# INSTRUCTION MANUAL 

## DISTANCE RELAY

GRZ100 - ***B

## TOSHIBA CORPORATION

(C) TOSHIBA Corporation 2006 All Rights Reserved.

## Safety Precautions

Before using this product, please read this chapter carefully.
This chapter describes the safety precautions recommended when using the GRZ100. Before installing and using the equipment, this chapter must be thoroughly read and understood.

## Explanation of symbols used

Signal words such as DANGER, WARNING, and two kinds of CAUTION, will be followed by important safety information that must be carefully reviewed.

## A. DANGER

AWARNING
Indicates a potentially hazardous situation which could result in death or serious injury if you do not follow the instructions.

ACAUTION Indicates a potentially hazardous situation which if not avoided, may result in minor injury or moderate injury.
CAUTION Indicates a potentially hazardous situation which if not avoided, may result in property damage.

## A DANGER

## - Current transformer circuit

Never allow the current transformer (CT) secondary circuit connected to this equipment to be opened while the primary system is live. Opening the CT circuit will produce a dangerously high voltage.

## AWARNING

## - Exposed terminals

Do not touch the terminals of this equipment while the power is on, as the high voltage generated is dangerous.

## - Residual voltage

Hazardous voltage can be present in the DC circuit just after switching off the DC power supply. It takes about 30 seconds for the voltage to discharge.

## - Fiber optic

Do not view directly with optical instruments.

## ACAUTION

## - Earth

The earthing terminal of the equipment must be securely earthed.

## CAUTION

## - Operating environment

The equipment must only be used within the range of ambient temperature, humidity and dust, etc. detailed in the specification and in an environment free of abnormal vibration.

## - Ratings

Before applying AC voltage and current or the DC power supply to the equipment, check that they conform to the equipment ratings.

## - Printed circuit board

Do not attach and remove printed circuit boards when DC power to the equipment is on, as this may cause the equipment to malfunction.

## - External circuit

When connecting the output contacts of the equipment to an external circuit, carefully check the supply voltage used in order to prevent the connected circuit from overheating.

## - Connection cable

Carefully handle the connection cable without applying excessive force.

## - Modification

Do not modify this equipment, as this may cause the equipment to malfunction.

## - Short-link

Do not remove a short-link which is mounted at the terminal block on the rear of the relay before shipment, as this may cause the performance of this equipment such as withstand voltage, etc., to reduce.

## - Tripping circuit connections

Must connect the FD (Fault Detector) output contact with A- to C-phase tripping output contacts in series in case of the model 400 and 500 series.

## - Disposal

When disposing of this equipment, do so in a safe manner according to local regulations.

## Contents

Safety Precautions ..... 1

1. Introduction ..... 9
2. Application Notes ..... 12
2.1 Power System Protection - Basic Concepts ..... 12
2.1.1 The Function of The Protection Relay ..... 12
2.1.2 Protection Relay Requirements ..... 12
2.1.4 Distance Relay - General Performance ..... 14
2.1.5 Power Swing and Out-of-Step ..... 15
2.1.6 Redundant Configuration of Protection Relay and Improvement of Reliability ..... 16
2.2 Principle of Distance Measurement ..... 17
2.2.1 Phase Fault ..... 17
2.2.2 Earth Fault ..... 18
2.3 Multi-Terminal Line Protection ..... 20
2.3.1 Increased Use of Multi-Terminal Lines ..... 20
2.3.2 Protection Problems on Three-Terminal Application ..... 20
2.3.3 Three-Terminal Line Protection ..... 22
2.4 Protection Scheme ..... 24
2.4.1 Time-Stepped Distance Protection ..... 24
2.4.2 Zone 1 Extension Protection ..... 40
2.4.3 Command Protection ..... 43
2.4.4 Directional Earth Fault Protection ..... 60
2.4.5 Overcurrent Backup Protection ..... 65
2.4.6 Thermal Overload Protection ..... 69
2.4.7 Switch-Onto-Fault Protection ..... 72
2.4.8 Stub Protection ..... 73
2.4.9 Overvoltage and Undervoltage Protection ..... 74
2.4.10 Broken Conductor Protection ..... 81
2.4.11 Breaker Failure Protection ..... 84
2.4.12 Out-of-Step Protection ..... 87
2.4.13 Voltage Transformer Failure Supervision ..... 89
2.4.14 Power Swing Blocking ..... 91
2.4.15 Tripping Output Signals ..... 95
2.4.16 Fault Detector ..... 97
2.5 Characteristics of Measuring Elements ..... 100
2.5.1 Distance Measuring Elements Z1, Z1X, Z2, ZF, Z3, Z4, ZR1, ZR2, ZND and PSB ..... 100
2.5.2 Phase Selection Element UVC ..... 109
2.5.3 Directional Earth Fault Elements DEFF and DEFR ..... 109
2.5.4 Inverse Definite Minimum Time (IDMT) OC, EF, DEF Elements ..... 111
2.5.5 Out-of-Step Element OST ..... 112
2.5.6 Voltage and Synchronism Check Elements OVL, UVL, OVB, UVB, and SYN ..... 113
2.5.7 Current Change Detection Elements OCD and OCDP ..... 114
2.5.8 Negative Sequence Directional Elements DOCNF and DOCNR ..... 115
2.5.9 Level Detectors ..... 116
2.5.10 Fault Detector Elements ..... 117
2.6 Autoreclose ..... 119
2.6.1 Application ..... 119
2.6.2 Scheme Logic ..... 121
2.6.3 Setting ..... 131
2.6.4 Autoreclose Output Signals ..... 133
2.7 Fault Locator ..... 134
2.7.1 Application ..... 134
2.7.2 Distance to Fault Calculation ..... 134
2.7.3 Starting Calculation ..... 135
2.7.4 Displaying Location ..... 136
2.7.5 Setting ..... 136
3. Technical Description ..... 138
3.1 Hardware Description ..... 138
3.1.1 Outline of Hardware Modules ..... 138
3.1.2 Transformer Module ..... 145
3.1.3 Signal Processing Module ..... 146
3.1.4 Binary Input and Output Module ..... 147
3.1.5 Human Machine Interface (HMI) Module ..... 152
3.1.6 Fault Detector Module ..... 154
3.2 Input and Output Signals ..... 155
3.2.1 Input Signals ..... 155
3.2.2 Binary Output Signals ..... 157
3.2.3 PLC (Programmable Logic Controller) Function ..... 158
3.3 Automatic Supervision ..... 159
3.3.1 Basic Concept of Supervision ..... 159
3.3.2 Relay Monitoring and Testing ..... 159
3.3.3 CT Circuit Current Monitoring ..... 160
3.3.4 Signal Channel Monitoring and Testing ..... 160
3.3.5 Disconnector Monitoring ..... 161
3.3.6 Failure Alarms ..... 161
3.3.7 Trip Blocking ..... 162
3.3.8 Setting ..... 162
3.4 Recording Function ..... 163
3.4.1 Fault Recording ..... 163
3.4.2 Event Recording ..... 165
3.4.3 Disturbance Recording ..... 165
3.5 Metering Function ..... 167
4. User Interface ..... 168
4.1 Outline of User Interface ..... 168
4.1.1 Front Panel ..... 168
4.1.2 Communication Ports ..... 170
4.2 Operation of the User Interface ..... 172
4.2.1 LCD and LED Displays ..... 172
4.2.2 Relay Menu ..... 174
4.2.3 Displaying Records ..... 177
4.2.4 Displaying Status Information ..... 182
4.2.5 Viewing the Settings ..... 186
4.2.6 Changing the Settings ..... 187
4.2.7 Testing ..... 209
4.3 Personal Computer Interface ..... 215
4.4 Relay Setting and Monitoring System ..... 215
4.5 IEC 60870-5-103 Interface ..... 216
4.6 Clock Function ..... 216
5. Installation ..... 217
5.1 Receipt of Relays ..... 217
5.2 Relay Mounting ..... 217
5.3 Electrostatic Discharge ..... 217
5.4 Handling Precautions ..... 217
5.5 External Connections ..... 218
6. Commissioning and Maintenance ..... 219
6.1 Outline of Commissioning Tests ..... 219
6.2 Cautions ..... 220
6.2.1 Safety Precautions ..... 220
6.2.2 Cautions on Tests ..... 220
6.3 Preparations ..... 221
6.4 Hardware Tests ..... 222
6.4.1 User Interfaces ..... 222
6.4.2 Binary Input Circuit ..... 223
6.4.3 Binary Output Circuit ..... 224
6.4.4 AC Input Circuits ..... 225
6.5 Function Test ..... 226
6.5.1 Measuring Element ..... 226
6.5.2 Timer Test ..... 245
6.5.3 Protection Scheme ..... 246
6.5.4 Metering and Recording ..... 251
6.5.5 Fault Locator ..... 251
6.6 Conjunctive Tests ..... 252
6.6.1 On Load Test ..... 252
6.6.2 Signaling Circuit Test ..... 252
6.6.3 Tripping and Reclosing Circuit Test ..... 254
6.7 Maintenance ..... 256
6.7.1 Regular Testing ..... 256
6.7.2 Failure Tracing and Repair ..... 256
6.7.3 Replacing Failed Modules ..... 258
6.7.4 Resumption of Service ..... 260
6.7.5 Storage ..... 260
7. Putting Relay into Service ..... 261
Appendix A Block Diagrams ..... 263
Appendix B Signal List ..... 271
Appendix C Variable Timer List ..... 307
Appendix D Binary Input/Output Default Setting List ..... 309
Appendix E Details of Relay Menu and LCD \& Button Operation ..... 321
Appendix F Case Outline ..... 331
Appendix G Typical External Connections ..... 339
Appendix H Relay Setting Sheet ..... 351
Appendix I Commissioning Test Sheet (sample) ..... 377
Appendix J Return Repair Form ..... 383
Appendix K Technical Data ..... 389
Appendix L Symbols Used in Scheme Logic ..... 401
Appendix M Example of Setting Calculation ..... 405
Appendix N IEC60870-5-103: Interoperability and Troubleshooting ..... 417
Appendix 0 Programmable Reset Characteristics and Implementation of Thermal Model to IEC60255-8 ..... 429
Appendix $P \quad$ Inverse time Characteristics ..... 433
Appendix Q Failed Module Tracing and Replacement ..... 437
Appendix $\mathbf{R}$ Ordering ..... 443

The data given in this manual are subject to change without notice. (Ver.0.4)

## 1. Introduction

GRZ100 is a fully numeric distance protection for application to transmission lines on solidly earthed network.

The GRZ100 provides the following protection schemes.

- Time-stepped distance protection with four forward zones, three reverse zones, and one non-directional zone
- Zone 1 extension protection
- Command protection (Distance protection using telecommunication)
- Overcurrent backup protection
- Thermal overload protection
- Switch-on-to-fault and stub protection
- Circuit breaker failure protection
- Broken conductor detection
- Out-of-step protection
- Overvoltage and undervoltage protection

For high-resistance earth faults, the GRZ100 provides the following directional earth fault protections.

- Directional earth fault protection
- Directional earth fault protection utilizing telecommunications facilities

The GRZ100 actuates high-speed single-shot autoreclose or multi-shot autoreclose.
The GRZ100 provides the following metering and recording functions.

- Metering
- Fault record
- Event record
- Fault location
- Disturbance record

The GRZ100 provides the following menu-driven human interfaces for relay setting or viewing of stored data.

- Relay front panel; LCD, LED display and operation keys
- Local PC
- Remote PC

Password protection is provided to change settings. Eight active setting groups are provided. This allows the user to set one group for normal operating conditions while other groups may be set to cover alternative operating conditions.

GRZ100 provides either two or three serial ports, and an IRIG-B port for an external clock connection. A local PC can be connected via the RS232C port on the front panel of the relay.

Either one or two rear ports (RS485 or fibre optic) are provided for connection to a remote PC and for IEC60870-5-103 communication with a substation control and automation system. Further, Ethernet LAN port can be provided as option.

Further, the GRZ100 provides the following functions.

- Configurable binary inputs and outputs
- Programmable logic for I/O configuration, alarms, indications, recording, etc.
- Automatic supervision

The GRZ100 has the following models:
Relay Type and Model

## Relay Type:

- Type GRZ100; Numerical distance relay


## Relay Model:

- Model 100 series: No autoreclose
- Model 101B; 18 binary inputs, 13 binary outputs, 6 binary outputs for tripping
- Model 102B; 18 binary inputs, 23 binary outputs, 6 binary outputs for tripping
- Model 200 series: With autoreclose for single breaker scheme
- Model 201B; 18 binary inputs, 23 binary outputs, 6 binary outputs for tripping
- Model 202B; 21 binary inputs, 27 binary outputs, 6 binary outputs for tripping
- Model 203B; 24 binary inputs, 41 binary outputs, 6 binary outputs for tripping
- Model 204B; 22 binary inputs(12-independent), 19 binary outputs, 3 binary outputs for tripping
- Model 205B; 25 binary inputs(12-independent), 23 binary outputs, 3 binary outputs for tripping
- Model 206B; 28 binary inputs(12-independent), 37 binary outputs, 3 binary outputs for tripping
- Model 300 series: With autoreclose for one-and-a-half breaker scheme
- Model 301B; 18 binary inputs, 23 binary outputs, 6 binary outputs for tripping
- Model 302B; 21 binary inputs, 27 binary outputs, 6 binary outputs for tripping
- Model 303B; 24 binary inputs, 41 binary outputs, 6 binary outputs for tripping
- Model 400 series: With autoreclose for single breaker scheme / With fault detector
- Model 401B; 21 binary inputs, 35 binary outputs, 6 binary outputs for tripping
- Model 500 series: With autoreclose for one-and-a-half breaker scheme / With fault detector
- Model 501B; 21 binary inputs, 35 binary outputs, 6 binary outputs for tripping

Table 1.1.1 shows the measuring elements incorporated.
Table 1.1.1 Incorporated Measuring Elements

| Measuring elements | Model | 101, 102 | $\begin{aligned} & 201,202, \\ & 203,204, \\ & 205,206 \end{aligned}$ | $\begin{gathered} 301, \\ 302,303 \end{gathered}$ | 401 | 501 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Z1S, Z1SX, Z2S, Z3S, ZFS, ZR1S, ZR2S, Z4S, ZNDS | Distance element (phase fault) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Z1G, Z1GX, Z2G, Z3G, ZFG, ZR1G, ZR2G, Z4G, ZNDG | Distance element (earth fault) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| UVC | Phase selection element | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| DEFF, DEFR | Directional earth fault element | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| OC, OCl | Overcurrent element (phase fault) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| EF, EFI | Overcurrent element (earth faut) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| SOTF (OCH) | Switch-onto-fault protection | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| VTF (OVG, UVF, OCD) | VT failure supervision | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| PSBS, PSBG | Power swing blocking | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| OST | Out-of-step tripping | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| BF | Breaker failure protection | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| THM | Thermal overload protection | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| OVS1, OVS2, OVG1, OVG2, UVS1, UVS2, UVG1, UVG2 | Overvoltage \& undervoltage protection | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| BCD | Broken conductor detection | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FL | Fault locator | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| ARC (SYN, UV, OV) | Autoreclose function |  | 1CB | 2CB | 1CB | 2CB |
| FD | Fault detector |  |  |  | $\checkmark$ | $\checkmark$ |
| AMF | Automatic monitoring | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|  | Automatic testing (Signal channel testing) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

## 2. Application Notes

### 2.1 Power System Protection - Basic Concepts

### 2.1.1 The Function of The Protection Relay

The protection relay, which protects the power system from various faults, plays an extremely important role in power system stability. Its main functions are as follows:

Prevention of power supply interruption:
Fault clearance and resumption of healthy power transmission as soon as possible.
Prevention of damage to equipment:
Consecutive system faults will eventually lead to damage to primary plant, for example destruction of insulators, rupture of lines, burning of transformers, etc. The protection relay can help prevent such damage to equipment.
Prevention of system instability:
is necessary to remove Power system faults at high speed by using protection relays as the existence of a system fault for an extended period of time may initiate a generator out-of-step condition.

### 2.1.2 Protection Relay Requirements

The protection relay, which plays the important role of protecting the power system from faults, must meet several requirements. These requirements can be summarized as follows:
a) Selectivity: All faults that occur on the power system should be removed but at the same time it must be ensured that only the minimum section of the power system must be isolated in order to clear the fault. Figure 2.1.2.1 shows typical different protection zones on the power system. In order to provide complete coverage by the protection, the neighboring protection zones are set to overlap. Figure 2.1.2.2 shows the relationship between the circuit breaker and CT locations. In Figure (a), the CTs are installed on both sides of the circuit breaker, one for line protection and the other for busbar protection, enabling the protection coverage to overlap. Figure (b) shows the case where the same CT is used for both the line protection and busbar protection. In this case, the line protection would operate for a fault which occurred midway between the CT and circuit breaker, but the busbar protection would not operate, thus failing to remove the fault. It is important to prevent blind spots in power system protection design.
b) High speed: In order to avoid damage to equipment or power system instability, it is important to shorten the duration of faults by applying high-speed protection relays. The GRZ100 has a minimum operating time of 18 ms . However, the operating time of the circuit breaker and transmission delay in the case of carrier protection, etc. must also be taken into consideration.


Figure 2.1.2.1 Protection Zones


Figure 2.1.2.2 Protection Zone and CB, CT
c) Reliability: The protection relay is normally in a quiescent state and is available to respond to faults that may occur on the power system in the protection zone. In order that this may be achieved the availability of the protection relay is checked even in its quiescent state.
A fundamental requirement to ensure that the reliability of the protection relay is high is that its components must be extremely reliable. This can be achieved by using high quality components and reducing the number of components. The GRZ100 reduces the number of parts by using state-of-the-art highly integrated semiconductor components.
To maintain high reliability, not only must the relay have a robust hardware structure but it is also important to detect any fault immediately and not to leave the relay in a faulted state for prolonged periods. Therefore, the GRZ100 is equipped with an automatic supervision function. Whenever a hardware fault occurs, an alarm is issued to inform the operator of the problem to permit remedial action.
In order to dramatically improve the operating reliability of the relay in the event of a system fault, there are two options: to use a protection relay with a duplicated protection system or to provide an additional fault detection relay within the relay with AND logic.

### 2.1.3 Main Protection and Backup Protection

The power system protection system generally consists of a main protection and a backup protection to reliably remove all faults. In principle, system faults must be removed in the shortest possible time and cause the minimum outage. This important function is served by the main protection. In distance protection, this function is served by the zone 1 element and command protection, etc. However, the main protection may not always function perfectly. For example, the main protection relay may not be able to function correctly due to a power supply failure, CVT failure, data transmission device failure, circuit breaker failure or failure of the main protection relay itself. In such cases, power system integrity depends on the backup protection.

The backup protection provides power system protection with a set time delay, its timer value is set in a range that allows coordination with the main protection. To achieve time coordination with the main protection, the time delay of the backup protection is determined with a margin in consideration of the following factors:

- Operating time of main protection relay
- Operating time of circuit breaker
- Reset time of backup protection relay

There are two types of backup protection: remote backup protection that provides backup from a remote substation at a different location to the main protection, and local backup protection installed in the same location as that of the main protection that provides backup from that substation.

