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$ | 00, 01 (start-stop) 06(no range, or all) 07, 08(limited quantity) 17, 28(index) | 129 (response) | $\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$ |
| 32 | 0 | Analog Change Event (Variation 0 is used to request default variation) | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) |  |  |
|  | 1 | 32-Bit Analog Change Event without Time | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | $\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$ | 17, 28 (index) |
|  | 2 | 16-Bit Analog Change Event without Time | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | $\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$ | 17, 28 (index) |
|  | 3 | 32-Bit Analog Change Event with Time | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | $\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$ | 17, 28 (index) |
|  | 4 | 16-Bit Analog Change Event with Time | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | $\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$ | 17, 28 (index) |
|  | 5 | short floating point Analog Change Event without Time | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | $\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$ | 17, 28 (index) |
|  | 7 | short floating point Analog Change Event with Time | 1 (read) | 06 (no range, or all) 07, 08 (limited quantity) | $\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$ | 17, 28 (index) |
| 34 | 0 | Analog Input Reporting Deadband (Variation 0 is used to request default variation) | 1 (read) | 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) |  |  |
|  | 1 | 16-bit Analog Input Reporting Deadband (default - see Note 1) | 1 (read) | 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) | 129 (response) | 00, 01 (start-stop) <br> 17, 28 (index) (see Note 2) |
|  |  |  | 2 (write) | $\begin{aligned} & \hline 00,01 \text { (start-stop) } \\ & 07,08 \text { (limited quantity) } \\ & 17,28 \text { (index) } \\ & \hline \end{aligned}$ |  |  |

Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class $0,1,2$, or 3 scans. The default variations for object types 1, 2, 20, 21, 22, 23, 30, and 32 are selected via relay settings. Refer to the Communications section in Chapter 5 for details. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers $00,01,06,07$, or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the T60 is not restarted, but the DNP process is restarted.

Table E-2: IMPLEMENTATION TABLE (Sheet 4 of 4)


Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class $0,1,2$, or 3 scans. The default variations for object types $1,2,20,21,22,23,30$, and 32 are selected via relay settings. Refer to the Communications section in Chapter 5 for details. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers $00,01,06,07$, or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the T60 is not restarted, but the DNP process is restarted.

The DNP binary input data points are configured through the PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ DNP / IECIO4 POINT LISTS $\Rightarrow$ BINARY INPUT I MSP POINTS menu. Refer to the Communications section of Chapter 5 for additional details. When a freeze function is performed on a binary counter point, the frozen value is available in the corresponding frozen counter point.

## BINARY INPUT POINTS

Static (Steady-State) Object Number: 1
Change Event Object Number: 2
Request Function Codes supported: 1 (read), 22 (assign class)
Static Variation reported when variation 0 requested: 2 (Binary Input with status)
Change Event Variation reported when variation 0 requested: $\mathbf{2}$ (Binary Input Change with Time)
Change Event Scan Rate: 8 times per power system cycle
Change Event Buffer Size: 1000

Supported Control Relay Output Block fields: Pulse On, Pulse Off, Latch On, Latch Off, Paired Trip, Paired Close.

## BINARY OUTPUT STATUS POINTS

Object Number: 10
Request Function Codes supported: 1 (read)
Default Variation reported when Variation 0 requested: 2 (Binary Output Status)
CONTROL RELAY OUTPUT BLOCKS
Object Number: 12
Request Function Codes supported: $\mathbf{3}$ (select), $\mathbf{4}$ (operate), 5 (direct operate), 6 (direct operate, noack)

Table E-3: BINARYICONTROL OUTPUTS

| POINT | NAMEIDESCRIPTION |
| :---: | :---: |
| 0 | Virtual Input 1 |
| 1 | Virtual Input 2 |
| 2 | Virtual Input 3 |
| 3 | Virtual Input 4 |
| 4 | Virtual Input 5 |
| 5 | Virtual Input 6 |
| 6 | Virtual Input 7 |
| 7 | Virtual Input 8 |
| 8 | Virtual Input 9 |
| 9 | Virtual Input 10 |
| 10 | Virtual Input 11 |
| 11 | Virtual Input 12 |
| 12 | Virtual Input 13 |
| 13 | Virtual Input 14 |
| 14 | Virtual Input 15 |
| 15 | Virtual Input 16 |
| 16 | Virtual Input 17 |
| 17 | Virtual Input 18 |
| 18 | Virtual Input 19 |
| 19 | Virtual Input 20 |
| 20 | Virtual Input 21 |
| 21 | Virtual Input 22 |
| 22 | Virtual Input 23 |
| 23 | Virtual Input 24 |
| 24 | Virtual Input 25 |
| 25 | Virtual Input 26 |
| 26 | Virtual Input 27 |
| 27 | Virtual Input 28 |
| 28 | Virtual Input 29 |
| 29 | Virtual Input 30 |
| 30 | Virtual Input 31 |
| 31 | Virtual Input 32 |

Table E-3: BINARYICONTROL OUTPUTS

| POINT | NAME/DESCRIPTION |
| :---: | :---: |
| 32 | Virtual Input 33 |
| 33 | Virtual Input 34 |
| 34 | Virtual Input 35 |
| 35 | Virtual Input 36 |
| 36 | Virtual Input 37 |
| 37 | Virtual Input 38 |
| 38 | Virtual Input 39 |
| 39 | Virtual Input 40 |
| 40 | Virtual Input 41 |
| 41 | Virtual Input 42 |
| 42 | Virtual Input 43 |
| 43 | Virtual Input 44 |
| 44 | Virtual Input 45 |
| 45 | Virtual Input 46 |
| 46 | Virtual Input 47 |
| 47 | Virtual Input 48 |
| 48 | Virtual Input 49 |
| 49 | Virtual Input 50 |
| 50 | Virtual Input 51 |
| 51 | Virtual Input 52 |
| 52 | Virtual Input 53 |
| 53 | Virtual Input 54 |
| 54 | Virtual Input 55 |
| 55 | Virtual Input 56 |
| 56 | Virtual Input 57 |
| 57 | Virtual Input 58 |
| 58 | Virtual Input 59 |
| 59 | Virtual Input 60 |
| 60 | Virtual Input 61 |
| 61 | Virtual Input 62 |
| 62 | Virtual Input 63 |
| 63 | Virtual Input 64 |

The following table lists both Binary Counters (Object 20) and Frozen Counters (Object 21). When a freeze function is performed on a Binary Counter point, the frozen value is available in the corresponding Frozen Counter point.

## BINARY COUNTERS

Static (Steady-State) Object Number: 20
Change Event Object Number: 22
Request Function Codes supported: 1 (read), 7 (freeze), 8 (freeze noack), 9 (freeze and clear), 10 (freeze and clear, noack), 22 (assign class)

Static Variation reported when variation 0 requested: 1 (32-Bit Binary Counter with Flag)
Change Event Variation reported when variation 0 requested: 1 (32-Bit Counter Change Event without time)
Change Event Buffer Size: 10
Default Class for all points: 2

## FROZEN COUNTERS

Static (Steady-State) Object Number: 21
Change Event Object Number: 23
Request Function Codes supported: 1 (read)
Static Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter with Flag)
Change Event Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter Event without time)
Change Event Buffer Size: 10
Default Class for all points: 2

Table E-4: BINARY AND FROZEN COUNTERS

| POINT <br> INDEX | NAME/DESCRIPTION |
| :--- | :--- |
| 0 | Digital Counter 1 |
| 1 | Digital Counter 2 |
| 2 | Digital Counter 3 |
| 3 | Digital Counter 4 |
| 4 | Digital Counter 5 |
| 5 | Digital Counter 6 |
| 6 | Digital Counter 7 |
| 7 | Digital Counter 8 |
| 8 | Oscillography Trigger Count |
| 9 | Events Since Last Clear |

A counter freeze command has no meaning for counters 8 and 9. T60 Digital Counter values are represented as 32-bit integers. The DNP 3.0 protocol defines counters to be unsigned integers. Care should be taken when interpreting negative counter values.

## APPENDIX E

The DNP analog input data points are configured through the PRODUCT SETUP $\Rightarrow \sqrt{ }{ }^{2}$ COMMUNICATIONS $\Rightarrow \Downarrow$ DNP / IECIO4 POINT LISTS $\Rightarrow$ ANALOG INPUT / MME POINTS menu. Refer to the Communications section of Chapter 5 for additional details.

It is important to note that 16 -bit and 32 -bit variations of analog inputs are transmitted through DNP as signed numbers. Even for analog input points that are not valid as negative values, the maximum positive representation is 32767 for 16-bit values and 2147483647 for 32 -bit values. This is a DNP requirement.

The deadbands for all Analog Input points are in the same units as the Analog Input quantity. For example, an Analog Input quantity measured in volts has a corresponding deadband in units of volts. This is in conformance with DNP Technical Bulletin 9809-001: Analog Input Reporting Deadband. Relay settings are available to set default deadband values according to data type. Deadbands for individual Analog Input Points can be set using DNP Object 34.

[^0]| MANUAL P/N | REVISION | RELEASE DATE | ECO |
| :---: | :---: | :---: | :---: |
| 1601-0090-0.1 | 1.6x Beta | 11 August 1999 | N/A |
| 1601-0090-A1 | 1.8x | 29 October 1999 | N/A |
| 1601-0090-A2 | 2.0x | 17 December 1999 | URT-003 |
| 1601-0090-A3 | 2.2x | 12 May 2000 | URT-004 |
| 1601-0090-A4 | 2.2x | 14 June 2000 | URT-005 |
| 1601-0090-A4a | 2.2x | 28 June 2000 | URT-005a |
| 1601-0090-B1 | 2.4x | 08 September 2000 | URT-006 |
| 1601-0090-B2 | 2.4x | 03 November 2000 | URT-007 |
| 1601-0090-B3 | 2.6x | 09 March 2001 | URT-008 |
| 1601-0090-B4 | 2.8x | 26 September 2001 | URT-009 |
| 1601-0090-B5 | 2.9x | 03 December 2001 | URT-011 |
| 1601-0090-B6 | 2.6x | 27 February 2004 | URX-120 |
| 1601-0090-C1 | 3.0x | 02 July 2002 | URT-013 |
| 1601-0090-C2 | 3.1x | 30 August 2002 | URT-018 |
| 1601-0090-C3 | 3.0x | 18 November 2002 | URT-021 |
| 1601-0090-C4 | 3.1x | 18 November 2002 | URT-022 |
| 1601-0090-C5 | 3.0x | 11 February 2003 | URT-024 |
| 1601-0090-C6 | 3.1x | 11 February 2003 | URT-026 |
| 1601-0090-D1 | 3.2x | 11 February 2003 | URT-028 |
| 1601-0090-D2 | 3.2x | 02 June 2003 | URX-084 |
| 1601-0090-E1 | 3.3x | 01 May 2003 | URX-080 |
| 1601-0090-E2 | 3.3 x | 29 May 2003 | URX-083 |
| 1601-0090-F1 | 3.4x | 10 December 2003 | URX-111 |
| 1601-0090-F2 | 3.4x | 09 February 2004 | URX-115 |
| 1601-0090-G1 | 4.0x | 23 March 2004 | URX-123 |
| 1601-0090-G2 | 4.0x | 17 May 2004 | URX-136 |
| 1601-0090-H1 | 4.2x | 30 June 2004 | URX-145 |
| 1601-0090-H2 | 4.2x | 23 July 2004 | URX-151 |
| 1601-0090-J1 | 4.4x | 15 September 2004 | URX-156 |
| 1601-0090-K1 | 4.6x | 15 February 2005 | URX-176 |
| 1601-0090-L1 | 4.8 x | 05 August 2005 | URX-202 |
| 1601-0090-L2 | 4.8 x | 30 March 2006 | URX-216 |

Table F-1: MAJOR UPDATES FOR T60 MANUAL REVISION L2 (Sheet 1 of 2)

| PAGE <br> (L1) | PAGE <br> (L2) | CHANGE | DESCRIPTION |
| :--- | :--- | :--- | :--- |
| Title | Title | Update | Manual part number to 1601-0090-L2 |
| $2-4$ | $2-4$ | Update | Updated T60 ORDER CODES table |
| $5-17$ | $5-16$ | Update | Updated IEC 61850 PROTOCOL sub-section |
| $5-51$ | $5-50$ | Update | Updated GENERAL TRANSFORMER SETTINGS sub-section |
| $5-59$ | $5-58$ | Update | Updated MAGNITUDE, PHASE ANGLE, AND ZERO SEQUENCE COMPENSATION sub-section |
| $5-72$ | $5-71$ | Update | Updated FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS table |

Table F-1: MAJOR UPDATES FOR T60 MANUAL REVISION L2 (Sheet 2 of 2)

| PAGE <br> (L1) | PAGE <br> (L2) | CHANGE | DESCRIPTION |
| :--- | :--- | :--- | :--- |
| $5-90$ | $5-89$ | Update | Updated PERCENT DIFFERENTIAL section |