Each of these protections has the following features:
Remote backup protection: Possible causes for main protection failures include relay faults, power supply faults, and various other factors. It is therefore important to provide backup protection from a remote substation to prevent the backup protection from failing due to the same causes as the local main protection. The zone 2 and zone 3 elements of distance relays, etc. provide as these remote backup protection functions.
Local backup protection: Provides backup protection at the same substation as that of the main protection and often has the purpose of providing backup when the circuit breaker fails to operate.

### 2.1.4 Distance Relay - General Performance

For distance relays, the reach of the zone 1 protection is usually set to approximately 80 to $90 \%$ of the length of the transmission line. This is to ensure that overreach tripping does not occur for external faults that occur beyond the busbar at the remote end. For internal faults that occur beyond the reach of zone 1, time delayed tripping by the zone 2 element is applied. High-speed tripping can be achieved by means of a "command protection system" that exchanges relay operation information with the remote end.

There are various causes for measuring errors in a distance relay. In the case of a fault with resistance, the reactance component seen by the relay at the power sending terminal is smaller than the actual value and it tends to overreach. On the contrary, the reactance component seen by the relay at the power receiving terminal is greater than the actual value and it tends to underreach. The line impedance has different values in different phases. When its average value is used for the relay setting, underreach will occur in a phase with a greater impedance than the average value. In the case of fault resistance, its impedance is greater for earth faults where the fault is grounded via a steel tower or tree rather than a phase fault consisting of arc resistance only. Therefore, measuring errors in the earth fault relay are generally greater than those in the phase fault relay. The fault arc is considered to be almost equivalent to pure resistance. But if the phase of a current that flows into a fault point from the remote end is different from the phase of the local current, the
voltage at the fault will have a phase angle difference with respect to the local current, producing a measuring error in the distance relay with the principle of measuring the reactance component. The existence of a zero-sequence current on the protected line and adjacent line can also cause errors in the earth fault relay. The zero-sequence current normally acts in the direction of relay underreaching due to the effect of the induced voltage. The compensation method will be described in detail in the next section. The earth fault relay contains more errors than the phase fault relays even with these compensation methods. Therefore, the earth fault relays are usually set with a greater margin than the phase fault relays.

Regarding protection relay measuring errors, it is also necessary to consider hardware errors in the relay itself, errors introduced by coupling capacitor voltage transformers (CCVT), and transient overreach errors caused by the DC component of the fault current. For GRZ100, the total of these errors is specified to be less than $5 \%$.

### 2.1.5 Power Swing and Out-of-Step

Power swings occur when the output voltages of generators at different points in the power system slip relative to each other, as a result of system instabilities which may be caused by sudden changes in load magnitude or direction, or by power system faults and their subsequent clearance. During the course of such a power swing, the impedance seen by a distance relay may move (relatively slowly) from the load area into the distance protection operating characteristic. In fact, this phenomenon appears to the distance protection measuring elements like a three phase fault condition and may result in tripping if no countermeasure is applied. Most power swings are transient conditions from which the power system can recover after a short period of time, and distance protection tripping is therefore highly undesirable in such cases. GRZ100 provides a power swing blocking function (PSB) to prevent unwanted tripping during a power swing. Figure 2.1.5.1 illustrates the typical impedance locus as seen by a distance relay during a transient power swing.


Figure 2 1.5.1 Impedance Locus during Transient Power Swing

A special case of the power swing condition occurs when the power system disturbance is so severe that generators lose synchronism with each other and are said to be out-of-step. During an out-of-step condition the phase angle between generators continues to increase and pass through $180^{\circ}$, at which point a distance relay measures an impedance equal to that for a three phase fault at the centre of the power system. The impedance locus typically describes an arc passing through the electrical centre, as shown in Figure 2.1.5.2.


Figure 2.1.5.2 Impedance Locus during Out-of-Step Condition

In the case of a full out-of-step condition (as opposed to a transient power swing) it is desirable to separate the system in the vicinity of the centre of the out-of-step condition. GRZ100 provides an out-of-step detection element (OST) which can provide tripping in these circumstances.
Although the power swing and out-of-step conditions are very closely related (in fact one is simply the most severe form of the other), completely different actions are required from the protection relay. The PSB function must ensure stability of the distance protection during transient power system conditions, while the OST element initiates system separation by tripping in the event that a severe power swing results in potentially irrecoverable loss of stability in the power system. The PSB and OST elements are therefore completely separate functions within the GRZ100 relay, with different characteristics, separate scheme logic and different settings.

### 2.1.6 Redundant Configuration of Protection Relay and Improvement of Reliability

The protection relay is expected to operate correctly without fail when a system fault occurs and is required to have a high reliability. As long as high quality components are used and quality assurance followed during manufacture, the probability of a defect is low. However, as an option even further security can be provided to avoid the consequences of a hardware failure by providing redundancy in the protection relay configuration.
Undesirable phenomena in a protection relay include "mal-operation mode" whereby the relay operates erroneously when the power system is healthy or in the event of an external fault, and "failure-to-operate mode" whereby the relay fails to operate for a power system fault. To guard against the first mal-operation mode, a system that provides redundancy for hardware and issues a trip command under conditions of ANDing of two or more results is effective. In the GRZ100 relay a fault detection relay can be provided for this purpose as an option. The fault detection relay consists of a combination of an undervoltage relay and overcurrent relay based on a simple principle. It also has a simple hardware configuration. Since the trip command of the circuit breaker is executed under conditions of ANDing of the outputs of the main detection relay that can exactly identify the faulted section and the fault detection relay that checks the occurrence of a fault only, even if a hardware defect occurs in either element, the other element prevents tripping. Furthermore, since the output is made from only one side of the main relay or fault detection relay for a set time, this system makes it easy to detect a hardware defect and issue an alarm. The fault detection relay has a simple hardware configuration, and thus for only a small additional cost it is possible to dramatically improve the reliability in preventing mal-operations.
In the case of the latter failure-to-operate mode, the aforementioned backup protection functions. Furthermore, a duplicated protection system is also available to ensure reliable operation.

### 2.2 Principle of Distance Measurement

### 2.2.1 Phase Fault

The phase-fault distance relay measures the impedance from the relay to the fault point using a delta voltage and current. The positive-sequence impedance is used as the line impedance. The principle is described below.

Figure 2.2.1.1 shows the circuit in the event of a two-phase fault. Suppose that the impedance from the relay to the fault is the same in both phase $B$ and phase C , and that the self impedance is $\mathrm{Z}_{\mathrm{S}}$ and the mutual impedance between phases is $\mathrm{Z}_{\mathrm{m}}$. If the voltages and currents of phase B and phase C are $\mathrm{V}_{\mathrm{b}}, \mathrm{V}_{\mathrm{C}}, \mathrm{I}_{\mathrm{b}}$ and $\mathrm{I}_{\mathrm{C}}$ and the fault point voltage is $\mathrm{V}_{\mathrm{F}}$, then $\mathrm{V}_{\mathrm{b}}$ and $\mathrm{V}_{\mathrm{C}}$ are given by the following equations.

$$
\begin{align*}
& \mathrm{V}_{\mathrm{b}}=\mathrm{Z}_{\mathrm{S}} \times \mathrm{Ib}_{\mathrm{b}}+\mathrm{Z}_{\mathrm{m}} \times \mathrm{I}_{\mathrm{C}}+\mathrm{V}_{\mathrm{F}} .  \tag{2-1}\\
& \mathrm{V}_{\mathrm{C}}=\mathrm{Z}_{\mathrm{S}} \times \mathrm{I}_{\mathrm{C}}+\mathrm{Z}_{\mathrm{m}} \times \mathrm{I}_{\mathrm{b}}+\mathrm{V}_{\mathrm{F}} . \tag{2-2}
\end{align*}
$$

$\qquad$
$\qquad$
From equations (2-1) and (2-2), the following equation is obtained.

$$
\begin{equation*}
\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{C}}=\left(\mathrm{Z}_{\mathrm{s}}-\mathrm{Z}_{\mathrm{m}}\right) \times\left(\mathrm{I}_{\mathrm{b}}-\mathrm{I}_{\mathrm{C}}\right) \tag{2-3}
\end{equation*}
$$

$\qquad$
where,

$$
\begin{array}{ll}
\mathrm{Z}_{\mathrm{s}}: & \text { Self impedance } \\
\mathrm{Z}_{\mathrm{m}}: & \text { Mutual impedance }
\end{array}
$$

Since the effect of the phase A current is small and is almost canceled when introducing equation $(2-3)$, it is omitted in equations (2-1) and (2-2).

When each phase of the line is symmetric to the other, the positive-sequence and zero-sequence impedance $\mathrm{Z}_{1}$ and $\mathrm{Z}_{0}$ according to the method of symmetrical components are defined by the following equations, using self impedance $\mathrm{Z}_{\mathrm{s}}$ and mutual impedance $\mathrm{Z}_{\mathrm{m}}$ :

$$
\begin{align*}
& \mathrm{Z} 1=\mathrm{Zs}-\mathrm{Zm} . .  \tag{2-4}\\
& \mathrm{Z} 0=\mathrm{Zs}+2 \mathrm{Zm} \tag{2-5}
\end{align*}
$$

$\qquad$
where,
$\mathrm{Z}_{1}$ : Positive-sequence impedance
$\mathrm{Z}_{0}$ : Zero-sequence impedance
Equation (2-3) can be rewritten as follows:

$$
\begin{equation*}
\mathrm{Z}_{1}=\left(\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{c}}\right) /\left(\mathrm{I}_{\mathrm{b}}-\mathrm{I}_{\mathrm{c}}\right) . \tag{2-6}
\end{equation*}
$$

As shown above, the positive-sequence impedance is used for the phase fault relay setting.


Figure 2.2.1.1 Two-Phase Fault

### 2.2.2 Earth Fault

Figure 2.2.2.1 shows the circuit in the event of a single-phase earth fault. It is not simple to exactly measure the distance up to the fault point for a single-phase earth fault.

This is because the impedance of the zero-sequence circuit including the earth return is generally different from the positive-sequence impedance. Therefore, the faulted phase voltage is not simply proportional to the faulted phase current.


Figure 2.2.2.1 Single-Phase Earth Fault

It is necessary to analyze the impedance seen by the relay in the event of a single-phase earth fault according to the method of symmetrical components. Figure 2.2.2.2 shows an equivalent circuit for the single-phase earth fault based on the method of symmetrical components. Assuming the positive-sequence, negative-sequence and zero-sequence voltages are $\mathrm{V}_{1} \mathrm{~F}, \mathrm{~V}_{2} \mathrm{~F}$ and $\mathrm{V}_{0} \mathrm{~F}$, the voltage at the relay point of each symmetrical circuit is given by the following equation. However, suppose that the positive-sequence impedance and negative-sequence impedance are the same and influences of the fault resistance are ignored.
$\mathrm{V}_{1}=\mathrm{Z}_{1} \times \mathrm{I}_{1}+\mathrm{V}_{1} \mathrm{~F}$
$\mathrm{V}_{2}=\mathrm{Z}_{1} \times \mathrm{I}_{2}+\mathrm{V}_{2} \mathrm{~F}$
$\mathrm{V}_{0}=\mathrm{Z}_{0} \times \mathrm{I}_{0}+\mathrm{Z}_{0 \mathrm{~m}} \times \mathrm{I}_{0 \mathrm{~m}}+\mathrm{V}_{0 \mathrm{~F}}$
where, $\mathrm{V}_{1}$ : Relay point positive-sequence voltage
$\mathrm{V}_{2}$ : Relay point negative-sequence voltage
$\mathrm{V}_{0}$ : Relay point zero-sequence voltage
V1F: Fault point positive-sequence voltage
$V_{2 F}$ : Fault point negative-sequence voltage
$\mathrm{V}_{0 \mathrm{~F}}$ : Fault point zero-sequence voltage
I1: Relay point positive-sequence current
I2: Relay point negative-sequence current
$\mathrm{I}_{0}$ : Relay point zero-sequence current
I0m: Adjacent line zero-sequence current
$Z_{1}$ : Fault point - relay point positive-sequence impedance
$\mathrm{Z}_{0}$ : Fault point - relay point zero-sequence impedance
$\mathrm{Z}_{0 \mathrm{~m}}$ : Adjacent line zero-sequence mutual impedance
Taking account of the fact that the faulted phase voltage $\mathrm{VaF}_{\mathrm{aF}}$ at the point of fault is,

$$
\begin{equation*}
\mathrm{V}_{\mathrm{aF}}=\mathrm{V}_{1 \mathrm{~F}}+\mathrm{V}_{2 \mathrm{~F}}+\mathrm{V}_{0 \mathrm{~F}}=0 \tag{2-10}
\end{equation*}
$$

$\qquad$
phase A voltage $\mathrm{V}_{\mathrm{a}}$ at the relay is calculated from the following equation:

$$
\begin{align*}
\mathrm{V}_{\mathrm{a}} & =\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{0} \\
& =\mathrm{Z}_{1}\left(\mathrm{I}_{\mathrm{a}}+\left(\mathrm{Z}_{0}-\mathrm{Z}_{1}\right) / \mathrm{Z}_{1} \times \mathrm{I}_{0}+\mathrm{Z}_{0 \mathrm{~m}} / \mathrm{Z}_{1} \times \mathrm{I}_{0} \mathrm{~m}\right) \tag{2-11}
\end{align*}
$$

Where, $I_{a}$ is the current at phase "a" relay point and is defined in the following equation by the symmetrical component of the current:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{0} \tag{2-12}
\end{equation*}
$$

Here, defining the current synthesized by the phase "a" relay as $\mathrm{I}_{\mathrm{a}}$, and

$$
\begin{equation*}
\mathrm{I}_{\mathrm{a}^{\prime}}=\mathrm{I}_{\mathrm{a}}+\left(\mathrm{Z}_{0}-\mathrm{Z}_{1}\right) / \mathrm{Z}_{1} \times \mathrm{I}_{0}+\mathrm{Z}_{0 \mathrm{~m}} / \mathrm{Z}_{1} \times \mathrm{I}_{0} \mathrm{~m} . \tag{2-13}
\end{equation*}
$$

$\qquad$
then equation (2-11) can be rewritten as the following equation:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{a}}=\mathrm{Z}_{1} \times \mathrm{I}_{\mathrm{a}^{\prime}} . \tag{2-14}
\end{equation*}
$$

That is, positive-sequence impedance $\mathrm{Z}_{1}$ up to the fault point can be obtained from the simple ratio of phase " a " voltage $\mathrm{V}_{\mathrm{a}}$ to compensated current $\mathrm{I}_{\mathrm{a}}$ according to equation (2-14).

Obtaining the compensated current according to equation (2-13) is called "zero-sequence compensation." Note in this zero-sequence compensation, the compensation coefficient ( $\mathrm{Z}_{0}-$ $\left.\mathrm{Z}_{1}\right) / \mathrm{Z}_{1}$ and $\mathrm{Z}_{0} \mathrm{~m} / \mathrm{Z}_{1}$ are not real numbers, but complex numbers. The GRZ100 relay has a configuration that allows this compensation coefficient to be set as a complex number and setting the coefficient correctly makes it possible to measure exactly the distance up to the fault point.

In equations (2-7) to (2-9), the fault resistance was ignored. Since the measurement of the distance up to the fault point based on equation (2-14) is carried out using the reactance component, in principle there is no influence on the voltage component due to the fault resistance. However, under real operating conditions, distance measurement errors are produced as a result of the fault resistance combined with the power flow or the current flowing into the fault point from the point opposite the relay location.


Figure 2.2.2.2 Equivalent Circuit of Single-Phase Earth Fault

### 2.3 Multi-Terminal Line Protection

### 2.3.1 Increased Use of Multi-Terminal Lines

The number of multi-terminal transmission lines has increased in recent years, mainly for economic reasons. For example, connecting three substations through three-terminal transmission lines can reduce the construction cost considerably compared to connecting substations through individual lines. On the other hand, from the standpoint of protection, multi-terminal lines cause various difficulties. Taking an example of a three-terminal line, these problems are illustrated below.

### 2.3.2 Protection Problems on Three-Terminal Application

### 2.3.2.1 Underreach in the Case of an Internal Fault Further than the Branch Point

In the three-terminal line shown in Figure 2.3.2.1, if a phase fault occurs near terminal C, the fault current flows in from both terminal A and terminal B and the voltages at terminal A and terminal $B$ are influenced by the current from one another, have represented by the following equations:

$$
\begin{align*}
& \mathrm{v}_{\mathrm{A}}=\mathrm{I}_{\mathrm{A}} \times\left(\mathrm{Z}_{1}+\mathrm{Z}_{3}\right)+\mathrm{I}_{\mathrm{B}} \times \mathrm{Z}_{3} .  \tag{2-15}\\
& \mathrm{v}_{\mathrm{B}}=\mathrm{I}_{\mathrm{B}} \times\left(\mathrm{Z}_{2}+\mathrm{Z}_{3}\right)+\mathrm{I}_{\mathrm{A}} \times \mathrm{Z}_{3} .
\end{align*}
$$

where, $\quad \mathrm{V}_{\mathrm{A}}$ : Voltage at terminal A
$V_{B}$ : Voltage at terminal B
IA: Current at terminal A
IB: Current at terminal B
$\mathrm{Z}_{1}$ : Impedance from terminal A to branch point
$\mathrm{Z}_{2}$ : Impedance from terminal B to branch point
$\mathrm{Z}_{3}$ : Impedance from fault point to branch point
From equations (2-15) and (2-16), impedance $\mathrm{Z}_{\mathrm{A}}$ and impedance $\mathrm{Z}_{\mathrm{B}}$ seen from the relay at terminal A and terminal B are given by the following equations:

$$
\begin{align*}
& \mathrm{Z}_{\mathrm{A}}=\mathrm{V}_{\mathrm{A}} / \mathrm{I}_{\mathrm{A}}=\left(\mathrm{Z}_{1}+\mathrm{Z}_{3}\right)+\mathrm{Z}_{3} \times \mathrm{I}_{\mathrm{B}} / \mathrm{I}_{\mathrm{A}} .  \tag{2-17}\\
& \mathrm{Z}_{\mathrm{B}}=\mathrm{V}_{\mathrm{B}} / \mathrm{I}_{\mathrm{B}}=\left(\mathrm{Z}_{2}+\mathrm{Z}_{3}\right)+\mathrm{Z}_{3} \times \mathrm{I}_{\mathrm{A}} / \mathrm{I}_{\mathrm{B}} . \tag{2-18}
\end{align*}
$$

$-Z_{B}=V_{B} / \mathrm{B}=\left(Z_{2}+Z_{3}\right)+Z_{3} \times I_{A}$
From equation (2-17), the impedance seen from the relay at terminal A is greater than the actual impedance $\left(\mathrm{Z}_{1}+\mathrm{Z}_{3}\right)$ up to the fault point by $\left(\mathrm{Z}_{3} \times \mathrm{IB}_{\mathrm{B}} / \mathrm{I}_{\mathrm{A}}\right)$. That is, if the current infeed from local terminal A is large its influence is small, but if the current infeed from local terminal B is large the relay sees the fault point much further than the actual distance.


Figure 2.3.2.1 Three-terminal line

### 2.3.2.2 Current Outfeed in the Event of an Internal Fault

In the event of an internal fault in a multi-terminal system, a fault current may flow out of a specific terminal. An example is shown using a three-terminal system with two parallel lines shown in Figure 2.3.2.2. The figure shows the case where only one circuit is used and another circuit is open at terminal A. If a fault occurs at a close to terminal C, there is a route through which the current flows from terminal B via the adjacent line into terminal C and part of the fault current flows out of terminal B and flows into terminal C again. The magnitude of the outfeed current is a maximum of approximately $1 / 2$ of the infeed current from terminal A. If the fault point is examined from terminal A, the impedance of the adjacent circuit between terminal B and terminal C enters in parallel, and consequently the relay at terminal A sees it as smaller than the actual impedance up to the fault point, which means this relay tends to overreach.

It is difficult to protect the system when a fault current flows out of one end. Since an ordinary directional comparison method judges an external fault at one end and sends a block signal, it may fail to remove the fault.


Figure 2.3.2.2 Current Outfeed in Event of Internal Fault

### 2.3.2.3Diversion of Outfeed Current in the Event of an External Fault

If an external fault occurs at terminal C in the three-terminal system shown in Figure 2.3.2.3, the fault current that flows into terminal A may not only flow out of terminal C but may also flow out of terminal B and flow into the fault point. In this case, outfeed currents IB from terminal B and IC from terminal C become smaller than infeed current $\mathrm{I}_{\mathrm{A}}$ from terminal A . That is,
(Outfeed current) < (infeed current).
The directional comparison method sometimes cannot detect external faults under such conditions, increasing the possibility of unwanted operation due to detection of an internal fault from terminal A.


Terminal B

Figure 2.3.2.3 Outfeed Current in Event of External Fault

### 2.3.2.4Possible Attenuation of Carrier Wave in Power Line Carrier

There are no particular problems related to power line carrier or multi-terminal lines. However, when the distance of the line from a branch point is $1 / 4,3 / 4,5 / 4$ and $7 / 4$, etc. of the wavelength of the carrier wave, the reflected wave from the branch line may cause considerable attenuation of the carrier signal, and thus care is required in selecting the carrier frequency. Furthermore, when the same carrier frequency is used for each terminal, the signal from each terminal may not be received due to the beat phenomenon, and thus it is desirable to use the carrier wave for each terminal with a different frequency in a multi-terminal system.

### 2.3.3 Three-Terminal Line Protection

### 2.3.3.1Distance Relay Protection

The relay at terminal A in Figure 2.3.2.1 will underreach due to an infeed current from terminal B. However, the zone 1 element of distance relay should not overreach for a fault on the busbar at the remote end under any conditions. Therefore, the relay at terminal A is set so that it may operate correctly for faults within the protected zone in the absence of a power source at terminal B. This makes it unavoidable for the relay at terminal A to permit considerable underreach for an infeed current from terminal B.

When there is a branch point on the line between terminal A and terminal B and it is connected with terminal C via a short-distance line as shown in Figure 2.3.3.1, the setting range of the zone 1 element at terminal A and terminal B can only include part of the entire length of the line as shown in the figure to avoid unwanted operations for external faults at terminal C. Therefore, for most of the faults on this line, one end is delayed-tripped by the zone 2 element. To avoid such a problem a directional comparison method or current differential method must be used.


Figure 2.3.3.1 Short-Distance Tapped Line (1)

### 2.3.3.2Command Protection

Permissive Underreach Protection (PUP)
With the Permissive Underreach Protection (PUP) method, all the terminals are tripped via transmission if zone 1 element operates at least at one terminal. In this system, a common power line carrier is available.

In the system shown in Figure 2.3.3.2 where both terminal B and terminal C are near the branch point and connected via a short-distance line, the distance relay at terminal B and terminal C must unavoidably be set to an extremely short distance to prevent unwanted operations by busbar faults at each other's end. In order for the relay at terminal A not to operate on a busbar fault at terminal B or terminal C, it may not be able to set the branch point within the protection range, containing a zone in which it is impossible to detect the fault as an internal fault. The fault in this zone is removed by tripping of zone 2 . When a current flows out of terminal B in the event of a fault inside terminal C as shown in the example in Figure 2.3.2.2, the PUP system performs tripping of terminal B sequentially following the tripping of terminal C.


Figure 2.3.3.2 Short-Distance Tapped Line (2)

## Permissive Overreach Protection (POP)

The Permissive Overreach Protection (POP) method carries out tripping on condition that zone 2 of each terminal (or zone 3 depending on the setting) has operated for an internal fault. Accordingly it needs to use a different transmission channel when applied to three terminals.

Zone 2 in the POP method basically covers up to and including the busbar of all terminals at the remote end of the protected zone. If the source behind each terminal is strong enough, in this scheme all terminals will operate their distance relays for a fault in the protected zone. However, if the impedance behind the power source changes, there is a tendency to underreach as a consequence of the "branch effect." Therefore, it is necessary to check that the relay can operate for faults in the protected zone even under the worst power source conditions.

## Blocking Schemes

With the blocking scheme, a terminal sends a blocking signal to the other terminal for an external fault and a common power line carrier channel can be used. It can also perform high-speed tripping even if one end of the multi-terminal line is a non-power source and there is no fault current infeed.

In the blocking scheme, it is necessary to pay attention to diversion of the outfeed current in the event of an external fault. In the system shown in Figure 2.3.2.3, if a fault current flows out of terminals B and C for an external fault, the outfeed currents of terminal B and terminal C are smaller than the infeed current at terminal A due to the diversion. Therefore, it may be difficult to operate the external detection relay of one terminal depending on the ratio of diversion.

### 2.4 Protection Scheme

The GRZ100 series has the following protection schemes and is applied to transmission lines of directly earthed networks. The function of high-speed detection and clearance of faults ensures that the disturbance to the power system is kept to a minimum in combination with the built-in autoreclose functions. Appendix A shows block diagrams of the GRZ100 series.

- time-stepped distance protection
- zone 1 extension protection
- command protection (distance protection using telecommunication)
- directional earth fault protection
- overcurrent backup protection
- thermal overload protection
- SOTF and stub protection
- overvoltage and undervoltage protection
- broken conductor detection
- circuit breaker failure protection
- out-of-step protection


### 2.4.1 Time-Stepped Distance Protection

### 2.4.1.1 Application

Using reach and tripping time settings coordinated with adjacent lines, the GRZ100 provides up to four steps of distance protection for forward faults and backup protection for reverse faults. These are used as the main protection when telecommunications are not available, or as backup protection for the protected line and adjacent lines.

The GRZ100 has maximum eight distance measuring zones for both phase and earth faults, maximum four zones for forward faults and maximum three zones for reverse faults respectively. There is also one non-directional zone. The zones can be defined with either mho-based characteristic or quadrilateral characteristic. The characteristic is selected by setting the scheme switch [ZS-C] for phase fault and [ZG-C] for earth fault to "Mho" or "Quad".

Figure 2.4.1.1 shows the mho-based characteristics. Zone 1 (Z1), Zone 1X (Z1X), Zone 2 (Z2), additional forward Zone F (ZF) and reverse Zone R1 (ZR1) have a complex characteristic combining the reactance element, mho element and blinder element, while Zone 3 (Z3), additional reverse Zone R2 (ZR2) and Z4 elements have a complex characteristic combining the mho element and blinder element. ZND elements have a complex characteristic combining the impedance element and blinder element. Z3 is also used for detection of forward faults in command protection. If Z 3 is dedicated to command protection, ZF can be used for Zone 3 instead of Z3 in time-stepped distance protection.
The blinder element (BFR) can be provided for each forward zone. The setting of blinder element can be set independently or set common to forward zones by the scheme switch [BLZONE]. Figures 2.4.1.1 and 2.4.1.2 show the characteristics with an independent setting.
Since the Z 4 is used for detection of reverse faults in command protection, the Z 4 for phase faults has an offset characteristic with an offset mho element which assures detection of close-up phase faults. The operation of Z 4 for phase faults in the event of internal faults is inhibited by the operations of $\mathrm{Z} 2, \mathrm{ZF}$ and Z 3 .

Figure 2.4.1.2 shows the quadrilateral characteristics. These have a complex characteristic combining the reactance element, directional element and blinder element.
The Z4 for phase faults has an offset characteristic with an offset directional element which assures detection of close-up phase faults.
The operation is the same as the mho-based characteristics.

(a) Phase fault element

(b) Earth fault element

Figure 2.4.1.1 Mho-based Characteristics


Figure 2.4.1.2 Quadrilateral Characteristics
Figure 2.4.1.3 shows typical time-distance characteristics of the time-stepped distance protection provided at terminal A.

Zone 1 is set to cover about $80 \%$ of the protected line. When GRZ100 is used as the main protection, zone 1 generally provides instantaneous tripping but if used as a backup protection, time delayed tripping can be provided. With the GRZ100, 5 types of zone 1 tripping modes can be set using the trip mode setting switch.

Zone 2 is set to cover about $120 \%$ or more of the protected line, providing protection for the rest of the protected line not covered by zone 1 and backup protection of the remote end busbar. In order to coordinate the fault clearance time by the main protection, with the zone 1 protection of the adjacent lines or by the remote end busbar protection, zone 2 carries out time delayed tripping.


Figure 2.4.1.3 Time/Distance Characteristics of Time-Stepped Distance Protection

Zone 3 is mainly provided for remote backup protection of adjacent lines. Its reach is set to at least 1.2 times the sum of the impedance of the protected line and the longest adjacent line. The zone 3 time delay is set so that it coordinates with the fault clearance time provided by zone 2 of adjacent lines. (Z3 is applied to Zone 3. Z3 is also used for detection of forward faults in command protection. If Z3 is dedicated to command protection, ZF can be used for Zone 3 instead of the Z3.)

The reverse looking zone R1 and R2 elements are used for time delayed local backup protection for busbar faults and transformer faults. Furthermore, when applied to multi-terminal lines, it is effective as the backup protection for adjacent lines behind the relaying point instead of the zone 3 protection at the remote terminal. This is because it is difficult for zone 3 at terminals A and C to provide remote backup protection for the fault shown in Figure 2.4.1.4 due to fault infeed from the other terminal, whereas reverse looking zone of terminal $B$ is not affected by this.
Z4 element is used for reverse fault detection in command protection, but not for backup protection.
The non-directional zone ND is used for time delayed backup protection including overall zones.


Figure 2.4.1.4 Reverse Zone Protection

To maintain stable operation for close-up three-phase faults which cause the voltages of all phases to drop to 0 or close to 0 , zone 1 for phase faults, once operated, changes its element to a reverse offset element. This continues until the fault is cleared, and thus it is effective for time delayed protection.

The reactance element characteristics of zone 1, zone 1 extension, zone 2, zone F and zone R1 are parallel lines to the R axis and provide sufficient coverage for high-resistance faults. The reactance element characteristics of zone 1 and zone 1 extension can be transformed to a broken line depending on the load flow direction in order to avoid overreaching by the influence of load current. The characteristic in the resistive direction is limited by the mho characteristic of zone 3. The reactive reach setting is independent for each zone. It is also possible to have independent settings for each individual phase fault and earth fault elements.
With a long-distance line or heavily loaded line, it is possible for the load impedance to encroach on the operation zone of the mho element. Blinders are provided to limit the operation of the mho element in the load impedance area.
Zero-sequence current compensation is applied to zone 1, zone 2 and reverse zone R1 for earth fault protection. This compensates measuring errors caused by the earth return of zero-sequence current. This allows the faulted phase reactance element to precisely measure the positive-sequence impedance up to the fault point. Furthermore, in the case of double-circuit lines, zero-sequence current from the parallel line is introduced to compensate for influences from zero-sequence mutual coupling. (R1 is not provided with zero sequence mutual coupling compensation for the parallel line.) Considering the case where the impedance angle of positive-sequence impedance and zero-sequence impedance differ which is the most common in cable circuits, GRZ100 carries out vectorial zero-sequence current compensation.

The autoreclose schemes are utilised with instantaneous zone 1 tripping. When single-phase autoreclose or single- and three-phase autoreclose are selected, zone 1 executes single-phase tripping for a single-phase earth fault. In order to achieve reliable fault phase selection even for faults on heavily loaded long-distance lines or irrespective of variations in power source conditions behind the relaying point, an undervoltage element with current compensation is used as a phase selector. Other zones only execute three-phase tripping, and do not initiate autoreclose.

### 2.4.1.2Scheme Logic

Figure 2.4.1.5 shows the scheme logic for the time-stepped distance protection. For zone 1 tripping, as described later, it is possible to select instantaneous tripping or time delayed tripping using the scheme switch [Z1CNT] in the trip mode control logic. (Detail of the [Z1CNT] is described after.) Zone 2 , zone 3 , zone F, zone R1, zone R2 and zone ND give time delayed tripping. However, these zones can trip instantaneously by PLC signals Z*_INST_TP. Timers TZ2, TZ3, TZF, TZR1, TZR2 and TZND with time delayed tripping can be set for earth faults and phase faults separately. Zone F, zone R1, zone R2 and zone ND backup tripping can be disabled by the scheme switch $[\mathrm{Z} * \mathrm{BT}]$.

Note: For the symbols used in the scheme logic, see Appendix L.


Figure 2.4.1.5 Scheme Logic of Time-stepped Distance Protection

Tripping by each zone can be blocked the binary input signal (PLC signal) Z*_BLOCK. The tripping can be also blocked in the event of a failure of the secondary circuit of the voltage transformer or power swing. The former is detected by the VT failure detection function. The signal VTF becomes 1 when a failure is detected. The latter is detected by the power swing blocking function. The signal PSB becomes 1 when power swing is detected. The zone in which tripping will be blocked during a power swing can be set using the selection switches [PSB-Z1] to [PSB-ZR2]. For zone ND backup tripping, power swing blocking is inhibited. For the VTF and PSB, see Section 2.4.12 and Section 2.4.13, respectively.
By using the trip mode control logic, Zone 1 can implement different trip modes. The trip modes as shown in Table 2.4.1.1 can be selected according to the position of the scheme switch [Z1CNT] and whether or not the command protection is in or out of service.

Note: When permissive underreach protection is applied as the command protection, instantaneous tripping is required for zone 1 and autoreclose must be started. Therefore, position 1 or 4 must be selected for [Z1CNT].
The service condition of the command protection is judged by the service condition of the telecommunication and the main protection. The telecommunication in-service signal CRT_USE
is established when the binary input signal (PLC signal) CRT_BLOCK is " 0 " and the scheme switch [CRSCM] is set to "ON" as shown in Figure 2.4.1.6.


Figure 2.4.1.6 Communication Service Logic
The service condition of the external main protection in duplicated scheme is input with the binary input signal (PLC signal) M-PROT_ON. The command protection in Table 2.4.1.1 is out of service when both main protections are out of service.

Table 2.4.1.1 Zone 1 Trip Mode Control

| Z1CNT <br> Position | COMMAND PROTECTION |  |
| :---: | :---: | :---: |
|  | IN SERVICE | OUT OF SERVICE |
| 2 | INST. TRIP \& AUTO-REC | INST. FINAL TRIP |
| 3 | DELAYED FINAL TRIP | INST. FINAL TRIP |
| 4 | TRIP BLOCKED |  |
| 5 | INST. TRIP \& AUTO-REC |  |
| INST. FINAL TRIP |  |  |

The zone 1 tripping mode at each position of the switch [Z1CNT] is as follows:
Position 1: When the command protection is in service, zone 1 executes instantaneous tripping and starts autoreclose. Zone 1 performs single-phase tripping and reclosing or three-phase tripping and reclosing depending on the reclose mode of the autoreclose function and the type of faults (single-phase faults or multi-phase faults). If the autoreclose is out of service, zone 1 performs instantaneous three-phase final tripping for all faults.

If the command protection is out of service, zone 1 performs instantaneous three-phase final tripping.

Position 2: Zone 1 performs three-phase tripping with a time delay using timer TZ1 if the command protection is in service, and it performs three-phase tripping instantaneously if the command protection is out of service and does not start the autoreclose.

Position 3: Zone 1 tripping is blocked if the command protection is in service, and instantaneous three-phase tripping is performed if it is out of service. Autoreclose is not started.

Position 4: Zone 1 executes instantaneous tripping irrespective of the command protection conditions and initiates autoreclose. This instantaneous tripping becomes single-phase tripping or three-phase tripping depending on the autoreclose mode and type of faults (single-phase faults or multi-phase faults). If the autoreclose is out of service, zone 1 performs instantaneous three-phase final tripping.
Position 5: Zone 1 performs instantaneous three-phase final tripping irrespective of the command protection.
Zone 1 Trip Mode Control is performed using PLC function as shown in Figure 2.4.1.7. By changing the PLC default setting, the Z1 trip can be controlled independently of the [Z1CNT] setting.


Figure 2.4.1.7 Zone 1 Trip Mode Control Circuit
When zone 1 extension is used, normal zone 1 tripping is blocked. However, the blocking is released by an autoreclose command that follows zone 1 extension tripping. Final tripping to the reclose-on-to-permanent-fault is performed under the time-stepped distance protection including zone 1.

Zone 1 tripping is provided with an additional phase selection element UVC and phase selection logic to make sure the faulted phase is selected for the single-phase earth fault.

Figure 2.4.1.8 gives details of the phase selection logic in Figure 2.4.1.5. In case of single-phase earth fault, the earth fault measuring zone 1 element Z1G with a certain phase and the phase selection element UVC with the same phase operate together, and a single-phase tripping command S-TRIP can be output to the phase.


Figure 2.4.1.8 Phase Selection Logic for Zone 1 Protection

Depending on the setting of the scheme switch [Z1CNT] or [ARC-M] which selects reclosing mode, single-phase tripping may be converted to a three-phase tripping command. This is not shown in the figure.

In case of multi-phase fault, the phase fault measuring zone 1 element Z1S and the two phases of the UVC operate together, the Z1G trip is blocked and the three-phase tripping command M-TRIP is always output. The condition for the UVC two-phase operation is to inhibit the Z1S from overreaching in the event of a single-phase earth fault.

The UVC element is applied to the zone 1 distance elements.
EFL is an earth fault detection element, and UVPWI is a phase undervoltage relay to provide countermeasures for overreaching of a leading-phase distance element at positive phase weak infeed condition. These elements are applied to all earth fault distance elements. (Refer to Appendix A.) The UVPWI can be disabled by the scheme switch [UVPWIEN].