Table F-2: MAJOR UPDATES FOR T60 MANUAL REVISION L1

| PAGE <br> (K1) | PAGE <br> (L1) | CHANGE | DESCRIPTION |
| :--- | :--- | :--- | :--- |
| Title | Title | Update | Manual part number to 1601-0090-L1 |
| $2-4$ | $2-4$ | Update | Updated T60 ORDER CODES table |
| $2-5$ | $2-5$ | Update | Updated ORDER CODES FOR REPLACEMENT MODULES table |
| $2-10$ | $2-10$ | Update | Updated INPUTS specifications section |
| $2-12$ | $2-12$ | Update | Updated COMMUNICATIONS specifications section |
| $3-8$ | $3-7$ | Update | Updated CONTROL POWER section |
| $3-10$ | $3-10$ | Update | Updated CONTACT INPUTS/OUTPUTS section |
| $3-18$ | $3-18$ | Update | Updated CPU COMMUNICATIONS PORTS section |
| $3-19$ | $3-20$ | Update | Updated RS485 SERIAL CONNECTION diagram |
| $3-24$ | $3-25$ | Update | Updated G.703 INTERFACE section |
| $3-29$ | $3-30$ | Update | Updated RS422 AND FIBER INTERFACE CONNECTION drawing |
| --- | $3-33$ | Add | Added C37.94SM INTERFACE section |
| --- | $4-13$ | Add | Added INVALID PASSWORD ENTRY section |
| $5-13$ | $5-14$ | Update | Updated DNP PROTOCOL sub-section |
| --- | $5-16$ | Add | Added DNP / IEC 60870-5-104 POINT LISTS sub-section |
| $5-15$ | $5-17$ | Update | Updated IEC 61850 PROTOCOL sub-section |
| $5-18$ | $5-20$ | Update | Updated IEC 60870-5-104 PROTOCOL sub-section |
| $5-25$ | $5-27$ | Update | Updated DATA LOGGER section |
| -- | $5-44$ | Add | Added TELEPROTECTION section |
| $5-68$ | $5-72$ | Update | Updated FLEXLOGICTM OPERANDS table |
| $5-126$ | $5-131$ | Update | Updated SETTING GROUPS section |
| $5-127$ | $5-132$ | Update | Updated SELECTOR SWITCH section |
| $5-148$ | $5-154$ | Update | Updated REMOTE INPUTS section |
| $5-150$ | $5-156$ | Update | Updated DIRECT INPUTS/OUTPUTS section |
| --- | $5-160$ | Add | Added TELEPROTECTION INPUTS/OUTPUTS section |
| $---~$ | $6-4$ | Add | Added TELEPROTECTION INPUTS section |
| --- | $6-8$ | Add | Added TELEPROTECTION CHANNEL TESTS section |
| B-8 | B-8 | Update | Updated MODBUS MEMORY MAP for release 4.8x |
| E-9 | D-9 | Update | Updated IEC 60870-5-104 POINT LIST sub-section |
| E-8 | E-8 | Update | Updated BINARY INPUT POINTS section |
| E-9 | E-11 | Update | Updated ANALOG INPUTS section |
|  |  |  |  |

Table F-3: MAJOR UPDATES FOR T60 MANUAL REVISION K1

| PAGE <br> (J1) | PAGE <br> (K1) | CHANGE | DESCRIPTION |
| :--- | :--- | :--- | :--- |
| Title | Title | Update | Manual part number to 1601-0109-K1 |
| $2-4$ | $2-4$ | Update | Updated T60 ORDER CODES table |
| $3-6$ | $3-6$ | Update | Updated TYPICAL WIRING DIAGRAM to 828749A3 |
| $3-19$ | $3-19$ | Update | Updated RS485 SERIAL CONNECTION diagram to 827757A7 |
| $5-8$ | $5-8$ | Update | Updated DISPLAY PROPERTIES section |
| $5-13$ | $5-13$ | Update | Updated DNP PROTOCOL sub-section |
| $5-15$ | $5-15$ | Update | Updated IEC 61850 PROTOCOL sub-section |
| $5-133$ | $5-134$ | Update | Updated DIGITAL ELEMENTS section |
| $5-143$ | $5-144$ | Update | The LATCHING OUTPUTS section is now a sub-section of the CONTACT OUTPUTS |
| $5-146$ | $5-147$ | Update | Updated REMOTE DEVICES section |
| $5-148$ | $5-149$ | Update | Updated REMOTE OUTPUTS section |
| B-8 | B-8 | Update | Updated MODBUS MEMORY MAP for revision 4.6x |
| --- | C-1 | Add | Added IEC 61850 COMMUNICATIONS appendix |
| D-4 | E-4 | Update | Updated DNP IMPLEMENTATION section |

Table F-4: MAJOR UPDATES FOR T60 MANUAL REVISION J1

| PAGE <br> (H2) | PAGE <br> $(\mathbf{J 1 )}$ | CHANGE | DESCRIPTION |
| :--- | :--- | :--- | :--- |
| Title | Title | Update | Manual part number to 1601-0109-J1 |
| $5-15$ | --- | Remove | Removed UCA/MMS PROTOCOL sub-section |
| --- | $5-15$ | Add | Added IEC 61850 PROTOCOL sub-section |
| $5-45$ | $5-45$ | Update | Updated TRANSFORMER section |
| --- | $5-56$ | Add | Added TRANSFORMER THERMAL INPUTS sub-section |
| --- | $5-87$ | Add | Added HOTTEST-SPOT TEMPERATURE sub-section |
| --- | $5-88$ | Add | Added AGING FACTOR sub-section |
| -- | $5-89$ | Add | Added LOSS OF LIFE sub-section |
| $5-137$ | $5-141$ | Update | Updated VIRTUAL INPUTS section |
| --- | $6-11$ | Add | Added THERMAL ELEMENTS sub-section |
| B-8 | B-8 | Update | Updated MODBUS MEMORY MAP for revision 4.4x |
| C-1 | --- | Remove | Removed UCA/MMS COMMUNICATIONS appendix |

Table F-5: MAJOR UPDATES FOR T60 MANUAL REVISION H2

| PAGE <br> (H1) | PAGE <br> (H2) | CHANGE | DESCRIPTION |
| :--- | :--- | :--- | :--- |
| Title | Title | Update | Manual part number to 1601-0090-H2 |
| $3-22$ | $3-22$ | Update | Updated CHANNEL COMMUNICATION OPTIONS table |

F.2.1 STANDARD ABBREVIATIONS

| A................... Ampere | FREQ............ Frequency |
| :---: | :---: |
| AC ................. Alternating Current | FSK............... Frequency-Shift Keying |
| A/D ................ Analog to Digital | FTP ............... File Transfer Protocol |
| AE ................ Accidental Energization, Application Entity | FxE ............... FlexElement ${ }^{\text {TM }}$ |
| AMP .............. Ampere | FWD.............. Forward |
| ANG .............. Angle |  |
| ANSI.............. American National Standards Institute | G.................. Generator |
| AR ................. Automatic Reclosure | GE................ General Electric |
| ASDU ............ Application-layer Service Data Unit | GND.............. Ground |
| ASYM ............ Asymmetry | GNTR............ Generator |
| AUTO ............ Automatic | GOOSE......... General Object Oriented Substation Event |
| AUX............... Auxiliary | GPS .............. Global Positioning System |
| AVG ............... Average |  |
|  | HARM ........... Harmonic / Harmonics |
| BER ............... Bit Error Rate | HCT .............. High Current Time |
| BF................. Breaker Fail | HGF .............. High-Impedance Ground Fault (CT) |
| BFI................. Breaker Failure Initiate | HIZ ................ High-Impedance and Arcing Ground |
| BKR............... Breaker | HMI ............... Human-Machine Interface |
| BLK ............... Block | HTTP ............ Hyper Text Transfer Protocol |
| BLKG............. Blocking | HYB ............. Hybrid |
| BPNT............. Breakpoint of a characteristic |  |
| BRKR .............. Breaker | I.................... Instantaneous |
|  | I_0................. Zero Sequence current |
| CAP ............... Capacitor | I_1................ Positive Sequence current |
| CC................ Coupling Capacitor | I_2................ Negative Sequence current |
| CCVT ............ Coupling Capacitor Voltage Transformer | I $\overline{\mathrm{A}}$.................. Phase A current |
| CFG............... Configure / Configurable | IAB ................ Phase A minus B current |
| .CFG.............. Filename extension for oscillography files | IB .................. Phase B current |
| CHK............... Check | IBC ................ Phase B minus C current |
| CHNL ............ Channel | IC .................. Phase C current |
| CLS ............... Close | ICA................ Phase C minus A current |
| CLSD............. Closed | ID .................. Identification |
| CMND ........... Command | IED ................ Intelligent Electronic Device |
| CMPRSN....... Comparison | IEC............... International Electrotechnical Commission |
| CO................ Contact Output | IEEE.............. Institute of Electrical and Electronic Engineers |
| COM.............. Communication | IG .................. Ground (not residual) current |
| COMM ........... Communications | Igd................. Differential Ground current |
| COMP ........... Compensated, Comparison | IN .................. CT Residual Current (3Io) or Input |
| CONN............ Connection | INC SEQ ........ Incomplete Sequence |
| CONT ............ Continuous, Contact | INIT............... Initiate |
| CO-ORD........ Coordination | INST.............. Instantaneous |
| CPU............... Central Processing Unit | INV ................. Inverse |
| CRC .............. Cyclic Redundancy Code | I/O ................. Input/Output |
| CRT, CRNT .... Current | IOC ............... Instantaneous Overcurrent |
| CSA.............. Canadian Standards Association | IOV................ Instantaneous Overvoltage |
| CT ................. Current Transformer | IRIG .............. Inter-Range Instrumentation Group |
| CVT ............... Capacitive Voltage Transformer | ISO $\qquad$ International Standards Organization IUV $\qquad$ Instantaneous Undervoltage |
| D/A ............... Digital to Analog |  |
| DC (dc)........... Direct Current | K0 ................ Zero Sequence Current Compensation |
| DD................ Disturbance Detector | kA.................. kiloAmpere |
| DFLT ............. Default | kV.................. kiloVolt |
| DGNST........... Diagnostics |  |
| DI.................. Digital Input | LED.............. Light Emitting Diode |
| DIFF .............. Differential | LEO............... Line End Open |
| DIR ................ Directional | LFT BLD ........ Left Blinder |
| DISCREP ....... Discrepancy | LOOP ............ Loopback |
| DIST .............. Distance | LPU............... Line Pickup |
| DMD .............. Demand | LRA ............... Locked-Rotor Current |
| DNP............... Distributed Network Protocol | LTC ............... Load Tap-Changer |
| DPO .............. Dropout |  |
| DSP ............... Digital Signal Processor | M................... Machine |
| dt ................... Rate of Change | mA ................ MilliAmpere |
| DTT .............. Direct Transfer Trip | MAG.............. Magnitude |
| DUTT............. Direct Under-reaching Transfer Trip | MAN.............. Manual / Manually |
|  | MAX .............. Maximum |
| ENCRMNT ..... Encroachment | MIC ............... Model Implementation Conformance |
| EPRI.............. Electric Power Research Institute | MIN ............... Minimum, Minutes |
| .EVT .............. Filename extension for event recorder files | MMI............... Man Machine Interface |
| EXT ............... Extension, External | MMS $\qquad$ $\qquad$ Manufacturing Message Specification MRT Minimum Response Time |
| F................... Field | MSG............... Message |
| FAIL............... Failure | MTA.............. Maximum Torque Angle |
| FD ................. Fault Detector | MTR .............. Motor |
| FDH............... Fault Detector high-set | MVA ............. MegaVolt-Ampere (total 3-phase) |
| FDL ............... Fault Detector low-set | MVA_A.......... MegaVolt-Ampere (phase A) |
| FLA................ Full Load Current | MVA_B .......... MegaVolt-Ampere (phase B) |
| FO ................. Fiber Optic | MVA_C.......... MegaVolt-Ampere (phase C) |




## GE MULTILIN RELAY WARRANTY

General Electric Multilin Inc. (GE Multilin) warrants each relay it manufactures to be free from defects in material and workmanship under normal use and service for a period of $\mathbf{2 4}$ months from date of shipment from factory.

In the event of a failure covered by warranty, GE Multilin will undertake to repair or replace the relay providing the warrantor determined that it is defective and it is returned with all transportation charges prepaid to an authorized service centre or the factory. Repairs or replacement under warranty will be made without charge.

Warranty shall not apply to any relay which has been subject to misuse, negligence, accident, incorrect installation or use not in accordance with instructions nor any unit that has been altered outside a GE Multilin authorized factory outlet.

GE Multilin is not liable for special, indirect or consequential damages or for loss of profit or for expenses sustained as a result of a relay malfunction, incorrect application or adjustment.

For complete text of Warranty (including limitations and disclaimers), refer to GE Multilin Standard Conditions of Sale.
Numerics
10BASE-F
communications options ..... 3-18
description ..... 3-20
interface ..... 3-30
redundant option ..... 3-18
settings ..... 5-12

## A

| ABBREVIATIONS | F-4 |
| :---: | :---: |
| AC CURRENT INPUTS | 2-10, 3-8, 5-45 |
| AC VOLTAGE INPUTS | 2-10, 3-9 |
| ACTIVATING THE RELAY | ..1-12, 4-11 |
| ACTIVE SETTING GROUP | 5-88 |
| ACTUAL VALUES |  |
| maintenance | 6-20 |
| metering. | 6-9 |
| product information | 6-21 |
| status | 6-3 |
| AGING FACTOR |  |
| actual values | 6-12 |
| FlexLogic ${ }^{\text {TM }}$ operands | 5-73 |
| logic | 5-94 |
| Modbus registers | B-25 |
| settings | 5-94 |
| specifications | 2-7 |
| ALARM LEDs | 5-31 |
| ALTITUDE | 2-13 |
| ANSI DEVICE NUMBERS | . 2-1 |
| APPARENT POWER | 2-9, 6-15 |
| APPLICATION EXAMPLES |  |
| breaker trip circuit integrity | 5-141 |
| contact inputs | 5-147 |
| windings between two breakers. | 5-59 |
| APPROVALS | 2-14 |
| ARCHITECTURE | 5-69 |
| ARCING CURRENT | 5-144 |
| AUXILIARY OVERVOLTAGE |  |
| FlexLogic ${ }^{\text {TM }}$ operands | 5-71 |
| logic. | 5-127 |
| Modbus registers | B-30 |
| settings | 5-127 |
| specifications | 2-7 |
| AUXILIARY UNDERVOLTAGE |  |
| FlexLogic ${ }^{\text {TM }}$ operands | 5-71 |
| logic. | 5-126 |
| Modbus registers | B-30 |
| settings...... | 5-126 |
| specifications | .... 2-7 |
| AUXILIARY VOLTAGE CHANNEL. | 3-9 |
| AUXILIARY VOLTAGE METERING | 6-14 |