### 2.4.1.3Setting

The following shows the necessary distance protection elements and their setting ranges.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| VT | $1-20000$ | 1 | 2000 |  |
| CT | $1-20000$ | 1 | 400 |  |

Phase fault protection

| ZS-C | Mho - Quad |  | Mho | Characteristic selection |
| :---: | :---: | :---: | :---: | :---: |
| Z1S | 0.01-50.00 | $0.01 \Omega$ | $1.60 \Omega$ | Z1 reach |
|  | (0.10-250.00 ${ }^{\text {a }}$ | $0.01 \Omega$ | 8.00 ) (*1) |  |
| Z1S 01 | $0^{\circ}-45^{\circ}$ | $1{ }^{\circ}$ | $0^{\circ}$ | Gradient of reactance element |
| Z1S 02 | $45^{\circ}-90^{\circ}$ | $1^{\circ}$ | $90^{\circ}$ |  |
| Z2S | 0.01-50.00 | $0.01 \Omega$ | $3.00 \Omega$ | Z2 reach |
|  | (0.10-250.00 ${ }^{\text {a }}$ | $0.01 \Omega$ | 15.00 $)^{\text {) }}$ |  |
| ZFS | 0.01-50.00 | $0.01 \Omega$ | $4.00 \Omega$ | ZF reach |
|  | (0.1-250.0 | $0.1 \Omega$ | 20.0 ) |  |
| Z3S | 0.01-50.00 | $0.01 \Omega$ | $6.00 \Omega$ | Z3 reach |
|  | (0.1-250.0 | $0.1 \Omega$ | 30.0 ${ }^{\text {) }}$ |  |
| Z3S $\theta$ (*2) | 45-90 | $1^{\circ}$ | $85^{\circ}$ | Characteristic angle of mho element |
| ZBS $\theta$ (*3) | 0-45 | $1{ }^{\circ}$ | $5^{\circ}$ | Angle of directional element |
| BFR1S | 0.10-20.00 | $0.01 \Omega$ | $5.10 \Omega$ | Forward right blinder reach for Z1S |
|  | (0.5-100.0 | $0.1 \Omega$ | 25.5 $)^{\text {) }}$ | Required if [BLZONE]=IND |
| BFRXS | 0.10-20.00 | $0.01 \Omega$ | $5.10 \Omega$ | Forward right blinder reach for Z1XS |
|  | (0.5-100.0 | $0.1 \Omega$ | 25.5 ${ }^{\text {) }}$ | Required if [BLZONE]=IND |
| BFR2S | 0.10-20.00 | $0.01 \Omega$ | $5.10 \Omega$ | Forward right blinder reach for Z2S |
|  | (0.5-100.0 ${ }^{\text {a }}$ | $0.1 \Omega$ | 25.5 $)^{\text {) }}$ | Required if [BLZONE]=IND |
| BFRFS | 0.10-20.00 | $0.01 \Omega$ | $5.10 \Omega$ | Forward right blinder reach for ZFS |
|  | (0.5-100.0 | $0.1 \Omega$ | 25.5 $)^{\text {) }}$ | Required If [BLZONE]=IND |
| BFRS | 0.10-20.00 | $0.01 \Omega$ | $5.10 \Omega$ | Forward right blinder reach for Z3S or Common |
|  | (0.5-100.0 | $0.1 \Omega$ | 25.5 ${ }^{\text {) }}$ | setting of BLZONE |
| BFLS $\theta$ | $90^{\circ}-135^{\circ}$ | $1{ }^{\circ}$ | $120^{\circ}$ | Forward left blinder angle |
| ZR1S | 0.01-50.00 | $0.01 \Omega$ | $2.00 \Omega$ | ZR1 reach |
|  | (0.1-250.0 | $0.1 \Omega$ | 10.0 ) |  |
| ZR2S | 0.01-50.00 | $0.01 \Omega$ | $4.00 \Omega$ | ZR2 reach |
|  | (0.1-250.0 | $0.1 \Omega$ | 20.0 ) |  |
| Z4S | 0.01-50.00 | $0.01 \Omega$ | $8.00 \Omega$ | Z4 reach |


| Element | Range | Step | Default | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| BRRS | (0.1-250.0 | $0.1 \Omega$ | 40.0 ) | Reverse right blinder reach |
|  | 0.10-20.00 | $0.01 \Omega$ | $5.10 \Omega$ |  |
|  | (0.5-100.0 | $0.1 \Omega$ | 25.5 $)^{\text {) }}$ |  |
| ZNDS | 0.01-50.00 | $0.01 \Omega$ | $10.00 \Omega$ | ZND reach |
|  | (0.1-250.0 | $0.1 \Omega$ | 50.0 ) |  |
| BNDS | 0.10-20.00 | $0.01 \Omega$ | $12.00 \Omega$ | ZNDS blinder reach |
|  | (0.5-100.0 | $0.1 \Omega$ | 60.0S) |  |
| TZ1S | 0.00-10.00 s | 0.01 s | 0.00 s | Zone 1 timer |
| TZ2S | 0.00-10.00 s | 0.01 s | 0.30 s | Zone 2 timer |
| TZFS | 0.00-10.00 s | 0.01 s | 0.35 s | Zone F timer |
| TZ3S | 0.00-10.00 s | 0.01 s | 0.40 s | Zone 3 timer |
| TZR1S | 0.00-10.00 s | 0.01 s | 0.50 s | Zone R1 timer |
| TZR2S | 0.00-10.00 s | 0.01 s | 0.60 s | Zone R2 timer |
| TZNDS | 0.00-10.00 s | 0.01 s | 0.70 s | Zone ND timer |
| Earth fault protection |  |  |  |  |
| ZG-C | Mho - Quad |  | Mho | Characteristic selection |
| Z1G | 0.01-50.00 | $0.01 \Omega$ | $1.60 \Omega$ | Z1 reach |
|  | (0.10-250.00 | $0.01 \Omega$ | 8.00 ${ }^{\text {) }}$ |  |
| Z1G $\theta 1$ | $0^{\circ}-45^{\circ}$ | $1{ }^{\circ}$ | $0^{\circ}$ | Gradient of reactance element |
| Z1G $\theta 2$ | $45^{\circ}-90^{\circ}$ | $1{ }^{\circ}$ | $90^{\circ}$ |  |
| Z2G | 0.01-50.00 | $0.01 \Omega$ | $4.00 \Omega$ | Z2 reach |
|  | (0.10-250.00 | $0.01 \Omega$ | 20.00 $\Omega$ ) |  |
| ZFG | 0.01-100.00 | $0.01 \Omega$ | $6.00 \Omega$ | ZF reach |
|  | (0.1-500.0 | $0.1 \Omega$ | 30.0 ) |  |
| Z3G | 0.01-100.00 | $0.01 \Omega$ | $8.00 \Omega$ | Z3 reach |
|  | (0.1-500.0 | $0.1 \Omega$ | 40.0 $)^{\text {) }}$ |  |
| Z3G $\theta$ (*2) | 45-90 | $1{ }^{\circ}$ | $85^{\circ}$ | Characteristic angle of mho element |
| ZBG日(*3) | $0^{\circ}-45^{\circ}$ | $1{ }^{\circ}$ | $30^{\circ}$ | Angle of directional element |
| BFR1G | 0.10-20.00 | $0.01 \Omega$ | $5.10 \Omega$ | Forward right blinder reach for Z1G |
|  | (0.5-100.0 | $0.1 \Omega$ | 25.5 $)$ | Required if [BLZONE]=IND |
| BFRXG | 0.10-20.00 | $0.01 \Omega$ | $5.10 \Omega$ | Forward right blinder reach for Z1XG |
|  | (0.5-100.0 | $0.1 \Omega$ | 25.5 $)^{\text {) }}$ | Required If [BLZONE]=IND |
| BFR2G | 0.10-20.00 | $0.01 \Omega$ | $5.10 \Omega$ | Forward right blinder reach for Z2G |
|  | (0.5-100.0 | $0.1 \Omega$ | 25.5 $)^{\text {) }}$ | Required if [BLZONE]=IND |
| BFRFG | 0.10-20.00 | $0.01 \Omega$ | $5.10 \Omega$ | Forward right blinder reach for ZFG |
|  | (0.5-100.0 | $0.1 \Omega$ | 25.5 $)^{\text {) }}$ | Required if [BLZONE]=IND |
| BFRG | 0.10-20.00 $\Omega$ | $0.01 \Omega$ | $5.10 \Omega$ | Forward right blinder reach for Z3G or Common setting of BLZONE |
|  | (0.5-100.0 | $0.1 \Omega$ | 25.5 ${ }^{\text {) }}$ |  |
| BFLG $\theta$ | $90^{\circ}-135^{\circ}$ | $1{ }^{\circ}$ | $120^{\circ}$ | Forward left blinder angle |
| ZR1G | 0.01-100.00 | $0.01 \Omega$ | $2.00 \Omega$ | ZR1 reach |
|  | (0.1-500.0 | $0.1 \Omega$ | 10.0S) |  |
| ZR2G | 0.01-100.00 | $0.01 \Omega$ | $4.00 \Omega$ | ZR2 reach |
|  | (0.1-500.0 | $0.1 \Omega$ | 20.0S) |  |
| Z4G | 0.01-100.00 | $0.01 \Omega$ | $8.00 \Omega$ | Z4 reach |
|  | (0.1-500.0 | $0.1 \Omega$ | 40.0ת) |  |
| BRRG | 0.10-20.00 ${ }^{\text {a }}$ | $0.01 \Omega$ | $5.10 \Omega$ | Reverse right blinder reach |
|  | (0.5-100.0 | $0.1 \Omega$ | 25.5 $)^{\text {) }}$ |  |
| ZNDG | 0.01-100.00 | $0.01 \Omega$ | $10.00 \Omega$ | ZND reach |


| Element | Range | Step | Default | Remarks |
| :---: | :---: | :---: | :---: | :---: |
|  | (0.1-500.0 | $0.1 \Omega$ | 50.0S) |  |
| BNDG | 0.10-20.00 | $0.01 \Omega$ | $12.00 \Omega$ | ZNDG blinder reach |
|  | (0.5-100.0 ${ }^{\text {a }}$ | $0.1 \Omega$ | 60.0S) |  |
| Krs | 0-1000\% | 1\% | 340\% | Residual current compensation $=$ R0/R1 |
| Kxs | 0-1000\% | 1\% | 340\% | Residual current compensation $=$ X0/X1 |
| Krm | 0-1000\% | 1\% | 300\% | Mutual coupling compensation $=$ ROM/R1 |
| Kxm | 0-1000\% | 1\% | 300\% | Mutual coupling compensation $=\mathrm{XOM} / \mathrm{X} 1$ |
| KrsR | 0-1000\% | 1\% | 100\% | Residual current compensation for $\mathrm{ZR}=\mathrm{R} 0 / \mathrm{R} 1$ |
| KxsR | 0-1000\% | 1\% | 100\% | Residual current compensation for $\mathrm{ZR}=\mathrm{X} 0 / \mathrm{X} 1$ |
| TZ1G | 0.00-10.00 s | 0.01 s | 0.00 s | Zone 1 timer |
| TZ2G | 0.00-10.00 s | 0.01 s | 0.30 s | Zone 2 timer |
| TZFG | 0.00-10.00 s | 0.01 s | 0.35 s | Zone F timer |
| TZ3G | 0.00-10.00 s | 0.01 s | 0.40 s | Zone 3 timer |
| TZR1G | 0.00-10.00 s | 0.01 s | 0.50 s | Zone R1 timer |
| TZR2G | 0.00-10.00 s | 0.01 s | 0.60 s | Zone R2 timer |
| TZNDG | 0.00-10.00 s | 0.01 s | 0.70 s | Zone ND timer |
| UVC |  |  |  | Phase selection element |
| UVCV | 10-60 V | 1 V | 48 V | Voltage setting |
| UVCZ | 0.0-50.0 | $0.1 \Omega$ | $2.0 \Omega$ | Reach setting |
|  | (0-250 | $1 \Omega$ | 10ת) |  |
| UVC $\theta$ | $45^{\circ}-90^{\circ}$ | $1{ }^{\circ}$ | $85^{\circ}$ | Characteristic angle |
| EFL | 0.5-5.0 A | 0.1 A | 1.0 A | Earth fault detection |
|  | ( $0.10-1.00 \mathrm{~A}$ | 0.01 A | 0.20 A) |  |
| UVPWI | 30 V fixed |  |  | UV for positive weak infeed |
| Scheme switch |  |  |  |  |
| PROTECTION SCHEME | $\begin{aligned} & \text { 3ZONE/Z1EXT/PUP/POP/UOP/ } \\ & \text { BOP/POP+DEF/UOP+DEF/ } \\ & \text { BOP+DEF/PUP+DEF } \end{aligned}$ |  | POP | Scheme selection |
| CRSCM | OFF/ON |  | ON | Telecommunication service |
| BLZONE | COM/IND |  | COM | Common or independent setting for blinder |
| Z1CNT | 1/2/3/4/5 |  | 1 (*4) | Zone 1 trip mode selection |
| PSB-Z1 | OFF/ON |  | ON | Z1 power swing blocking |
| PSB-Z2 | OFF/ON |  | ON | Z2 power swing blocking |
| PSB-Z3 | OFF/ON |  | OFF | Z3 power swing blocking |
| PSB - ZF | OFF/ON |  | OFF | ZF power swing blocking |
| PSB-ZR1 | OFF/ON |  | OFF | ZR1 power swing blocking |
| PSB-ZR2 | OFF/ON |  | OFF | ZR2 power swing blocking |
| ZFBT | OFF/ON |  | OFF | ZF backup tripping |
| ZR1BT | OFF/ON |  | OFF | ZR1 backup tripping |
| ZR2BT | OFF/ON |  | OFF | ZR2 backup tripping |
| ZNDBT | OFF/ON |  | OFF | ND zone backup tripping |
| UVPWIEN | OFF/ON |  | OFF | Countermeasures for overreaching of a leading-phase distance element at positive phase weak infeed condition |

(*1) Ohmic values shown in the parentheses are in the case of 1 A rating. Other ohmic values are in the case of 5 A rating.
(*2) Valid only when mho-based characteristic is selected by ZS-C and ZG-C.
(*3) Valid only when quadrilateral characteristic is selected by ZS-C and ZG-C.
(*4) Default setting is " 5 " in the case of models 101 and 102. In other models, the default setting is " 1 ".

The following elements have fixed setting values or their settings are interlinked with other elements listed above. So no setting operation is required.

| Element | Setting | Remarks |
| :--- | :--- | :--- |
| Z1BS | Fixed to $1.5 \Omega$ | Z1 reverse offset reach |
|  | (Fixed to $7.5 \Omega)(* 1)$ |  |
| BFRS $\theta$ | Fixed to $75^{\circ}$ | Angle of forward right blinder BFRS |
| Z4BS | Fixed to $1.5 \Omega$ | Z4 offset reach. This is also the offset reach for Z1RS and Z2RS. <br> (Fixed to $7.5 \Omega)$ <br> However, in these cases the offset reach is limited by the Z1S <br> setting when Z1RS and Z2RS are used for backup tripping. |
| Z4S $\theta(* 2)$ | Interlinked with Z3S $\theta$ | Characteristic angle of zone 4 mho element |
| Z4BS $\theta(* 3)$ | Interlinked with ZBS $\theta$ | Angle of Z4 offset directional element |
| BRRS $\theta$ | Fixed to $75^{\circ}$ | Angle of reverse right blinder BRRS |
| BRLS | Interlinked with BRRS | Reverse left blinder |
| BRLS $\theta$ | Interlinked with BFLS $\theta$ | Angle of reverse left blinder BRLS |
| BFRG $\theta$ | Fixed to $75^{\circ}$ | Angle of forward right blinder BFRG |
| BNDS $\theta$ | Fixed to $75^{\circ}$ | Angle of BNDS blinder |
| Z4G $\theta(* 2)$ | Interlinked with Z3G $\theta$ | Characteristic angle of Z4 mho element |
| Z4BG $\theta(* 3)$ | Interlinked with ZBG $\theta$ | Angle of offset directional element |
| BRRG $\theta$ | Fixed to $75^{\circ}$ | Angle of reverse right blinder BRRG |
| BRLG | Interlinked with BRRG | Reverse left blinder |
| BRLG $\theta$ | Interlinked with BFLG $\theta$ | Angle of reverse left blinder BRLG |
| BNDG $\theta$ | Fixed to $75^{\circ}$ | Angle of BNDG blinder |

(*1)Ohmic values shown in the parentheses are in the case of 1 A rating. Other ohmic values are in the case of 5 A rating.
(*2) Valid when mho-based characteristic is selected by ZS-C and ZG-C.
(*3) Valid when quadrilateral characteristic is selected by ZS-C and ZG-C.
In order to coordinate with the distance protection provided for adjacent lines, care is required in setting the reach and timer setting. Figure 2.4.1.9 shows an ideal zone and time coordination between terminals.


Figure 2.4.1.9 Typical Zone/Time Coordination among A-D Terminals

## Zone 1 setting

Since instantaneous tripping is allowed in zone 1, it is desirable to select a setting that will cover the widest possible range of the protected line. Conversely, zone 1 elements must not respond to faults further than the remote end. Therefore, the setting of the zone 1 reach is set to 80 to $90 \%$ of the impedance of the protected line taking account of VT and CT errors and measurement error. The reach is set on the X -axis.
In order to change the reactance element characteristic into a broken line, $\mathrm{Z} 1 \mathrm{~S}(\mathrm{G}) \theta 1$ and Z1S(G) $\theta 2$ in Figure 2.4.1.1 or Figure 2.4.1.2 must be set.
Time delayed tripping of zone 1 is selected when instantaneous tripping by another main protection is given priority. The time delay TZ1 is set to ensure that coordination is maintained with fault clearance by the main protection. Suppose that the maximum operating time of the main protection is Tp , the opening time of the circuit breaker is Tcb, the minimum operating time of zone 1 element is T1 and the reset time of the zone 1 element is Tzone 1, then TZ1 must satisfy the following condition:

$$
\mathrm{TZ1}>\mathrm{Tp}+\mathrm{Tcb}+\text { Tzone } 1-\mathrm{T} 1
$$

## Zone 2 setting

Zone 2 is required to cover 10 to $20 \%$ of the remote end zone not covered by zone 1 . To assure this protection, it is set to $120 \%$ or greater of the protected line impedance. To maintain the selectivity with zone 1 of the adjacent lines, the zone 2 reach should not exceed the zone 1 reach of the shortest adjacent line. The reach is set on the X -axis.

Time delay TZ2 is set so that it may be coordinated with fault clearance afforded by the main protection of the adjacent lines. If time delayed tripping is selected for zone 1 of the protected line, coordination with the time delay should also be taken into account. Suppose that the main protection operating time on the adjacent lines is $\mathrm{Tp}^{\prime}$, the opening time of the circuit breaker is Tcb', the minimum operating time of zone 2 element is T2 and the reset time of local terminal zone 2 element is Tzone 2, then TZ2 must satisfy the following two conditions:

$$
\begin{aligned}
& \text { TZ2 > Tp' + Tcb' + Tzone } 2 \text { - T2 } \\
& \text { TZ2 > TZ1 }
\end{aligned}
$$

If the adjacent lines are too short for zone 2 to coordinate with zone 1 of the adjacent lines in reach setting, it is necessary to set a much greater time delay for zone 2 as shown in Figure 2.4.1.10.
Generally, in setting the zone 2, consideration should be given to ensure selectivity with even the slowest timer of the following protections:

- Remote end busbar protection
- Remote end transformer protection
- Line protection of adjacent lines
- Remote end breaker failure protection


Figure 2.4.1.10 Zone 2 Setting (When one of the adjacent lines is very short)

## Zone 3 setting

Zone 3, in cooperation with zone 2, affords backup protection for faults that have occurred on adjacent lines. The reach should be set to exceed the remote end of the longest adjacent line whenever possible. It is also necessary to take into account the effect of fault infeed at the remote busbars. If an ideal reach setting as shown in Figure 2.4.1.9 is possible, the timer setting for zone 3 needs only to consider the coordination with the timer setting in zone 2 of the protected lines and adjacent lines.
However, as shown in Figure 2.4.1.11, if there are short-distance adjacent lines and it is impossible to establish coordination only by the reach setting, there may also be a case where the time delay for zone 3 will need to be set greater than that of the adjacent lines.
The zone 3 reach is set on the characteristic angle when the mho characteristic is selected or set on the X axis when the quadrilateral characteristic is selected.