## B

BANKS 5-6, 5-45, 5-46
BATTERY FAIL ..... 7-5
BINARY INPUT POINTS ..... E-8
BINARY OUTPUT POINTS ..... E-9
BLOCK DIAGRAM ..... 1-3
BLOCK SETTING ..... 5-4

BREAKER ARCING CURRENT


## C

C37.94 COMMUNICATIONS ........................... 3-31, 3-32, 3-34 C37.94SM COMMUNICATIONS ...........................................3-33
CE APPROVALS .................................................................2-14

CHANGES TO MANUAL ...................................... F-1, F-2, F-3
CHANGES TO T60 MANUAL................................................F-1

CHANNEL COMMUNICATION ............................................3-23
CHANNEL TESTS .................................................................6-8
CHANNELS
banks ............................................................ 5-45, 5-46
CIRCUIT MONITORING APPLICATIONS .......................... 5-139
CLEANING ...........................................................................2-14

CLEAR RECORDS ....................................................5-10, 7-1
CLEAR RELAY RECORDS
Modbus registers ..................................................... B-45
settings ............................................................................5-10
CLOCK
setting date and time........................................................7-2
settings ......................................................................5-522
COMMANDS MENU................................................................7-1
COMMUNICATIONS
10BASE-F ........................................................................2-20, 5-12
channel ....................................................................................................3-. 3- 23
connecting to the UR.................................................1-7, 1-8
CRC-16 error checking..................................................... B-2
dnp......................................................................5-13, E-1
EGD ............................................................................... 5-20
G. 703 .............................................................................. 3-26
half duplex..................................................................... B-1
HTTP.............................................................................. 5-18
IEC 60870-5-104 protocol.................................................5-19
IEC 61850 ......................................................... 5-16, 5-152
inter-relay communications..............................................2-13
Modbus ...............................................5-12, 5-22, B-1, B-3
Modbus registers .......................................................... B-17
network ........................................................................5-12
overview ...........................................................................1-10
RS232 ..........................................................................3-18
RS485 ........................................................ 3-18, 3-20, 5-11
settings .......................... 5-12, 5-13, 5-16, 5-19, 5-20, 5-22
specifications....................................................... 2-12, 2-13
UCA/MMS ................................................................... 5-153
web server.......................................................................5-18
COMPENSATION DE COMPOSANTE HOMOPOLAIRE ......5-58

CONDUCTED RFI ..............................................................2-14
CONTACT INFORMATION ......................................................1-1
CONTACT INPUTS
actual values .......................................................................6-3
dry connections .................................................................3-15
FlexLogic ${ }^{\text {TM }}$ operands......................................................5-74
Modbus registers ............................. B-10, B-15, B-38, B-40

| module assignments | 3-11 |
| :---: | :---: |
| settings | 5-146 |
| specifications. | 2-10 |
| thresholds | 5-146 |
| wet connections | 3-15 |
| wiring | 3-13 |
| CONTACT OUTPUTS |  |
| actual values | 6-4 |
| FlexLogic ${ }^{\text {™ }}$ operands | 5-74 |
| Modbus registers | .B-10, B-15, B-44 |
| module assignments | 3-11 |
| settings | 5-149 |
| wiring | 3-13 |
| CONTROL ELEMENTS | 5-130 |
| CONTROL POWER |  |
| description.. | 3-8 |
| specifications. | 2-12 |
| CONTROL PUSHBUTTONS |  |
| FlexLogic ${ }^{\text {TM }}$ operands | ... 5-71 |
| Modbus registers | ...B-45 |
| settings | 5-33 |
| specifications. | 2-8 |
| COUNTERS |  |
| actual values | 6-5 |
| settings | 5-142 |
| CRC ALARM | 5-42 |
| CRC-16 ALGORITHM | B-2 |
| CRITICAL FAILURE RELAY.. | 2-11, 3-7 |
| CSA APPROVAL | 2-14 |
| CT BANKS |  |
| settings | 5-45 |
| CT INPUTS | 3-9, 5-6, 5-45 |
| CT WIRING | ....3-9 |
| CURRENT BANK | 5-45 |
| CURRENT DEMAND | 5-27 |
| CURRENT ELEMENTS | ... 5-96 |
| CURRENT HARMONICS | 2-9 |
| CURRENT METERING |  |
| actual values | .. 6-13 |
| Modbus registers | B-11 |
| specifications. | 2-9 |
| CURVES |  |
| definite time | 5-100, 5-122 |
| FlexCurves ${ }^{\text {TM }}$ | 5-62, 5-100 |
| 12 T | ..... 5-100 |
| IAC | ... 5-99 |
| IEC | 5-98 |
| IEEE | 5-97 |
| inverse time undervoltage | 5-122 |
| types | 5-96 |
| D |  |
| DATA FORMATS, MODBUS . | ....B-51 |
| DATA LOGGER |  |
| clearing | . 5-10, 7-1 |
| Modbus ................................................................. B-7 |  |
| Modbus registers ....................................B-11, B-18, B-19 |  |
| settings ................................................................5-26 |  |
| specifications. | ..................2-9 |
| via COMTRADE ....................................................... B-6 |  |
| DATE |  |
| DCMA INPUTS ......................................................... 6-18 |  |
|  |  |
|  |  |
|  |  |

settings ..... 2-10


| DNA-1 BIT PAIR | 5-154 |
| :---: | :---: |
| DNP COMMUNICATIONS |  |
| binary counters | E-10 |
| binary input points | E-8 |
| binary output points | E-9 |
| control relay output blocks | E-9 |
| device profile document | E-1 |
| frozen counters | E-10 |
| implementation table | E-4 |
| Modbus registers | B-17 |
| settings.... | 5-13 |
| DUPLEX, HALF | B-1 |
| E |  |
| EGD PROTOCOL |  |
| actual values | 6-8 |
| Modbus registers | B-30, B-31 |
| settings | 5-20 |
| ELECTROSTATIC DISCHARGE | 2-14 |
| ELEMENTS | 5-3 |
| ENERGY METERING |  |
| actual values | .. 6-15 |
| Modbus registers | .. B-13 |
| specifications | 2-9 |
| ENERGY METERING, CLEARING | . 5-10, 7-2 |
| ENERVISTA UR SETUP |  |
| creating a site list. | .. 4-1 |
| event recorder. | 4-2 |
| firmware upgrades | 4-2 |
| installation | 1-5 |
| introduction | 4-1 |
| oscillography | .. 4-2 |
| overview ... | 4-1 |
| requirements | 1-5 |
| EQUATIONS |  |
| definite time curve | 5-100, 5-122 |
| FlexCurve ${ }^{\text {TM }}$ | 5-100 |
| 12 t curves.. | 5-100 |
| IAC curves | .. 5-99 |
| IEC curves | .. 5-98 |
| IEEE curves | 5-97 |
| ETHERNET |  |
| actual values | .. 6-6 |
| configuration | 1-7 |
| Modbus registers | . B-10 |
| settings. | 5-12 |
| EVENT CAUSE INDICATORS | 4-5 |
| EVENT RECORDER |  |
| actual values. | ... 6-19 |
| clearing | 5-10, 7-1 |
| Modbus .. | ....... B-7 |
| Modbus registers | B-15 |
| specifications | 2-9 |
| via enerVista software | 4-2 |
| EVENTS SETTING | 5-4 |
| XCEPTION RESPONSES | B-5 |

F
F485 ..... 1-10
FACEPLATE ..... 3-1
FACEPLATE PANELS ..... 4-4, 4-7
FAST FORM-C RELAY ..... 2-11
FAST TRANSIENT TESTING ..... 2-14
FAX NUMBERS ..... 1-1
FEATURES ..... 2-1
FIRMWARE REVISION ..... 6-21
FIRMWARE UPGRADES ..... 4-2
FLASH MESSAGES ..... 5-8
FLEX STATE PARAMETERS
actual values ..... 6-6
Modbus registers ..... B-15, B-31
settings ..... 5-35
specifications ..... 2-8
FLEXCURVES ${ }^{\text {m }}$
equation ..... 5-100
Modbus registers ..... B-21, B-35
settings ..... 5-62
specifications ..... 2-8
table ..... 5-62
FLEXELEMENTS™
actual values ..... 6-17
direction ..... 5-85
FlexLogic ${ }^{\text {TM }}$ operands ..... 5-71
hysteresis ..... 5-85
Modbus registers ..... B-32, B-34
pickup ..... 5-85
scheme logic ..... 5-84
settings ..... 5-83, 5-84, 5-86
specifications ..... 2-8
FLEXLOGIC ${ }^{\text {™ }}$
editing with enerVista UR Setup ..... 4-1
equation editor ..... 5-82
evaluation ..... 5-77
example ..... 5-69, 5-77
example equation. ..... 5-130
gate characteristics ..... 5-75
Modbus registers ..... B-22
operands ..... 5-70, 5-71
operators. ..... 5-76
rules ..... 5-77
specifications ..... 2-8
timers ..... 5-82
worksheet ..... 5-79
FLEXLOGIC ${ }^{\text {T }}$ EQUATION EDITOR ..... 5-82
FLEXLOGIC ${ }^{\text {M }}$ TIMERS
Modbus registers ..... B-22
settings ..... 5-82
FORCE CONTACT INPUTS ..... 5-166
FORCE CONTACT OUTPUTS ..... 5-167
FORCE TRIGGER ..... 6-19
FORM-A RELAY
high impedance circuits ..... 3-11
outputs ..... 3-15
specifications ..... 2-11
FORM-C RELAY
outputs ..... 3-10, 3-15
specifications ..... 2-11
FREQUENCY METERING
actual values ..... 6-16
Modbus registers ..... B-13
settings ..... 5-47
specifications ..... 2-9
FREQUENCY TRACKING ..... 5-47, 6-17
FREQUENCY, NOMINAL ..... 5-47
FUNCTION SETTING ..... 5-4
FUNCTIONS ..... 2-3
FUSE ..... 2-11

## G

G. 703 ...................................................3-25, 3-26, 3-27, 3-30
GE TYPE IAC CURVES .................................................... 5-99
GROUND CURRENT METERING ........................................6-13
GROUND IOC
FlexLogic ${ }^{\text {TM }}$ operands ...................................................5-71
logic ............................................................................ 5-117
Modbus registers ..........................................................B-25
settings ....................................................................... 5-117
GROUND TIME OVERCURRENT
see entry for GROUND TOC
GROUND TOC
FlexLogic ${ }^{\text {TM }}$ operands .....................................................5-71
logic .......................................................................... 5-116
Modbus registers ...........................................................B-24
settings ..................................................................... 5-116
specifications...................................................................2-6
GROUPED ELEMENTS ....................................................5-88
GSSE ................................................ 5-152, 5-153, 5-154, 6-5
H
HALF-DUPLEX................................................................ B-1
HARMONIC CONTENT ..................................................... 6-16
HARMONICS
actual values .................................................................. 6-16
HARMONICS METERING
specifications...................................................................2-9
HOTTEST-SPOT TEMPERATURE
actual values ................................................................. 6-12
FlexLogic ${ }^{\text {TM }}$ operands ................................................... 5-73
Iogic ..............................................................................5-94
Modbus registers ...........................................................B-25
settings ......................................................................5-93
specifications..................................................................2-7
HTTP PROTOCOL ............................................................ 5-18
HUMIDITY .......................................................................2-13

## I

I2T CURVES ..... 5-100
IAC CURVES ..... 5-99
IEC 60870-5-104 PROTOCOL
interoperability document ..... D-1
Modbus registers ..... B-18
point list ..... D-9
settings ..... 5-19
IEC 61850 PROTOCOL device ID.................................................................... 5-152
DNA2 assignments ..... 5-154
Modbus registers ..... B-36, B-37
remote device settings ..... 5-152
remote inputs ..... 5-153
settings ..... 5-16
UserSt-1 bit pair ..... 5-154
IEC CURVES ..... 5-98
IED ..... 1-2
IED SETUP ..... 1-5
IEEE C37.94 COMMUNICATIONS ..... 3-31, 3-32, 3-34
IEEE CURVES ..... 5-97
IMPORTANT CONCEPTS ..... 1-4
IN SERVICE INDICATOR ..... 1-12, 7-4