Figure 2.4.1.11 Zone 3 Setting (When one of the adjacent lines is very short)

## Zone F setting

When zone F is used for the zone 3 instead of Z 3 , above zone 3 setting is applied. If the zone F is used separately from zone 3 , the settings of zone $F$ reach and time delay are set to be less than the zone 3 settings.

## Zone R1 setting

The setting of the zone R1 reach is set so as to exceed the end of the adjacent line behind the relaying point. The reach is set on the X-axis. The time delay is set to be greater than that of the zone 3 backup protection. The scheme switch [ZR1BT] is set to "ON", and the scheme switch [ZR2BT] must be set to "ON" and the zone R2 reach must be set greater than the zone R1 reach even though the zone R2 is not used.

## Zone R2 setting

The setting of the zone R 2 reach is set so as to include the busbar of the adjacent terminal behind the relaying point. The time delay is set to be greater than that of the zone R1.
The zone R 2 reach is set on the characteristic angle when the mho characteristic is selected or set on the X axis when the quadrilateral characteristic is selected. The scheme switch [ZR2BT] is set to "ON".

## Zone ND setting

The setting of the zone ND reach is set so as to include all zone settings and the time delay is set the greatest of all zones. The scheme switch [ZNDBT] is set to "ON".

## Blinder setting

BFR and BRR reaches are set to the minimum load impedance with a margin. The minimum load impedance is calculated using the minimum operating voltage and the maximum load current.

The blinder element (BFR) can be provided for each forward zone. The setting of blinder element can be set independently or set common to forward zones by [BLZONE]=IND or [BLZONE]=COM setting. In the [BLZONE]=IND setting, the forward zone blinder setting should be set $\mathrm{BFR} 1 * \leq \mathrm{BFRX} * \leq \mathrm{BFR} 2 * \leq \mathrm{BFR} *$. If $\mathrm{BFR} * \leq \mathrm{BFR} 1 *$, for example, the reach of BFR1* is limited to the BFR* setting reach as shown in Figure 2.4.1.12(b). The BFRF* can be set larger than the $\mathrm{BFR} *$. If the BFRF * is larger than the maximum resistive reach of Z 3 , the area exceeding the Z 3 is invalid. The BFRF* is limited to Z 3 operating zone as shown in Figure 2.4.1.12(C).


Figure 2.4.1.12 BFR Reach

The BFL angle can be set to 90 to $135^{\circ}$ and is set to $120^{\circ}$ as a default. The BRL angle is linked with the BFL angle.
Figure 2.4.1.12 shows an example of the blinder setting when the minimum load impedance is ZLmin and Z'Lmin under the load transmitting and receiving conditions.


Figure 2.4.1.13 Blinder Setting

When Z4 is used for overreaching command protection ie. POP, UOP and BOP, it is necessary when setting BRR to take account of the setting of the remote end BFR to ensure coordination. That is, the BRR is set to a value greater than the set value of the remote end BFR (e.g., $120 \%$ of BFR ). This ensures that a reverse fault that causes remote end zone 2 or zone 3 to operate is detected in local zone R1 or R2 and false tripping is blocked.

## Setting of earth fault compensation factor (zero sequence compensation)

In order to correctly measure the positive-sequence impedance to the fault point, the current input to the earth fault measuring elements is compensated by the residual current ( $3 \mathrm{I}_{0}$ ) of the protected line in the case of a single circuit line and by residual current ( $3 \mathrm{I}_{0}$ ) of the protected line and residual current ( $3 \mathrm{I}_{0}{ }^{\prime}$ ) of the parallel line in the case of a double circuit line.

Generally, the following equation is used to compensate the zero-sequence voltage drop in the case of phase " a ".

$$
\begin{equation*}
\mathrm{V}_{\mathrm{a}}=\left(\mathrm{I}_{\mathrm{a}}-\mathrm{I}_{0}\right) \mathrm{Z}_{1}+\mathrm{I}_{0} \times \mathrm{Z}_{0}+\mathrm{I}_{\mathrm{om}} \times \mathrm{Z}_{\mathrm{om}} \tag{1}
\end{equation*}
$$

where,
$\mathrm{V}_{\mathrm{a}}$ : Phase "a" voltage
$\mathrm{I}_{\mathrm{a}}$ : Phase "a" current
$\mathrm{I}_{0}$ : Zero-sequence current of the protected line
$\mathrm{I}_{0} \mathrm{~m}$ : Zero-sequence current of the parallel line
$\mathrm{Z}_{1}$ : Positive-sequence impedance $\left(\mathrm{Z}_{1}=\mathrm{R}_{1}+\mathrm{j} \mathrm{X}_{1}\right)$
$\mathrm{Z}_{0}$ : Zero-sequence impedance $\left(\mathrm{Z}_{0}=\mathrm{R}_{0}+\mathrm{j} \mathrm{X}_{0}\right)$
$\mathrm{Z}_{0 \mathrm{~m}}$ : Zero-sequence mutual impedance $\left(\mathrm{Z}_{\mathrm{om}}=\mathrm{R}_{\mathrm{om}}+\mathrm{j} \mathrm{X}_{\mathrm{om}}\right)$
Equation (1) can be written as follows:

$$
\begin{aligned}
V_{a} & =\left(R_{1}+j X_{1}\right) I_{a}+\left\{\left(R_{0}-R_{1}\right)+j\left(X_{0}-X_{1}\right)\right\} I_{0}+\left(R_{o m}+j X_{o m}\right) I_{o m} \\
& =R_{1}\left(I_{a}+\frac{R_{0}-R_{1}}{R_{1}} I_{0}+\frac{R_{0 m}}{R_{1}} I_{o m}\right)+j X_{1}\left(I_{a}+\frac{X_{0}-X_{1}}{X_{1}} I_{0}+\frac{X_{0 m}}{X_{1}} I_{o m}\right)
\end{aligned}
$$

In the GRZ100, the voltage is compensated independently for resistance and reactance components as shown in equation (2) in stead of general equation (1).

$$
\begin{align*}
\mathrm{VaR}_{\mathrm{aR}}+\mathrm{jV}_{\mathrm{aX}}= & \left\{\mathrm{R}_{1}\left(\mathrm{I}_{\mathrm{aR}}+\frac{\frac{\mathrm{K}_{\mathrm{rs}}}{100}-1}{3} \times 3 \mathrm{I}_{0 \mathrm{R}}+\frac{\frac{\mathrm{K}_{\mathrm{rm}}}{100}}{3} \times 3 \mathrm{I}_{\mathrm{omR}}\right)\right. \\
& \left.-\mathrm{X}_{1}\left(\mathrm{I}_{\mathrm{aX}}+\frac{\frac{\mathrm{K}_{\mathrm{Xs}}}{100}-1}{3} \times 3 \mathrm{I}_{0 \mathrm{X}}+\frac{\frac{\mathrm{K}_{\mathrm{xm}}}{100}}{3} \times 3 \mathrm{I}_{\mathrm{omX}}\right)\right\} \\
& +\mathrm{j}\left\{\mathrm{R}_{1}\left(\mathrm{I}_{\mathrm{aX}}+\frac{\frac{\mathrm{K}_{\mathrm{rs}}}{100}-1}{3} \times 3 \mathrm{I}_{0 \mathrm{X}}+\frac{\frac{\mathrm{K}_{\mathrm{rm}}}{100}}{3} \times 3 \mathrm{I}_{\mathrm{omX}}\right)\right. \\
& \left.+\mathrm{X}_{1}\left(\mathrm{I}_{\mathrm{aR}}+\frac{\frac{\mathrm{K}_{\mathrm{xs}}}{100}-1}{3} \times 3 \mathrm{I}_{0 \mathrm{R}}+\frac{\frac{\mathrm{K}_{\mathrm{xm}}}{100}}{3} \times 3 \mathrm{I}_{\mathrm{omR}}\right)\right\} \tag{2}
\end{align*}
$$

where,
$\mathrm{K}_{\mathrm{Xs}}$ : compensation factor $\left(\mathrm{K}_{\mathrm{Xs}}=\mathrm{X}_{0} / \mathrm{X}_{1} \times 100\right)$
$\mathrm{K}_{\mathrm{rs}}$ : compensation factor ( $\mathrm{K}_{\mathrm{rs}}=\mathrm{R}_{0} / \mathrm{R}_{1} \times 100$ )
$\mathrm{K}_{\mathrm{xm}}$ : compensation factor $\left(\mathrm{K}_{\mathrm{xm}}=\mathrm{X}_{\mathrm{om}} / \mathrm{X}_{1} \times 100\right.$ )
$\mathrm{K}_{\mathrm{rm}}$ : compensation factor ( $\mathrm{K}_{\mathrm{rm}}=\mathrm{R}_{\mathrm{om}} / \mathrm{R}_{1} \times 100$ )
X : imaginary part of the measured impedance
R: real part of the measured impedance
$\mathrm{V}_{\mathrm{aX}}$ :imaginary part of phase "a" voltage
$\mathrm{V}_{\mathrm{aR}}$ : real part of phase "a" voltage
$\mathrm{I}_{\mathrm{aX}}$ : imaginary part of phase "a" current
$\mathrm{I}_{\mathrm{a}}$ : real part of phase "a" current
$\mathrm{I}_{0} \mathrm{X}$ : imaginary part of zero-sequence current of the protected line
$\mathrm{I}_{0 \mathrm{R}}$ : real part of zero-sequence current of the protected line
$\mathrm{I}_{\mathrm{omX}}$ : imaginary part of zero-sequence current of the parallel line
IomR: real part of zero-sequence current of the parallel line


Figure 2.4.1.14 Earth Fault Compensation

The zero-sequence compensation factors are applied to the earth fault measuring elements as shown in the table below

| Element | Protected line | Parallel line |
| :--- | :--- | :--- |
| Z1G | Krs, Kxs | Krm, Kxm |
| Z1XG | Krs, Kxs | Krm, Kxm |
| Z2G | Krs, Kxs | Krm, Kxm |
| Z3G | - | - |
| ZFG | - | - |
| ZR1G | KrsR, KxsR | - |
| ZR2G | - | - |
| Z4G | - | - |
| ZNDG | - | - |

-: Compensation is not provided.
The zero-sequence compensation of the parallel line is controlled by the ZPCC (Zero-sequence Current Compensation) element.
When an earth fault occurs on the protected line, the ZPCC operates and parallel line compensation is performed to prevent underreach caused by the mutual zero-sequence current of the parallel line.
When an earth fault on the parallel line occurs, the ZPCC does not operate and the compensation of parallel line is not performed to prevent overreach. The operating condition of the ZPCC is as follows:

$$
3 \mathrm{I}_{0} / 3 \mathrm{I}_{\mathrm{om}} \geq 0.8
$$

## Charging current compensation

When distance protection is applied to underground cables or long-distance overhead lines, the effect of charging current cannot be ignored. It appears as a distance measurement error in the fault.

To suppress the effect of the charging current and maintain the highly accurate distance measurement capability, the GRZ100 has a charging current compensation function.

The compensation is recommended if the minimum fault current can be less than three times the charging current.

The setting value of ZIC should be the charging current at the rated voltage Vn.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| ZIC | $0.00-5.00 \mathrm{~A}$ | 0.01 A | 0.00 | Charging current setting |
|  | $(0.00-1.00 \mathrm{~A}$ | 0.01 A | $0.00 \mathrm{~A})\left(^{*}\right)$ |  |
| Vn | $100-120$ | 1 V | 110 V | Rated line voltage |

$\left(^{*}\right)$ Current values shown in the parentheses are in the case of 1 A rating. Other current values are in the case of 5 A rating.

## Setting of phase selection element

Phase selection is required only for faults on the protected line. Therefore, impedance reach setting UVCZ is set to $120 \%$ of the positive-sequence impedance of the protected line. Impedance angle setting UVC $\theta$ is set the same as the protected line angle.

Undervoltage setting UVCV is set higher than the estimated maximum fault voltage at the fault point for a single-phase earth fault.

### 2.4.2 Zone 1 Extension Protection

## Application

The disadvantage of time-stepped distance protection is that faults near the remote end of the protected line can only be cleared in zone 2 time, thus high speed protection cannot be performed for all faults on the protected line. If telecommunication is available, this disadvantage can be solved by command protection. If telecommunication is not available, zone 1 extension protection using autoreclose will implement high speed protection at both terminals.

Zone 1 extension (zone 1X) has a complex characteristic combining the reactance element, mho element and blinder element, and its characteristic is the same as zone 1.

Zone 1 X for earth faults is provided with the same residual current compensation as zone 1 and zone 2.

As shown in Figure 2.4.2.1, zone 1 X is set to overreach the protected line and performs instantaneous tripping. This tripping is followed by autoreclose. In the selected autoreclose mode, one of three-phase tripping and autoreclose, single-phase tripping and autoreclose, or single- and three-phase tripping and autoreclose is executed.

The zone 1 extension protection clears a fault on the protected line including an end zone fault at high speed, displaying the performance equivalent to that of command protection.

On the other hand, unlike command protection, overreaching zone 1 X also acts instantaneously for a fault on adjacent lines and executes tripping. If the fault is a transient fault, power transmission can be recovered by autoreclose with a transient loss of power supply.
High speed zone 1 X tripping is not desirable following reclosure onto a permanent fault on an adjacent line because more of the network is lost than necessary. Therefore, tripping by zone 1 X is blocked prior to the reclosing command to the circuit breaker. Whether or not the permanent fault is on the protected line or on an adjacent line, tripping is performed under time-stepped distance protection.
When autoreclose is out of service, the zone 1 extension protection is blocked.


Figure 2.4.2.1 Time/Distance Characteristics of Zone 1 Extension Protection and Time-Stepped Distance Protection

## Scheme Logic

The scheme logic of the zone 1 extension protection is shown in Figure 2.4.2.2. Zone 1X outputs single-phase tripping signal S-TRIP or three-phase tripping signal M-TRIP through phase selection logic on condition that the reclosing mode selection switch [ARC-M] of autoreclose be set to "TPAR" or "SPAR \& TPAR" and condition REC-READY1 = 1 be established. The phase selection logic is the same as that for the zone 1 protection shown in Figure 2.4.1.7, except that Z1XG and Z1XS are employed instead of Z1G and Z1S. When a power swing is detected (PSB = $1)$ and when a VT failure is detected (VTF = 1), tripping is blocked. Power swing blocking can be disabled by the scheme switch [PSB-Z1X].

The zone 1 extension protection is disabled by the binary input signal (PLC signal) Z1XG_BLOCK and Z1XS_BLOCK.


Figure 2.4.2.2 Zone 1 Extension Scheme Logic
REC-READY1 is a signal in the autoreclose function, and as shown in Figure 2.4.2.3, REC-READY1 $=1$ is established when the reclaim time has elapsed, that is, when autoreclose is ready, and reset when a reclosing command is output.
Zone 1 extension can provide protection in the case of evolving faults provided that they occur before the reclosing command is output. Otherwise, in the case of a permanent fault, it will not respond to a reclose-on-to-fault.


Figure 2.4.2.3 Sequence Diagram of Zone 1 Extension

Zone 1 extension executes single-phase tripping and autoreclose for single-phase to earth faults when the reclosing mode selection switch [ARC-M] is set to "SPAR \& TPAR". A phase selection element UVC and phase selection logic are used for reliable selection of the faulted phases. Phase selection logic for zone 1 X can be seen in Figure 2.4.1.7 by replacing zone 1 measuring elements with zone 1 X measuring elements.

## Setting

The following table shows the setting elements necessary for zone 1 extension protection and their setting ranges.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| Z1XS | $0.01-50.00 \Omega$ | $0.01 \Omega$ | $2.40 \Omega$ | Zone 1 extension reach |
|  | $(0.10-250.00 \Omega$ | $0.01 \Omega$ | $12.00 \Omega)\left(^{*}\right)$ |  |
| Z1S $\theta 1$ | $0^{\circ}-45^{\circ}$ | $1^{\circ}$ | $0^{\circ}$ | Gradient of reactance element |
| Z1S $\theta 2$ | $45^{\circ}-90^{\circ}$ | $1^{\circ}$ | $90^{\circ}$ |  |
| BFRXS | $0.10-20.00 \Omega$ | $0.01 \Omega$ | $5.10 \Omega$ | Forward right blinder reach for Z1XS |
|  | $(0.5-100.0 \Omega$ | $0.1 \Omega$ | $25.5 \Omega)$ | Required if [BLZONE]=IND |
| Z1XG | $0.01-50.00 \Omega$ | $0.01 \Omega$ | $2.40 \Omega$ | Zone 1 extension reach |
|  | $(0.10-250.00 \Omega$ | $0.01 \Omega$ | $12.00 \Omega)$ |  |
| Z1G $\theta 1$ | $0^{\circ}-45^{\circ}$ | $1^{\circ}$ | $0^{\circ}$ | Gradient of reactance element |
| Z1G $\theta 2$ | $45^{\circ}-90^{\circ}$ | $1^{\circ}$ | $90^{\circ}$ |  |
| BFRXG | $0.10-20.00 \Omega$ | $0.01 \Omega$ | $5.10 \Omega$ | Forward right blinder reach for Z1XG |
|  | $(0.5-100.0 \Omega$ | $0.1 \Omega$ | $25.5 \Omega)$ | Required if [BLZONE]=IND |
| PROTECTION | $3 Z O N E / Z 1 E X T / P U P / P O P / U O P / B O P / P O$ | POP | Scheme selection |  |
| SCHEME | P+DEF/UOP+DEF/BOP+DEF/ PUP+DEF |  |  |  |
| Autoreclose mode | Disabled/SPAR/TPAR/ | SPAR \& TPAR | Autoreclose mode selection |  |
| (ARC - M) | SPAR \& TPAR/EXT1P/EXT3P |  | "SPAR" or "SPAR \& TPAR" should be selected |  |
| BLZONE | COM/IND |  | COM | Common or independent setting for blinder |
| PSB - Z1X | OFF/ON |  | ON | Power swing blocking |

(*) Ohmic values shown in the parentheses are in the case of 1 A rating. Other ohmic values are in the case of 5 A rating.

The reach for zone 1 extension is set, for example, to $120 \%$ so as to completely cover the protected line. It is not necessary to set the earth fault compensation factors because the same compensation factors as those of zone 1 and zone 2 are used. The reach is set on the X -axis.

When the reactance element characteristic of zone 1 takes a broken line, that of zone 1 extension follows it automatically.

When using zone 1 extension protection, either "SPAR \& TPAR" or "TPAR" must be selected as the reclosing mode of the autoreclose.

### 2.4.3 Command Protection

If operational information from the distance relays located at each end of the protected line is exchanged by means of telecommunication, it is possible to accurately determine whether or not the fault is internal or external to the protected line. Each terminal can provide high-speed protection for any fault along the whole length of the protected line. The GRZ100 provides the following command protection using the distance measuring elements.

- Permissive underreach protection (PUP)
- Permissive overreach protection (POP)
- Unblocking overreach protection (UOP)
- Blocking overreach protection (BOP)

Each command protection can initiate high-speed autoreclose. These protections perform single-phase or three-phase tripping depending on the setting of the reclosing mode and the fault type.
Each command protection includes the aforementioned time-stepped distance protection as backup protection.

### 2.4.3.1Permissive Underreach Protection

## Application

In permissive underreach protection (PUP), the underreaching zone 1 protection operates and trips the local circuit breakers and at the same time sends a trip permission signal to the remote terminal. The terminal which receives this signal executes instantaneous tripping on condition that the local overreaching element has operated. The overreaching element can be selected as either zone 2 or zone 3.