## K

$\qquad$

## L


settings ..... 5-95
specifications ..... 2-7
LOST PASSWORD ..... 5-7
M
MAINTENANCE COMMANDS ..... 7-2
MANUFACTURING DATE ..... 6-21
MEMORY MAP DATA FORMATS ..... B-51
MENU HEIRARCHY 1-11, 4-9
MENU NAVIGATION ..... $1-11,4-8,4-9$
METERING
conventions. ..... 6-9, 6-10
current ..... 2-9
demand ..... 2-9
frequency ..... 2-9
harmonics ..... 2-9
power ..... 2-9
THD ..... 2-9
voltage ..... 2-9
METERING CONVENTIONS ..... 6-10
MODBUS
data logger ..... B-6, B-7
event recorder ..... B-7
exception responses ..... B-5
execute operation ..... B-4
flex state parameters ..... 5-35
function code 03/04h ..... B-3
function code 05h ..... B-4
function code 06h ..... B-4
function code 10h ..... B-5
introduction ..... B-1
memory map data formats ..... B-51
obtaining files ..... B-6
oscillography ..... B-6
passwords ..... B-7
read/write settings/actual values ..... B-3
settings ..... 5-12, 5-22
store multiple settings ..... B-5
store single setting ..... B-4
supported function codes ..... B-3
user map 5-22, B-10, B-21
MODEL INFORMATION ..... 6-21
MODIFICATION FILE NUMBER ..... 6-21
MODULES
communications ..... 3-19
contact inputs/outputs. ..... 3-11, 3-13, 3-14
CT ..... 3-9
CT/VT ..... 3-8, 5-6
direct inputs/outputs ..... 3-24
insertion. ..... 3-4
order codes ..... 2-5
ordering ..... 2-5
power supply ..... 3-7
transducer I/O ..... 3-17
VT ..... 3-9
withdrawal ..... 3-4
MONITORING ELEMENTS ..... 5-144
MOUNTING ..... 3-1
N
NAMEPLATE ....................................................................... 1-1 NEUTRAL DIRECTIONAL OC
Modbus registers ..... B-27


## 0



| FlexCurves ${ }^{\text {™ }}$ | 5-100 |
| :---: | :---: |
| 12 T | 5-100 |
| IAC | 5-99 |
| IEC | 5-98 |
| IEEE | 5-97 |
| OVERFREQUENCY |  |
| FlexLogic ${ }^{\text {TM }}$ operands | 5-72 |
| logic | ... 5-138 |
| settings | 5-138 |
| specifications | 2-7 |
| OVERFRQUENCY |  |
| Modbus registers | B-26 |
| OVERVOLTAGE |  |
| auxiliary | 2-7, 5-127 |
| neutral | 2-7, 5-125 |
| phase | 2-7, 5-124 |
| P |  |
| PANEL CUTOUT | 3-1 |
| PARITY | 5-11 |
| PASSWORD SECURITY | 5-7 |
| PASSWORDS |  |
| changing | 4-12 |
| lost password | 4-12, 5-7 |
| Modbus | B-7 |
| Modbus registers | B-14, B-17 |
| overview. | ... 1-12 |
| security | 5-7 |
| settings | 5-7 |
| PC SOFTWARE |  |
| see entry for ENERVISTA UR |  |
| PERCENT DIFFERENTIAL |  |
| calculations ............................................................5-89 |  |
| characteristic ..........................................................5-90 |  |
| FlexLogic ${ }^{\text {TM }}$ operands ............................................ 5-74 |  |
| logic ................................................................... 5-92 |  |
| Modbus registers ....................................................B-26 |  |
| settings ....................................................... 5-89, 5-90 |  |
| specifications. | 2-6 |
| PERMISSIVE FUNCTIONS ........................................ 5-122 |  |
| PER-UNIT QUANTITY | 5-4 |
| PHASE ANGLE METERING ........................................ 6-10 |  |
| PHASE COMPENSATION...........................................5-57 |  |
| PHASE CURRENT METERING .................................... 6-13 |  |
| PHASE DIRECTIONAL OC |  |
| Modbus registers ....................................................B-27 |  |
| PHASE DIRECTIONAL OVERCURRENT |  |
| FlexLogic ${ }^{\text {TM }}$ operands .............................................. 5-72 |  |
| logic .................................................................. 5-106 |  |
| phase A polarization .............................................. 5-104 |  |
|  |  |
|  |  |
| PHASE INSTANTANEOUS OVERCURRENT see entry for PHASE IOC |  |
| PHASE IOC |  |
| FlexLogic ${ }^{\text {TM }}$ operands .............................................. 5-72 |  |
| logic ................................................................... 5-103 |  |
|  |  |
|  |  |
| PHASE OVERVOLTAGE |  |
| FlexLogic ${ }^{\text {TM }}$ operands .............................................. 5-72 |  |
| logic ................................................................... 5-124 |  |
| Modbus registers ...........................................................................................................................................settings ........ |  |
|  |  |
| specifications.........................................................2-7 |  |


| Modbus registers ............................................ B-49, B-50 |  |
| :---: | :---: |
| UserSt-1 bit pair | 5-154 |
| REPLACEMENT MODULES |  |
| RESETTING | .5-74, 5-15 |
| RESTRICTED GROUND FAULT |  |
| actual values | 6-18 |
| FlexLogic ${ }^{\text {TM }}$ operands ............. |  |
| Modbus registers ........................................... B-11, B-50 |  |
|  |  |
| specifications ........................................................ 2-6 |  |
|  |  |
| RFI SUSCEPTIBILITY ................................................ 2-14 |  |
| RFI, CONDUCTED ................................................... 2-14 |  |
|  |  |
| RMS VOLTAGE ......................................................... 2-9 |  |
| ROLLING DEMAND .................................................. 5-28RS232 |  |
|  |  |
| fig |  |
| specifications |  |
| wiring | 3-18 |
| RS422 |  |
|  |  |
|  |  |
| two-channel application ............................................ 3-28 |  |
| with fiber interface | 3-30 |
| RS485 |  |
| communications |  |
| description ............................................................. 3-20 |  |
| specifications | 2-12 |
| RTD INPUTS |  |
| actual values | .. 6-18 |
| Modbus registers .............................................B-16, B-28 |  |
| settings ............................................................. 5-162 |  |
| specifications ......................................................... 2-10 |  |
|  |  |
|  |  |
| S |  |
| SALES Office |  |
| SCAN OPERATION..................................................... 1-4 |  |
| SELECTOR SWITCH |  |
| actual values ......... |  |
| application example ............................................. 5-136 |  |
| FlexLogic ${ }^{\text {TM }}$ operands |  |
| logic.................................................................. 5-136 |  |
| Modbus registers ........................................... B-34, B-35 |  |
| settings .............................................................. 5-131 |  |
| specifications |  |
| timing........................................................................... 5 -134, $5-135$ |  |
| SELF-TESTS |  |
| description |  |
| error messages |  |
| FlexLogic ${ }^{\text {TM }}$ operands ............................................. 5-75 |  |
| Modbus registers .......................................................B-8 |  |
| SERIAL NUMBER ................................................... 6-21 |  |
| SERIAL PORTS |  |
|  |  |
|  |  |
| SETTING GROUPS.......................... 5-73, 5-88, 5-130, B-25 |  |
| SETTINGS, CHANGING ............................................. 4-10 |  |
| SIGNAL SOURCES |  |
| description ................................................................. 5-5 |  |
|  |  |
|  |  |
| SIGNAL TYPES ......................................................... 1-3 |  |
| SINGLE LINE DIAGRAM ........................................ 2-1, 2-2 |  |
| SITE LIST, CREATING ....................................................... 4-1 |  |

SNTP PROTOCOL
Modbus registers ..... B-18
settings ..... 5-20
SOFTWARE
installation ..... 1-5
see entry for ENERVISTA UR SETUP SOFTWARE ARCHITECTURE ..... 1-4
SOFTWARE, PC
see entry for enerVista UR Setup
SOURCE FREQUENCY ..... 6-16
SOURCE TRANSFER SCHEMES ..... 5-122SOURCES
description ..... 5-5
example use of ..... 5-49
metering ..... 6-13
Modbus registers ..... B-20
settings ..... 5-48
SPECIFICATIONS ..... 2-6
ST TYPE CONNECTORS ..... 3-20
STANDARD ABBREVIATIONS ..... F-4
STATUS INDICATORS ..... 4-5
SURGE IMMUNITY ..... 2-14
SYMMETRICAL COMPONENTS METERING ..... 6-10
SYSTEM FREQUENCY ..... 5-47
SYSTEM SETUP ..... 5-45
T
TARGET MESSAGES ..... 7-4
TARGET SETTING ..... 5-4
TARGETS MENU ..... 7-4
PORT NUMBER ..... 5-18
actual values ..... 6-4
clearing counters ..... 7-2
lexLogic ${ }^{\text {TM }}$ operands ..... 5-73
Modbus registers ..... B-34
overview ..... 5-159
specifications ..... 2-10
TEMPERATURE, OPERATING ..... -13
TERMINALS ..... 3-5
force contact inputs ..... 5-166
lamp test ..... 5-167
self-test error messages ..... 7-4
Modbus registers ..... B-14
THD METERING ..... 5
THERMAL DEMAND CHARACTERISTIC ..... 5-28 HERMAL INPUTS
settings ..... 5-61
ME ..... 7-2
see PHASE, NEUTRAL, and GROUND TOC entries TIMERS ..... 5-82
ground ..... 5-116
neutral ..... 5-108
specifications ..... 2-6
TRACKING FREQUENCY ..... 6-17, B-30
TRANSDUCER I/O
actual values ..... 6-18
settings ..... 5-161, 5-162
specifications ..... 2-10
wiring ..... 3-17
TRANSFORMER
actual values ..... 6-12
aging factor ..... 2-7, 5-94
hottest-spot temperature ..... 2-7, 5-93
loss of life ..... 2-7, 5-95
metering ..... 6-12
Modbus registers ..... B-21
phase relationships ..... 5-53
phasors ..... 5-54
settings51
thermal inputs ..... 5-61
TRANSFORMER DIFFERENTIAL ..... 5-50, 5-52, 5-59, 5-88
Modbus registers ..... B-14
TRIP LEDs ..... 5-31
TROUBLE INDICATOR ..... 1-12, 7-4
TYPE TESTS ..... 2-14
TYPICAL WIRING DIAGRAM ..... 3-6
U
UL APPROVAL ..... 2-14
UNAUTHORIZED ACCESS
commands ..... 5-10
resetting ..... 7-2
UNDERFREQUENCY
FlexLogic ${ }^{\text {TM }}$ operands ..... 5-73
logic ..... 5-137
Modbus registers ..... B-29
settings ..... 5-137
specifications ..... 2-7
UNDERVOLTAGE
auxiliary ..... 2-7
phase ..... 2-7, 5-123
UNDERVOLTAGE CHARACTERISTICS ..... 5-122
UNIT NOT PROGRAMMED ..... 5-44
UNPACKING THE RELAY ..... 1-1
UNRETURNED MESSAGES ALARM ..... 5-43
UPDATING ORDER CODE ..... 7-2
URPC
see entry for ENERVISTA UR SETUP
USER-DEFINABLE DISPLAYS
example ..... 5-37
invoking and scrolling ..... 5-36
Modbus registers ..... B-17, B-21
settings ..... 5-36, 5-37
specifications ..... 2-8
USER-PROGRAMMABLE FAULT REPORT
actual values ..... 6-19
clearing ..... 5-10, 7-1
Modbus registers ..... B-15
settings ..... 5-22
USER-PROGRAMMABLE LEDs
custom labeling ..... 4-7
description ..... 4-6
Modbus registers ..... B-19
settings ..... 5-31
specifications ..... 2-8
USER-PROGRAMMABLE PUSHBUTTONS
FlexLogic ${ }^{\text {TM }}$ operands ..... 5-75
Modbus registers ..... B-22
settings. ..... 5-34
specifications ..... 2-8
USER-PROGRAMMABLE SELF TESTS Modbus registers ..... B-20
settings. ..... 5-32
USERST-1 BIT PAIR ..... 5-154
V
VAR-HOURS ..... 2-9, 6-15
VIBRATION TESTING ..... 2-14
VIRTUAL INPUTS
actual values ..... 6-3
commands ..... 7-1
FlexLogic ${ }^{\text {TM }}$ operands ..... 5-74
logic ..... 5-148
Modbus registers ..... B-8, B-40
settings ..... 5-148
VIRTUAL OUTPUTS
actual values ..... 6-4
FlexLogic ${ }^{\text {TM }}$ operands ..... 5-74
Modbus registers ..... B-42
settings ..... 5-151
VOLTAGE BANKS ..... 5-46
VOLTAGE DEVIATIONS ..... 2-14
voltage Elements ..... 5-122
VOLTAGE METERING
Modbus registers ..... B-11
specifications ..... 2-9
values ..... 6-13
VOLTAGE RESTRAINT CHARACTERISTIC ..... 5-101
VOLTS PER HERTZ
actual values ..... 6-17, 6-18
curves ..... 5-129
FlexLogic ${ }^{\text {TM }}$ operands ..... 5-73
ogic ..... 5-128
Modbus registers ..... B-35
settings ..... 5-128
specifications ..... 2-7
VT INPUTS 3-9, 5-6, 5-46
VT WIRING ..... 3-9
W
WARRANTY ..... F-6
WATT-HOURS ..... 5-15
WEBSITE ..... 1-1
WINDING
application example ..... 5-59
Modbus registers ..... B-21
WIRING DIAGRAM ..... 3-6
Z
ZERO SEQUENCE CORE BALANCE ..... 3-9
ZERO-SEQUENCE COMPENSATION ..... 5-57


[^0]:    Static (Steady-State) Object Number: $\mathbf{3 0}$
    Change Event Object Number: 32
    Request Function Codes supported: 1 (read), 2 (write, deadbands only), 22 (assign class)
    Static Variation reported when variation 0 requested: 1 (32-Bit Analog Input)
    Change Event Variation reported when variation 0 requested: 1 (Analog Change Event without Time)
    Change Event Scan Rate: defaults to $\mathbf{5 0 0} \mathbf{~ m s}$
    Change Event Buffer Size: $\mathbf{8 0 0}$
    Default Class for all Points: 1