Since the trip permission signal is sent only when it is sure that the fault exists in the operating zone of zone 1, the PUP provides excellent security. On the other hand, the PUP does not provide sufficient dependability for faults on lines that contain open terminals or weak infeed terminals for which zone 1 cannot operate. Faults near open terminals or weak infeed terminals are removed by delayed tripping of zone 2 elements at remote terminals.
Since only the operating signal of the underreaching element is transmitted, it is not necessary to distinguish a transmit signal from a receive signal. That is, the telecommunication channel can be shared by the terminals and a simplex channel can be used.

## Scheme Logic

Figure 2.4.3.1 shows the scheme logic of the PUP. Once zone 1 starts to operate, it outputs a single-phase tripping signal S-TRIP or three-phase tripping signal M-TRIP to the local terminal instantaneously and at the same time sends a trip permission signal CS to the remote terminals. When the trip permission signal R1-CR is received from the remote terminals, PUP executes instantaneous tripping on condition that either zone 2 or zone 3 has operated. Whether or not zone 2 or zone 3 is used can be selected by the scheme switch [ZONESEL]. If the PLC signal PSCM_TCHDEN is established, the delayed pick-up timer TCHD is provided.


Figure 2.4.3.1 PUP Scheme Logic

To select the faulted phases reliably, phase selection is performed using the phase selection element UVC. Phase selection logic in zone 1 tripping is shown in Figure 2.4.1.7 and its operation is described in Section 2.4.1. Phase selection logic in command tripping is shown in Figure 2.4.3.9. Refer to Section 2.4.3.7.

Off-delay timer TSBCT is provided for the following purpose:
In many cases, most of the overreaching elements at both ends operate almost simultaneously. However, there may be some cases where they cannot operate simultaneously due to unbalanced distribution of fault currents. Non-operation of the overreaching elements can occur at a terminal far from the fault, but they can operate if the other terminal trips. Transmission of the trip permission signal continues for the setting time of TSBCT after reset of zone 1, and thus even the terminal for which the overreaching element has delayed-picked up can also trip.

## Setting

The following shows the setting elements necessary for the PUP and their setting ranges. For the settings of Z1, Z2, Z3 and UVC, refer to Section 2.4.1.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| TCHD | $0-50 \mathrm{~ms}$ | 1 ms | 12 ms | Channel delay time |
| TSBCT | $0.00-1.00 \mathrm{~s}$ | 0.01 s | 0.10 s |  |
| PROTECTION | 3ZONE/Z1EXT/PUP/POP/UOP | POP | Scheme selection |  |
| SCHEME | /BOP/POP+DEF/UOP+DEF/ |  |  |  |
|  | BOP+DEF/PUP+DEF |  |  |  |
| ZONESEL | Z2/Z3 |  | Z2 | Overreaching element selection |
| PSB - CR | OFF/ON |  | ON | Power swing blocking |

### 2.4.3.2Permissive Overreach Protection

## Application

In permissive overreach protection (POP), the terminal on which the forward overreaching element operates transmits a trip permission signal to the other terminal. The circuit breaker at the local terminal is tripped on condition that the overreaching element of the local terminal has operated and that a trip permission signal has been received from the remote terminal. That is, POP determines that the fault exists inside the protected line based on the overlapping operation of the
forward overreaching elements at both terminals. It is possible to use zone 2 or zone 3 , as the forward overreaching element.

The POP is provided with an echo function and weak infeed trip function so that even when the protection is applied to a line with open terminal or weak infeed terminal, it enables fast tripping of both terminals for any fault along the whole length of the protected line. An undervoltage element UVL is provided for weak infeed tripping. (See Section 2.4.3.5 for protection for weak infeed terminal.)

When a sequential fault clearance occurs for a fault on a parallel line, the direction of the current on the healthy line is reversed. The status of the forward overreaching element changes from an operating to a reset state at the terminal where the current is reversed from an inward to an outward direction, and from a non-operating status to operating status at the other terminal. In this process, if the operating periods of the forward overreaching element of both terminals overlap, the healthy line may be tripped erroneously. To prevent this, current reversal logic (CRL) is provided. (See Section 2.4.3.6 for current reversal.)
Since the POP transmits a trip permission signal with the operation of the overreaching element, it requires multiplex signaling channels or one channel for each direction. This ensures that the transmitting terminal does not trip erroneously due to reception of its own transmit signal during an external fault in the overreaching zone.

## Scheme Logic

Figure 2.4.3.2 shows the scheme logic for the POP. The POP transmits a trip permission signal to the other terminal for any of the following conditions.

- The forward overreaching zone 2 or zone 3 selected by scheme switch [ZONESEL] operates and the current reversal logic (CRL) has not picked up. If the PLC signal PSCM_TCHDEN is established, the delayed pick-up timer TCHD is provided.
- The circuit breaker is opened and a trip permission signal CR is received from the other terminal.
- The forward overreaching zone 2 or zone 3 and reverse looking Z4 have not operated and a trip permission signal is received from the other terminal.

The last two are implemented when an echo function (ECH) is selected. (Refer to Section 2.4.3.5 for echo function.)
Transmission of the trip permission signal continues for the TSBCT setting even after the local terminal is tripped by the delayed drop-off timer TSBCT. This is to ensure that command tripping is executed at the remote terminal.

The POP outputs single-phase tripping signal S-TRIP or three-phase tripping signal M-TRIP to the local terminal when the trip permission signal R1-CR is received from the remote terminal, the current reversal logic (CRL) is not picked up and one of the following conditions is established.

- The forward overreaching element operates.
- The undervoltage element UVL (UVLS or UVLG) operates and the forward overreaching and the reverse looking elements do not operate.

The latter is implemented when the weak infeed trip function is selected. (Refer to Section 2.4.3.5 for weak infeed trip function.)

To select the faulted phase reliably, phase selection is performed using the phase selection element UVC. Phase selection logic is described in Section 2.4.3.7.


Figure 2.4.3.2 POP Scheme Logic

## Setting

The following shows the setting elements necessary for the POP and their setting ranges. For the settings of Z2, Z3 and UVC, refer to Section 2.4.1.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| UVL |  |  |  | Weak infeed trip element |
| UVLS | $50-100 \mathrm{~V}$ | 1 V | 77 V | Undervoltage detection (phase fault) |
| UVLG | $10-60 \mathrm{~V}$ | 1 V | 45 V | Undervoltage detection (earth fault) |
| Z4S | $0.01-50.00 \Omega$ | $0.01 \Omega$ | $8.00 \Omega$ | Z4 reach |
|  | $(0.1-250.0 \Omega$ | $0.1 \Omega$ | $40.0 \Omega)\left(^{*}\right)$ |  |
| BRRS | $0.10-20.00 \Omega$ | $0.01 \Omega$ | $5.10 \Omega$ | Reverse right blinder reach |
|  | $(0.5-100.0 \Omega$ | $0.1 \Omega$ | $25.5 \Omega)$ |  |
| Z4G | $0.01-100.00 \Omega$ | $0.01 \Omega$ | $8.00 \Omega$ | Z4 reach |
|  | $(0.1-500.0 \Omega$ | $0.1 \Omega$ | $40.0 \Omega)$ |  |
| BRRG | $0.10-20.00 \Omega$ | $0.01 \Omega$ | $5.10 \Omega$ | Reverse right blinder reach |
|  | $(0.5-100.0 \Omega$ | $0.1 \Omega$ | $25.5 \Omega)$ |  |
| TCHD | $0-50 \mathrm{~ms}$ | 1 ms | 12 ms | Channel delay time |
| TREBK | $0.00-10.00 \mathrm{~s}$ | 0.01 s | 0.10 s | Current reversal block time |
| TSBCT | $0.00-1.00 \mathrm{~s}$ | 0.01 s | 0.10 s |  |
| PROTECTION | $3 Z O N E / Z 1 E X T / P U P / P O P / \mathrm{sOP} /$ | POP | Scheme selection |  |
| SCHEME | BOP/POP+DEF/UOP+DEF/ |  |  |  |
|  | BOP+DEF/PUP+DEF |  |  |  |
| ZONESEL | Z2/Z3 |  | Z2 | Overreaching element selection |
| PSB - CR | OFF/ON |  | ON | Power swing blocking |


| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| ECHO | OFF/ON |  | ON | Echo function |
| WKIT | OFF/ON |  | ON | Weak infeed trip function |

$\left.{ }^{*}\right)$ Ohmic values shown in the parentheses are in the case of 1 A rating. Other ohmic values are in the case of 5 A rating.

The following elements have fixed setting values or their settings are interlinked with other elements listed above. So no setting operation is required.

| Element | Setting | Remarks |
| :--- | :--- | :--- |
| Z4BS | Fixed to $1.5 \Omega$ | Z4 reverse offset reach |
|  | (Fixed to $7.5 \Omega)(* 1)$ |  |
| Z4S $\theta(* 2)$ | Interlinked with Z3S $\theta$ | Characteristic angle of Z4 mho element |
| Z4BS $\theta(* 3)$ | Interlinked with ZBS $\theta$ | Angle of Z4 directional element |
| BRRS $\theta$ | Fixed to 75 | Angle of reverse right blinder BRRS |
| BRLS | Interlinked with BRRS | Reverse left blinder |
| BRLS $\theta$ | Interlinked with BFLS $\theta$ | Angle of reverse left blinder BRLS |
| Z4G $\theta(* 2)$ | Interlinked with Z3G $\theta$ | Characteristic angle of Z4 mho element |
| Z4BG $\theta(* 3)$ | Interlinked with ZBG $\theta$ | Angle of Z4 directional element |
| BRRG $\theta$ | Fixed to 75 | Angle of reverse right blinder BRRG |
| BRLG | Interlinked with BRRG | Reverse left blinder |
| BRLG $\theta$ | Interlinked with BFLG $\theta$ | Angle of reverse left blinder BRLG |

(*1) Ohmic values shown in the parentheses are in the case of 1 A rating. Other ohmic values are in the case of 5 A rating.
(*2) Valid only when mho-based characteristic is selected by ZS-C and ZG-C.
(*3) Valid only when quadrilateral characteristic is selected by ZS-C and ZG-C.
The reverse looking Z4 (G,S), BRR (G,S) and BRL (G,S) must always operate for reverse faults for which the forward overreaching element of the remote end operates. The following setting coordination is required.

When zone 2 is selected as the forward looking element:
Z 4 setting $=1.2 \times($ Zone 2 setting at remote end $)$
When zone 3 is selected:
Z 4 setting $=1.2 \times($ Zone 3 setting at remote end $)$
In both cases:
$B R R$ setting $=1.2 \times(B F R$ setting at remote end $)$

### 2.4.3.3Unblocking Overreach Protection

## Application

If a power line carrier is used as the telecommunication media, there is a possibility that the dependability of the PUP and POP could be reduced. This is because the trip permission signal must be transmitted through the fault point and the attenuation of the signal may cause the PUP and POP to fail to operate. To solve this problem, unblocking overreach protection (UOP) is applied.

The signal transmitted under the UOP is a trip block signal and this is transmitted continuously during non-fault conditions. When the forward overreaching element operates, transmission is stopped. At the remote end, the non-receipt of a trip block signal is recognized as an actual trip permission signal and tripping is executed on condition that the local forward overreaching element operates.

In this system, the transmitted signal is a trip block signal, and transmission of that signal is required only in the case of external faults. Therefore, even if power line carrier is used, a failure to operate or false operation due to attenuation of the signal would not be experienced.

If the modulation method of the telecommunication circuits is a frequency shift method, frequencies f1 and f2 are assigned to the trip block signal and trip permission signal, respectively. The receive end recognizes signals CR1 and CR2 as corresponding to respective frequencies as the actual trip permission signals when either one of the following conditions is established and executes tripping on condition that the overreaching element should operate.

- CR1 is lost and only CR2 is received.
- Both CR1 and CR2 are lost.

The latter is also applicable if there is a telecommunication circuit failure in addition to attenuation of the signal at the fault point. Therefore, when the latter condition continues for a certain period or longer, the UOP is blocked and a telecommunication circuit failure alarm is output.
The UOP is provided with an echo function and weak infeed trip function and even when applied to a line with open terminals or weak infeed terminals, it allows fast tripping of both terminals for any fault along the whole length of the protected line. An undervoltage element UVL is provided for weak infeed tripping. (See Section 2.4.3.5 for protection for weak infeed terminal.)

When a sequential fault clearance occurs for a fault on a parallel line, the direction of the current on the healthy line is reversed. The status of the forward overreaching element changes from an operating to a reset state at the terminal where the current is reversed from an inward to an outward direction, and from a non-operating status to an operating status at the other terminal. In this process, if the operating periods of the forward overreaching element of both terminals overlap, the healthy line may be tripped erroneously. To prevent this, current reversal logic is provided. (See Section 2.4.3.6 for current reversal.)

For the communication channel, a single channel shared by different terminals or multiplex channels, one channel for each direction can be used.

## Scheme Logic

Figure 2.4.3.3 shows the scheme logic of the UOP. The logic level of transmit signal CS and receive signal R1-CR is "1" for a trip block signal and "0" for a trip permission signal.
The UOP changes its transmit signal CS from a trip block signal to trip permission signal under one of the following conditions. The logic level of CS changes from 1 to 0 .

- The forward overreaching zone 2 or zone 3 selected by the scheme switch [ZONESEL] operates and the current reversal logic (CRL) is not picked up. If the PLC signal PSCM_TCHDEN is established, the delayed pick-up timer TCHD is provided.
- The circuit breaker is open and the trip permission signal ( $\mathrm{R} 1-\mathrm{CR}=0$ ) is received from the other terminal.
- The forward overreaching zone 2 or zone 3 and reverse looking Z4 are not operating and a trip permission signal is received from the other terminal.

The last two are implemented when an echo function (ECH) is selected. (Refer to Section 2.4.3.5 for echo function.)

Transmission of a trip permission signal continues for the TSBCT setting even after the local terminal is tripped. This is to ensure that command tripping is executed at the remote terminal.

The UOP outputs single-phase tripping signal S-TRIP or three-phase tripping signal M-TRIP to the local terminal when the trip permission signal ( $\mathrm{R} 1-\mathrm{CR}=0$ ) is received from the remote terminal, the current reversal logic (CRL) is not picked up and one of the following conditions is established.

- The forward overreaching element operates.
- The undervoltage element UVL (UVLS or UVLG) operates and the forward overreaching and the reverse looking elements do not operate.
The latter is implemented when the weak infeed trip function is selected.
To select the faulted phase reliably, phase selection is performed using the phase selection element UVC. Phase selection logic is described in Section 2.4.3.7.


Figure 2.4.3.3 UOP Scheme Logic

## Setting

The following shows the setting elements necessary for the UOP and their setting ranges. For the settings of Z2, Z3, and UVC, refer to Section 2.4.1.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| UVL |  |  |  | Weak infeed trip element |
| UVLS | $50-100 \mathrm{~V}$ | 1 V | 77 V | Undervoltage detection (phase fault) |
| UVLG | $10-60 \mathrm{~V}$ | 1 V | 45 V | Undervoltage detection (earth fault) |
|  |  |  |  |  |
| Z4S | $0.01-50.00 \Omega$ | $0.01 \Omega$ | $8.00 \Omega$ | Z4 reach |
|  | $(0.1-250.0 \Omega$ | $0.1 \Omega$ | $40.0 \Omega)$ |  |
| BRRS | $0.10-20.00 \Omega$ | $0.01 \Omega$ | $5.10 \Omega$ | Reverse right blinder reach |
|  | $(0.5-100.0 \Omega$ | $0.1 \Omega$ | $25.5 \Omega)$ |  |
| Z4G | $0.01-100.00 \Omega$ | $0.01 \Omega$ | $8.00 \Omega$ | Z4 reach |
|  | $(0.1-500.0 \Omega$ | $0.1 \Omega$ | $40.0 \Omega)$ |  |
| BRRG | $0.10-20.00 \Omega$ | $0.01 \Omega$ | $5.10 \Omega$ | Reverse right blinder reach |


| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
|  | $(0.5-100.0 \Omega$ | $0.1 \Omega$ | $25.5 \Omega)$ |  |
| TCHD | $0-50 \mathrm{~ms}$ | 1 ms | 12 ms | Channel delay time |
| TREBK | $0.00-10.00 \mathrm{~s}$ | 0.01 s | 0.10 s | Current reversal block time |
| TSBCT | $0.00-1.00 \mathrm{~s}$ | 0.01 s | 0.10 s |  |
| PROTECTION | $3 Z O N E / Z 1 E X T / P U P / P O P / U O P / ~ B O P /$ | POP | Scheme selection |  |
| SCHEME | POP+DEF/UOP+DEF/BOP+DEF/PUP+DEF |  |  |  |
| ZONESEL | Z2/Z3 | Z2 | Overreaching element selection |  |
| PSB - CR | OFF/ON | ON | Power swing blocking |  |
| ECHO | OFF/ON |  | ON | Echo function |
| WKIT | OFF/ON |  | ON | Weak infeed trip function |

(*) Ohmic values shown in the parentheses are in the case of 1 A rating. Other ohmic values are in $^{*}$ the case of 5 A rating.

The following elements have fixed setting values or their settings are interlinked with other elements listed above. So no setting operation is required.

| Element | Setting | Remarks |
| :--- | :--- | :--- |
| Z4BS | Fixed to $1.5 \Omega$ | Z4 reverse offset reach |
|  | (Fixed to $7.5 \Omega)(* 1)$ |  |
| Z4S $\theta(* 2)$ | Interlinked with Z3S $\theta$ | Characteristic angle of Z4 mho element |
| Z4BS $\theta(* 3)$ | Interlinked with ZBS $\theta$ | Angle of Z4 directional element |
| BRRS $\theta$ | Fixed to 75 | Angle of reverse right blinder BRRS |
| BRLS | Interlinked with BRRS | Reverse left blinder |
| BRLS $\theta$ | Interlinked with BFLS $\theta$ | Angle of reverse left blinder BRLS |
| Z4G $\theta(* 2)$ | Interlinked with Z3G $\theta$ | Characteristic angle of Z4 mho element |
| Z4BG $\theta(* 3)$ | Interlinked with ZBG $\theta$ | Angle of Z4 directional element |
| BRRG $\theta$ | Fixed to 75 | Angle of reverse right blinder BRRG |
| BRLG | Interlinked with BRRG | Reverse left blinder |
| BRLG $\theta$ | Interlinked with BFLG $\theta$ | Angle of reverse left blinder BRLG |

(*1) Ohmic values shown in the parentheses are in the case of 1 A rating. Other ohmic values are in the case of 5 A rating.
(*2) Valid only when mho-based characteristic is selected by ZS-C and ZG-C.
(*3) Valid only when quadrilateral characteristic is selected by ZS-C and ZG-C.
The reverse looking elements $\mathrm{Z} 4(\mathrm{G}, \mathrm{S})$, $\mathrm{BRR}(\mathrm{G}, \mathrm{S})$ and $\mathrm{BRL}(\mathrm{G}, \mathrm{S})$ must always operate for reverse faults for which the forward overreaching element of the remote end operates. The following setting coordination is required.

When zone 2 is selected as the forward-looking element,
Z 4 setting $=1.2 \times($ Zone 2 setting at remote end $)$
When zone 3 is selected,
Z 4 setting $=1.2 \times($ Zone 3 setting at remote end $)$
In both cases,
$B R R$ setting $=1.2 \times(B F R$ setting at remote end $)$

### 2.4.3.4Blocking Overreach Protection

## Application

In blocking overreach protection (BOP), each terminal normally transmits a trip permission signal, and transmits a trip block signal if the reverse looking Z4 operates and the forward overreaching element does not operate. Tripping of the local circuit breaker is performed on condition that the forward overreaching element has operated and a trip permission signal has been received. As the forward overreaching element, it is possible to use zone 2 or zone 3 .
If signal modulation is performed by an ON/OFF method, the signal is not normally transmitted and a trip block signal is transmitted only when the reverse looking element operates. Tripping is performed on condition that the forward overreaching element has operated and no signal has been received. In this signaling system, the signal transmitted is a trip block signal and transmission of this signal is only required in the event of an external fault. Therefore, even if power line carrier is used, there will be no failure to operate or false operation due to attenuation of signals caused by signal transmission through the fault.
The BOP receives a trip permission signal all the time. Therefore, when a forward external fault occurs, the infeed terminal on which the forward overreaching element has operated attempts to perform instantaneous tripping. At this time, at the remote outfeed terminal, the reverse looking element operates and transmits a trip block signal. This signal is received at the infeed terminal after a channel delay time. Therefore, a short delay is required for the tripping to check for the reception of a trip block signal.
The BOP performs fast tripping for any fault along the whole length of the protected line even if an open terminal exists. A strong infeed terminal operates for all internal faults even if a weak infeed terminal exists. Therefore, no echo function is required. However, since no weak infeed logic is applicable to the BOP, the weak infeed terminal cannot operate.

When a sequential fault clearance occurs for a fault on a parallel line, the direction of the current on the healthy line is reversed. The status of the forward overreaching element changes from an operating to a reset state at the terminal where the current is reversed from the inward direction to outward direction, and from a non-operating status to an operating status at the other terminal. In this process, if the operating periods of the forward overreaching element of both terminals overlap, the healthy line may be tripped erroneously. To prevent this, current reversal logic is provided. (See Section 2.4.3.6 for current reversal.)

## Scheme Logic

Figure 2.4.3.4 shows the scheme logic of the BOP. The logic level of transmit signal CS and receive signal R1-CR is "1" for a trip block signal and "0" for a trip permission signal.
The transmit signal is controlled in the BOP as follows:
In the normal state, the logic level of transmit signal CS is 0 , and a trip permission signal is transmitted. If the reverse looking Z4 operates and at the same time the forward overreaching element zone 2 or zone 3 selected by the scheme switch [ZONESEL] does not operate, CS becomes 1 and a trip block signal is transmitted. When this condition continues for 20 ms or more, current reversal logic is picked up and a drop-off delay time of TREBK setting is given to reset the transmission of the trip block signal.

Transmission of a trip permission signal continues for the TSBCT setting even after the local terminal is tripped, assuring command tripping of the remote terminal.
The BOP outputs single-phase tripping signal S-TRIP or three-phase tripping signal M-TRIP to the local terminal when zone 3 or zone 2 operates and at the same time the trip permission signal is received ( $\mathrm{R} 1-\mathrm{CR}=0$ ). The delayed pick-up timer TCHD is provided to allow for the transmission delay for receipt of the trip block signal from the remote terminal in the event of a forward external fault.

To select the faulted phase reliably, phase selection is performed using the phase selection element

UVC. The phase selection logic is described in Section 2.4.3.7.


Figure 2.4.3.4 BOP Scheme Logic

## Setting

The following shows the setting elements necessary for the BOP and their setting ranges. For the settings of Z2, Z3 and UVC, refer to Section 2.4.1.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| Z4S | $0.01-50.00 \Omega$ | $0.01 \Omega$ | $8.00 \Omega$ | Z4 reach |
|  | $(0.1-250.0 \Omega$ | $0.1 \Omega$ | $40.0 \Omega)$ ( $\left.^{*}\right)$ |  |
| BRRS | $0.10-20.00 \Omega$ | $0.01 \Omega$ | $5.10 \Omega$ | Reverse right blinder reach |
|  | $(0.5-100.0 \Omega$ | $0.1 \Omega$ | $25.5 \Omega)$ |  |
| Z4G | $0.01-100.00 \Omega$ | $0.01 \Omega$ | $8.00 \Omega$ | Z4 reach |
|  | $(0.1-500.0 \Omega$ | $0.1 \Omega$ | $40.0 \Omega)$ |  |
| BRRG | $0.10-20.00 \Omega$ | $0.01 \Omega$ | $5.10 \Omega$ | Reverse right blinder reach |
|  | $(0.5-100.0 \Omega$ | $0.1 \Omega$ | $25.5 \Omega)$ |  |
| TCHD | $0-50 \mathrm{~ms}$ | 1 ms | 12 ms | Channel delay time |
| TREBK | $0.00-10.00 \mathrm{~s}$ | 0.01 s | 0.10 s | Current reversal block time |
| TSBCT | $0.00-1.00 \mathrm{~s}$ | 0.01 s | 0.10 s |  |
| PROTECTION | $3 Z O N E / Z 1 E X T / P U P / P O P / U O P /$ | POP | Scheme selection |  |
| SCHEME | BOP /POP+DEF/UOP+DEF/ |  |  |  |
|  | BOP+DEF/PUP+DEF |  |  |  |
| ZONESEL | Z2/Z3 |  | Z2 | Overreaching element selection |
| PSB - CR | OFF/ON |  | ON | Power swing blocking |

$\left.{ }^{*}\right)$ Ohmic values shown in the parentheses are in the case of 1 A rating. Other ohmic values are in the case of 5 A rating.

The following elements have fixed setting values or their settings are interlinked with other elements listed above. So no setting operation is required.

| Element | Setting | Remarks |
| :--- | :--- | :--- |
| Z4BS | Fixed to $1.5 \Omega$ | Z4 reverse offset reach |
|  | $($ Fixed to $7.5 \Omega)(* 1)$ |  |
| Z4S $\theta(* 2)$ | Interlinked with Z3S $\theta$ | Characteristic angle of Z4 mho element |
| Z4BS $\theta(* 3)$ | Interlinked with ZBS $\theta$ | Angle of Z4 directional element |
| BRRS $\theta$ | Fixed to $75^{\circ}$ | Angle of reverse right blinder BRRS |
| BRLS | Interlinked with BRRS | Reverse left blinder |
| BRLS $\theta$ | Interlinked with BFLS $\theta$ | Angle of reverse left blinder BRLS |
| Z4G $\theta(* 2)$ | Interlinked with Z3G $\theta$ | Characteristic angle of Z4 mho element |


| Element | Setting | Remarks |
| :---: | :---: | :---: |
| Z4BG $\theta$ (*3) | Interlinked with ZBG $\theta$ | Angle of Z 4 directional element |
| BRRG $\theta$ | Fixed to $75^{\circ}$ | Angle of reverse right blinder BRRG |
| BRLG | Interlinked with BRRG | Reverse left blinder |
| BRLG $\theta$ | Interlinked with BFLG $\theta$ | Angle of reverse left blinder BRLG |
| (*1)Ohmic values shown in the parentheses are in the case of 1 A rating. Other ohmic values are in the case of 5 A rating. |  |  |
| (*2) Valid <br> (*3) Valid | only when mho-based only when quadrilateral | characteristic is selected by ZS-C and ZG-C. characteristic is selected by ZS-C and ZG-C. |

The reverse looking elements Z4 (G,S), BRR (G,S) and BRL (G,S) must always operate for reverse faults for which the forward overreaching element of the remote end operates. The following setting coordination is required.
When zone 2 is selected as the forward-looking element,

$$
\begin{aligned}
& \mathrm{Z} 4 \text { setting }=1.2 \times(\text { Zone } 3 \text { setting at remote end }) \\
& \text { or }
\end{aligned}
$$ Z4 setting $=\alpha \times$ (Zone 2 setting at remote end)

Note: $\alpha$ should be determined in consideration of the extension of zone 2 by zero-sequence compensation.

When zone 3 is selected,
Z4 setting $=1.2 \times$ (Zone 3 setting at remote end)
In both cases,
BRR setting $=1.2 \times$ (BFR setting at remote end)
The delayed pick-up timer TCHD is set as follows taking into account the transmission delay time of the blocking signal and a safety margin of 5 ms .

TCHD setting $=$ maximum signal transmission delay time(*) +5 ms
(*) includes delay time of binary output and binary input for the blocking signal.

### 2.4.3.5Protection for Weak Infeed Terminal

The POP and UOP are provided with an echo function and weak infeed trip function. Both functions are used for lines with weak infeed terminals.

Figure 2.4.3.5 shows the scheme logic for the echo function.
With the POP, when a trip permission signal is received (R1-CR=1) if neither forward overreaching zone 2 or zone 3 nor reverse looking Z 4 have operated, the echo function sends back the received signal to the remote terminal. With the UOP, when reception of a blocking signal is stopped ( $\mathrm{R} 1-\mathrm{CR}=0$ ) if neither forward overreaching zone 2 (or zone 3 ) nor reverse looking Z4 have operated, the echo function stops sending the blocking signal to the remote terminal. When the circuit breaker is open ( $\mathrm{CB}-\mathrm{OR}=1$ ), too, the echo function sends back the trip permission signal or stops sending the blocking signal. Timer TECCB is used to set the time from CB opened to the echo logic enabled.

The terminal on which the forward overreaching element has operated can be tripped at high speed by this echoed signal.
Once the forward overreaching element or reverse looking element have operated, transmission of the echo signal is inhibited for 250 ms by delayed drop-off timer T1 even after they have reset.
In order to prevent any spurious echo signal from looping round between the terminals in a healthy state, the echo signal is restricted to last for 200 ms by delayed pickup timer T2.

The echo function can be disabled by the scheme switch [ECHO] and the PLC signal ECHO_BLOCK.

The setting element necessary for the echo function and its setting range is as follows:

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| TECCB | $0.00-200.00 \mathrm{~s}$ | 0.01 s | 0.10 s | Echo enable timer |
| ECHO | OFF/ON |  | ON | Echo function |



Figure 2.4.3.5 Echo Logic

Figure 2.4.3.6 shows the scheme logic of the weak infeed trip function. Weak infeed tripping is executed on condition that a trip permission signal has been received ( $\mathrm{R} 1-\mathrm{CR}=1$ ) for the POP, and reception of a trip block signal has stopped ( $\mathrm{R} 1-\mathrm{CR}=0$ ) for the UOP, the undervoltage element UVL (UVLS or UVLG) operates and neither forward overreaching zone 2 or zone 3 nor reverse looking Z4 operates.


Figure 2.4.3.6 Weak Infeed Trip Logic

The undervoltage element responds to three phase-to-phase voltages and three phase-to-ground voltages. The undervoltage element prevents false weak infeed tripping due to spurious operation of the channel.

Single-phase tripping or three-phase tripping is also applicable to weak infeed tripping according
to the reclosing mode of the autoreclose function.
The weak infeed trip function can be disabled by the scheme switch [WKIT] and the PLC signal WKIT_BLOCK.

### 2.4.3.6Measure for Current Reversal

In response to faults on parallel lines, sequential opening of the circuit breaker may cause a fault current reversal on healthy lines. This phenomenon may cause false operation of the POP, UOP and BOP schemes in the worst case. To prevent this, the POP, UOP and BOP are provided with current reversal logic.
With the parallel line arrangement as shown in Figure 2.4.3.7 (a), suppose that a fault occurs at time t 1 at point F of line L1, A1 trips at time t 2 first and then B1 trips at time t 3 . The direction of the current that flows in healthy line L2 can be reversed at time t2. That is, the current flows from terminal B to terminal A as indicated by a solid line in the period from time t 1 to t2, and from terminal A to terminal B as indicated by a broken line in the period from time t2 to t 3 . This current reversal phenomenon may occur with the presence of an external looped circuit if not for parallel lines.

Figure 2.4.3.7 (b) shows a sequence diagram of Z 3 and Z 4 and the current reversal logic CRL on healthy line L 2 before and after the occurrence of a current reversal. When the current is reversed, Z 3 operation and Z 4 reset are seen at terminal A , while reset of Z 3 and operation of Z 4 are seen at terminal B. If at this time, Z3 of A2 operates before Z3 of B2 is reset, this may cause false operation of the POP, UOP and BOP on line L2.


Figure 2.4.3.7 Current Reversal Phenomenon

Figure 2.4.3.8 shows the current reversal logic. The current reversal logic is picked up on condition that reverse looking Z 4 has operated and forward overreaching zone 2 or zone 3 have not operated, and the output CRL immediately controls the send signal to a trip block signal and at the same time blocks local tripping. If the condition above continues longer than 20 ms , the output

CRL will last for the TREBK setting even after the condition above ceases to exist.


Figure 2.4.3.8 Current Reversal Logic

The operation of the current reversal logic and its effect in the event of a fault shown in Figure 2.4.3.7 (a) are as follows. As shown in Figure 2.4.3.7 (b), the current reversal logic of terminal A2 operates $($ CRL $=1)$ immediately after the fault occurs. This operation lasts for TREBK setting even after the current is reversed and Z 3 operates, continuously blocking the local tripping and transmitting a trip block signal to the terminal B2.

Even if overlap arises due to current reversal on the operation of Z3 at terminal A2 and terminal B2, it will disappear while the current reversal logic is operating, thus avoiding false tripping of the healthy line of parallel lines. When a current reversal occurs in the direction opposite to the above, the current reversal logic at terminal B 2 will respond similarly.

Current reversal logic is not picked up for internal faults, thus not obstructing high-speed operation of any protection scheme.

### 2.4.3.7Phase Selection Logic

Every command protection has phase selection logic for single-phase tripping. Figure 2.4.3.9 gives details of the phase selection logic displayed in blocks in Figures 2.4.3.1 to 2.4.3.4.
Tripping command signal TRIP of each command protection can be classified by the phase selection logic as a single-phase tripping command or a three-phase tripping command. If the distance measuring element for earth fault Z3G (or Z2G depending on the setting of the scheme switch [ZONESEL]) is operating when a TRIP is input, a single-phase tripping command S-TRIP is output to the phase in which the phase selection element UVC is operating. If the UVC is operating with two or more phases, a three-phase tripping command M-TRIP is output.

The undervoltage detection element UVLS, not shown in Figure 2.4.3.9, is used for the phase selection logic as phase fault detector. The UVLS is also used for fault location.

If the distance measuring element for phase fault Z3S (or Z2S) is operating when a TRIP is input, a three-phase tripping command M-TRIP is output.


Figure 2.4.3.9 Phase Selection Logic for Command Protection

### 2.4.3.8Interface with Signaling Equipment

GRZ100 interfaces with protection signaling equipment through binary input and output circuits as shown in Figure 2.4.3.10.
Receiving command signals for remote terminal from the signaling equipment are input to photo-coupler circuits BIn and BIm. A guard signal in frequency shift signaling or an alternative trip signal is input to BIm. BIn and BIm output signals R1-CH1 and R1-CH2 through logic level inversion (NOT logic) circuit by PLC function (refer to Section 3.2.3).

A sending command signal CS to the signaling equipment should be output to the auxiliary relay BO13 through a logic level inversion circuit (Logic level inversion of CS can be performed by BOSW switch or also by PLC function.). BO13 has one normally open contact.

In the BOP scheme, a signal channel automatic test function is available. Sending test signal SBT can be assigned to any of the user configurable output relays BOn through a logic level inversion circuit by PLC function. BOn has one normally close contact.

Note: In setting the signal SBT, the 0.2 s delayed drop-off timer in the logic level inversion circuit must be disabled by setting the scheme switch [BOTDn] to "OFF".
S-DEF2 or S-DEFBOP2 is a sending command signal used for DEF command protection and assigned to any of the user configurable output relays BOn. (See Section 2.4.4.1.)


Figure 2.4.3.10 Interface with Signaling Equipment

### 2.4.3.9Signaling Channel

Table 2.4.3.1 shows the protection scheme and required signaling channel. "Simplex" here means that a transmit signal is shared by all terminals. "Multiplex" means that a specific channel is used for each terminal.

Table 2.4.3.1 Protection Scheme and Signaling Channel

| Scheme | Simplex | Multiplex |
| :--- | :---: | :---: |
| PUP | $\times$ | $\times$ |
| POP |  | $\times$ |
| UOP | $\times$ | $\times$ |
| BOP | $\times$ | $\times$ |

Since the PUP transmits a trip permission signal through operation of the underreaching element, it is not necessary to distinguish a transmit signal from a receive signal and a simplex channel suffices. Of course, a multiplex channel can also be applied.
Since the POP transmits a trip permission signal through operation of the overreaching element, it is necessary to distinguish a transmit signal from a receive signal to prevent false operation in case of a fault in the overreaching zone. Therefore, a multiplex channel is necessary.
Since the UOP and BOP transmit a trip block signal, a simplex channel suffices. A multiplex channel can also be applied.
The signal received from the protection signaling equipment is generally a single one, while with frequency shift signaling, two signals, a trip signal and a guard signal, are received. The GRZ100 is equipped with signal receive logic shown in Figure 2.4.3.11 to respond to either case. In the case of a single signal, a signal from the signaling equipment is input to R1-CH1 and the scheme switch [CHSEL] is set to "Single". In the case of two signals, a trip signal is input to R1-CH1, a guard signal or an alternative trip signal is input to R1-CH2 and the [CHSEL] is set to "Guard". Signal R1-CR selected by this scheme switch is used as a receive signal in command protection.
When two signals are utilized, the signal receive logic outputs signal R1-CR only when receiving a trip signal only or no trip signal nor guard signal is received for more than 20 ms . However, the output by the latter lasts only for 100 ms . When the latter continues for more than 100 ms , a telecommunication circuits failure alarm signal R1-CF is output.


Figure 2.4.3.11 Signal Receive Logic
Selecting "And" for the scheme switch [CHSEL] in two signals reception will allow ANDing of two signals to be set as signal R1-CR.

When directional earth fault command protection (see Section 2.4.4.1) is used with POP, UOP or BOP scheme of distance protection and two channels are available, signal channel can be separated from distance protection by setting the scheme switch [CHSEL] to "Single" and [CH-DEF] to "CH2". In this case, signals CH1 and CH2 are used for distance protection and directional earth protection respectively. If the scheme switch [CH-DEF] is set to "CH1", signal CH 1 is shared by the both protections.
When directional earth fault command protection is used with PUP scheme, signal channel is separated irrespective of [CH-DEF] setting.
In three-terminal application, the signal receive logic for remote 2 is same as that of remote 1 shown in Figure 2.4.3.11.
Following table shows the scheme switch settings and usable signals:

| Scheme | CHSEL setting | \|CH-DEF setting | Use of signal |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | CH1 | CH2 |
| PUP+DEF | Single | CH1 | PUP | DEF |
|  |  | CH2 | PUP | DEF |
| POP+DEF | Single | CH1 | POP and DEF (*) | -- |
|  |  | CH2 | POP | DEF |
| UOP+DEF | Single | CH1 | UOP and DEF (*) | -- |
|  |  | CH2 | UOP | DEF |
| BOP+DEF | Single | $\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { BOP and DEF (*) } \\ & \text { BOP } \end{aligned}$ | DEF |

(*) CH 1 is shared by the distance and directional earth fault command protections.

## Setting

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| CHSEL | Single/Guard/And |  | Single | Signal receiving |
| CH-DEF | $\mathrm{CH} 1 / \mathrm{CH} 2$ | CH 1 | Channel separation |  |

### 2.4.4 Directional Earth Fault Protection

For a high-resistance earth fault for which the impedance measuring elements cannot operate, the GRZ100 uses a directional earth fault element (DEF) to provide the following protections.

- Directional earth fault command protection
- Directional inverse or definite time earth fault protection

Figure 2.4.4.1 shows the scheme logic for the directional earth fault protection. The four kinds of protection above can be enabled or disabled by the scheme switches [SCHEME], [CRSCM], [DEFFEN] and [DEFREN]. The DEF and EF protections issue an alarm individually for the backup trip for earth fault. The DEF protection can be blocked by the binary input signal (PLC signal) DEF_BLOCK.


Figure 2.4.4.1 Directional Earth Fault Protection
The directional earth fault command protection provides the POP, UOP and BOP schemes using forward looking DEFF and reverse looking DEFR elements. All schemes execute three-phase tripping and autoreclose.
The command protection is disabled during a single-phase autoreclosing period (CB-DISCR=1).
The directional earth fault protection as backup protection is described in Section 2.4.4.2.
The directional earth fault element DEF provides selective protection against a high-resistance earth fault. The direction of earth fault is determined by the lagging angle ( $\theta$ ) of the residual current ( $3 \mathrm{l}_{0}$ ) with respect to the residual voltage $\left(-3 \mathrm{~V}_{0}\right)$. The residual voltage and residual current are derived from the vector summation of the three-phase voltages and three-phase currents inside the relay.

The phase angle $\theta$ in the event of an internal fault is equal to the angle of the zero-sequence impedance of the system and in the directly-earthed system this value ranges approximately from $50^{\circ}$ to $90^{\circ} . \theta$ of the DEF can be set from $0^{\circ}$ to $90^{\circ}$. The minimum voltage necessary to maintain directionality can be set from 1.7 to 21.0 V .

### 2.4.4.1Directional Earth Fault Command Protection

High-speed directional earth fault command protection is provided using the forward looking directional earth fault element DEFF and reverse looking directional earth fault element DEFR. The signaling channel of DEF command protection can be shared with or separated from distance protection by the scheme switch [CH-DEF].
The DEF command protections are applied in combination with the distance command protection POP, UOP, BOP and PUP and enabled when the scheme switch [SCHEME] is set to "POP+DEF", "UOP+DEF", "BOP+DEF" or "PUP+DEF". These protections are called as the DEF POP, DEF UOP, DEF BOP and DEF PUP hereafter. The POP, UOP or BOP schemes can be selected as a common scheme. However, in the DEF PUP, distance protection takes the PUP scheme but DEF command protection takes the POP scheme and signaling channels of distance and DEF command protections are always separated (CH1: distance, CH2: DEF, see Section 2.4.3.9.).
The DEF command protection can select fast tripping or delayed tripping by a timer setting. Delayed tripping is used when it is desired to give priority to distance protection.
The DEF command protection is blocked during a single-phase autoreclose period by the distance protection (CB-DISCR=1). The signal CB-DISCR is generated with the binary input signals (PLC signals) of circuit breaker auxiliary contact (refer to Section 3.2.1).


Figure 2.4.4.2 DEF Command Protection

## DEF POP, DEF UOP and DEF PUP scheme logic

Figure 2.4.4.3 shows the scheme logic of the DEF POP and DEF UOP.


Figure 2.4.4.3 DEF POP and DEF UOP Scheme Logic

When the PUP+DEF scheme logic is selected, the DEF scheme logic is constructed same as the DEF POP scheme logic in Figure 2.4.4.3.

The signal transmitted is a trip permission signal for the POP and a trip block signal for the UOP. In the event of an internal fault, the POP transmits a signal, while the UOP stops transmission. In Figure 2.4.4.3, a signal is transmitted when CS becomes 1 , and when the signal is received CR-DEF becomes 1. If the PLC signal PSCM_TCHDEN is established, the delayed pick-up timer TCHD is provided.
When the DEFF operates, CS becomes 1 for the POP and a signal (that is, a trip permission signal) is transmitted. For the UOP, CS becomes 0 and transmission of the signal (that is, a trip block signal) is stopped.
When a signal is received in the POP, or no signal is received in the UOP, tripping is executed on condition that the DEFF has operated. In order to assure tripping of the remote terminal, transmission of a trip permission signal or stoppage of a trip block signal continues for the TSBCT setting time even after the DEFF reset.
The DEFR is used for the current reversal logic in the same manner as reverse looking Z 4 in the distance protection (for the current reversal, refer to Section 2.4.3.6).
When operation of the DEFR and no-operation of the DEFF continue for 20 ms or more, even if the DEFF operates or the DEFR is reset later, tripping of the local terminal or transmission of the trip permission signal is blocked for the TREBK setting time.

The POP or UOP can be set for instantaneous operation or delayed operation by setting on-delay timer TDEFF and TDEFR.

The DEF command protection is provided with an echo function and weak infeed trip function. Both functions are used for lines with weak infeed terminals.

The echo function allows fast tripping of the terminal on which the DEFF has operated when applied to a line with an open terminal or a weak infeed earth fault current terminal. The scheme logic is shown in Figure 2.4.4.4.
With the POP, when a trip permission signal is received (R1-CR-DEF = 1) if neither the forward looking DEFF nor the reverse looking DEFR operates, the echo function sends back the received signal to the remote terminal. With the UOP, when reception of a blocking signal is stopped (R1-CR-DEF = 0), if the DEFF and DEFR do not operate, the echo function stops transmission of the blocking signal likewise. When the circuit breaker is open, the echo function also sends back the trip permission signal or stops transmission of the blocking signal.
Once the DEFF or the DEFR operates, transmission of the echo signal is inhibited for 250 ms by delayed drop-off timer T 1 even after they are reset.
In order to prevent any spurious echo signal from looping round between terminals in a healthy state, the echo signal is restricted to last 200 ms by delayed pick-up timer T2.
The echo function can be disabled by the scheme switch [ECHO] and the PLC signal ECHO_BLOCK.

When a signaling channel is shared by the distance protection and DEF protection, it is necessary to unite the scheme logic of both echo functions so that the echo function may not be picked up in the event of an external fault. The echo function at this time is blocked by Z2 (or Z3) and Z4 indicated by a dotted line in Figure 2.4.4.4.


Figure 2.4.4.4 Echo Function in DEF POP and DEF UOP Scheme Logic

Figure 2.4.4.5 shows the scheme logic of the weak infeed trip function. Weak infeed tripping is executed on condition that a trip permission signal has been received (ECHO1_DEF-R1=1) for the POP, the undervoltage element UVL (UVLS or UVLG) operates.

The undervoltage element responds to three phase-to-phase voltages and three phase-to-ground voltages. The undervoltage element prevents false weak infeed tripping due to spurious operation of the channel.

Single-phase tripping or three-phase tripping is also applicable to weak infeed tripping according to the reclosing mode of the autoreclose function.

The weak infeed trip function can be disabled by the scheme switch [WKIT] and the PLC signal WKIT_BLOCK.


Figure 2.4.4.5 Weak Infeed Trip Logic

When the signaling channel of DEF POP or DEF UOP is separated from that of distance command protection, the signal S-DEF2 is used for CS and assigned to a user configurable binary output relay (see Section 3.2.2.).

## DEF BOP scheme logic

Figure 2.4.4.6 shows the scheme logic of the DEF BOP.


Figure 2.4.4.6 DEF BOP Scheme Logic

With the BOP, the signal transmitted is a trip block signal. When the reverse looking DEFR operates, the logic level of the transmit signal CS becomes 1 and a trip block signal is transmitted. When the trip block signal is received, R1-CR-DEF becomes 1.
When the forward looking DEFF operates, it executes tripping on condition that no trip blocking signal should be received.
The delayed pick-up timer TCHD is provided to allow for the transmission delay of the trip block signal from the remote terminal. Therefore, the time is set depending on the channel delay time.

TCHD setting $=$ maximum signal transmission delay time $(*)+5 \mathrm{~ms}$
(*) includes delay time of binary output and binary input for the blocking signal. $_{\text {tin }}$
The DEFR is also used for the current reversal logic (for current reversal, see Section 2.4.3.6). When operation of the DEFR and non-operation of the DEFF last for 20 ms or more, even if the DEFF operates or the DEFR is reset later, tripping of the local terminal is blocked for the TREBK setting time and transmission of the trip block signal continues for the TSBCT setting time.
When the signaling channel of DEF BOP is separated from that of distance command protection, the signal S-DEFBOP2 is used for CS and assigned to a user configurable binary output relay (see Section 3.2.2.).

## Setting

The following setting is required for the DEF command protection:

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| DEFF |  |  |  | Forward looking DEF |
| DEFFI | $0.5-5.0 \mathrm{~A}$ | 0.1 A | 1.0 A | Residual current |
|  | $(0.10-1.00 \mathrm{~A}$ | 0.01 A | $0.2 \mathrm{~A})\left({ }^{*}\right)$ |  |
| DEFFV | $1.7-21.0 \mathrm{~V}$ | 0.1 V | 2.0 V | Residual voltage |
| TDEFF | $0.00-0.30 \mathrm{~s}$ | 0.01 s | 0.15 s | Delayed tripping |
| DEFR |  |  |  | Reverse looking DEF |
| DEFRI | $0.5-5.0 \mathrm{~A}$ | 0.1 A | 1.0 A | Residual current |
|  | $(0.10-1.00 \mathrm{~A}$ | 0.01 A | $0.20 \mathrm{~A})$ |  |
| DEFRV | $1.7-21.0 \mathrm{~V}$ | 0.1 V | 2.0 V | Residual voltage |
| TDEFR | $0.00-0.30 \mathrm{~s}$ | 0.01 s | 0.15 s | Delayed tripping |
| DEF $\theta$ | $0-90^{\circ}$ | $1^{\circ}$ | $85^{\circ}$ | Characteristic angle |
| PROTECTION | $3 Z O N E / Z 1 E X T / P U P / P O P / U O P / ~ B O P /$ | POP | Scheme selection |  |
| SCHEME | POP+DEF/UOP+DEF/ BOP+DEF/PUP+DEF |  |  |  |
| CHSEL | Single/Guard/And |  | Single |  |
| CH-DEF | CH1/CH2 |  | CH1 |  |
| BODEFSW | Active / Inactive |  | Active | BO for DEF: active or inactive |

$\left(^{*}\right)$ Current values shown in the parentheses are in the case of 1 A rating. Other current values are in the case of 5 A rating.

When the DEFF at the remote end operates, the local DEFR must always operate for reverse faults. The setting levels of the residual current and residual voltage for the DEFR must be lower than that for the DEFF.

The following setting elements are used in common with the distance protection or its setting is interlinked with other elements listed above. So no setting operation is required here.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| TCHD | $0-50 \mathrm{~ms}$ | 1 ms | 12 ms | Used in common with BOP |
| TREBK | $0.00-10.00 \mathrm{~s}$ | 0.01 s | 0.10 s |  |
| TSBCT | $0.00-1.00 \mathrm{~s}$ | 0.01 s | 0.10 s |  |
| ECHO | OFF/ON |  | OFF | Used in common with BOP |

### 2.4.4.2Directional Earth Fault Protection

The scheme logic is shown in Figure 2.4.4.1.
The directional inverse or definite time earth fault protection as backup protection executes three-phase final tripping. The forward looking DEFF or reverse looking DEFR can be selected. The directional inverse and definite time earth fault protections are available to trip instantaneously by binary input DEF*_INST-TRIP except for [DEF*EN]= "OFF" setting.

In order to give priority to the distance protection, the directional earth fault protection enables inverse time or definite time delayed tripping by the scheme switch [DEF*EN].

## Setting

The settings necessary for the directional earth fault protection are as follows:

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| DEFF |  |  |  | Forward looking DEF |
| DEFFI | $0.5-5.0 \mathrm{~A}$ | 0.1 A | 1.0 A | Residual current |
|  | $(0.10-1.00 \mathrm{~A}$ | 0.01 A | $0.2 \mathrm{~A})\left(^{*}\right)$ |  |
| DEFFV | $1.7-21.0 \mathrm{~V}$ | 0.1 V | 2.0 V | Residual voltage |
| TDEF | $0.00-0.30 \mathrm{~s}$ | 0.01 s | 2.0 s | Definite time setting |
| DEFR |  |  |  | Reverse looking DEF |
| DEFRI | $0.5-5.0 \mathrm{~A}$ | 0.1 A | 1.0 A | Residual current |
|  | $(0.10-1.00 \mathrm{~A}$ | 0.01 A | $0.2 \mathrm{~A})\left(^{*}\right)$ |  |
| DEFRV | $1.7-21.0 \mathrm{~V}$ | 0.1 V | 2.0 V | Residual voltage |
| TDER | $0.00-0.30 \mathrm{~s}$ | 0.01 s | 2.0 s | Definite time setting |
| DEF $\theta$ | $0-90^{\circ}$ | $1^{\circ}$ | $85^{\circ}$ | Characteristic angle |
| DEFFEN | OFF/ON |  | OFF | Forward DEF backup trip enable |
| DEFREN | OFF/ON |  | OFF | Reverse DEF backup trip enable |
| DEFI | OFF/NOD/F/R |  | OFF | EFI directional control |
| DEFBTAL | OFF/ON |  | ON | DEF backup trip alarm |

(*) Current values shown in the parentheses are in the case of 1 A rating. Other current values are in the case of 5 A rating.

The DEF element is shared with the command protection.

### 2.4.5 Overcurrent Backup Protection

Inverse time and definite time overcurrent protections are provided for phase faults and earth faults respectively.

## Scheme logic

The scheme logic of the overcurrent backup protection is shown in Figure 2.4.5.1. The phase overcurrent protection issues single-phase tripping signals in the operation of OC and OCI, and can issue a three-phase tripping signal BU-TRIP by PLC signals OC_3PTP and OCI_3PTP. The default of the phase overcurrent backup protection is a three-phase tripping since both of the PLC signals OC_3PTP and OCI_3PTP are assigned to " 1 (=logic level)" (Signal No. =1). The earth fault protection issues a three-phase tripping signal BU-TRIP in the operation of EF or EFI element.

The overcurrent backup protection can provide a fail-safe function by assigning the PLC signals OC-*_FS and OCI-*_FS to an output of relay element, etc. The PLC signals OC-*_FS and OCI-*_FS are assigned to " 1 " (Signal No. =1) as default.

Tripping by each element can be disabled by the scheme switches [OCBT], [OCIBT], [EFBT] and
[EFIBT], and also can be disabled by the binary input signals (PLC signals) OC_BLOCK, OCI_BLOCK, EF_BLOCK and EFIBLOCK. The EF element issues an alarm for the backup trip for earth fault. The alarm can be disabled by the scheme switch [EFBTAL]. The OC and EF protections can trip instantaneously by PLC signals OC_INST_TP and EF_INST_TP.


Figure 2.4.5.1 Overcurrent Backup Protection

### 2.4.5.1 Inverse Time Overcurrent Backup Protection

In a system in which the fault current is mostly determined by the fault location, without being greatly affected by changes in the power source impedance, it is advantageous to use inverse definite minimum time (IDMT) overcurrent protection. Reasonably fast tripping can be obtained even at a terminal close to the power source by using inverse time characteristics. In the IDMT overcurrent protection function, one of the following three IEC-standard-compliant inverse time characteristics and one long time inverse characteristic is available.

- standard inverse IEC 60255-3
- very inverse IEC 60255-3
- extremely inverse IEC 60255-3

The IDMT element has a reset feature with definite time reset.
If the reset time is set to instantaneous, then no intentional delay is added. As soon as the energising current falls below the reset threshold, the element returns to its reset condition.

If the reset time is set to some value in seconds, then an intentional delay is added to the reset period. If the energising current exceeds the setting for a transient period without causing tripping, then resetting is delayed for a user-definable period. When the energising current falls below the reset threshold, the integral state (the point towards operation that it has travelled) of the timing function (IDMT) is held for that period.

This does not apply following a trip operation, in which case resetting is always instantaneous.

## Setting

The following table shows the setting elements necessary for the inverse time overcurrent backup protection and their setting ranges.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| OCI | $0.5-25.0 \mathrm{~A}$ | 0.1 A | 10.0 A |  |
|  | $(0.10-5.00 \mathrm{~A}$ | 0.01 A | $2.00 \mathrm{~A})\left({ }^{*}\right)$ |  |
| TOCI | $0.05-1.00$ | 0.01 | 0.50 | OCI time setting |
| TOCIR | $0.0-10.0 \mathrm{~s}$ | 0.1 s | 0.0 s | OCI definite time reset delay |
| [MOCI] | Long/Std/Very/Ext |  | Std | OCI inverse characteristic selection |
| [OCIBT] | ON/OFF |  | ON | OCI backup protection |
| EFI | $0.5-5.0 \mathrm{~A}$ | 0.1 A | 5.0 A | Earth fault EFI setting |
|  | $(0.10-1.00 \mathrm{~A}$ | 0.01 A | $1.00 \mathrm{~A})\left({ }^{*}\right)$ |  |
| TEFI | $0.05-1.00$ | 0.01 | 0.50 | EFI time setting |
| TEFIR | $0.0-10.0 \mathrm{~s}$ | 0.1 s | 0.0 s | EFI definite time reset delay |
| [MEFI] | Long/Std/Very/Ext |  | Std | EFI inverse characteristic selection |
| [DEFI] | OFF/NOD/F/R |  | OFF | EFI directional control |

$\left(^{*}\right)$ Current values shown in the parentheses are in the case of 1 A rating. Other current values are in the case of 5 A rating.

The scheme switches [MOCI] and [MEFI] are used to select one of the four inverse time characteristics. The DEFI is the scheme switch for directional control selection and if NOD is selected, the inverse time overcurrent protection executes non-directional operation. If F or R is selected, it executes forward operation or reverse operation in combination with the DEFF or DEFR. If OFF is selected, the inverse time overcurrent protection is blocked.

## Current setting

In Figure 2.4.5.2, the current setting at terminal A is set lower than the minimum fault current in the event of a fault at remote end F1. Furthermore, when considering also backup protection of a fault on an adjacent line, it is set lower than the minimum fault current in the event of a fault at remote end F3. For grading of the current settings, the terminal furthest from the power source is set to the lowest value and the terminals closer to the power source are set to a higher value.

The minimum setting is restricted so as not to operate on false zero-sequence currents caused by an unbalance in the load current, errors in the current transformer circuits or zero-sequence mutual coupling of parallel lines.


Figure 2.4.5.2 Current Settings in Radial System

## Time setting

Time setting is performed to provide selectivity in relation to the relays on adjacent lines. Consider a minimum source impedance when the current flowing in the relay becomes a maximum. In Figure 2.4.5.2, in the event of a fault at the near end, F2 of the adjacent line, the operating time is set so that terminal A may operate by time grading Tc behind terminal B. The current flowing in the relays may sometimes be greater when the remote end of the adjacent line is open. At this time, time coordination must also be kept.
The reason why the operating time is set when the fault current reaches a maximum is that if time coordination is obtained for a large fault current, then time coordination can also be obtained for small fault current as long as relays with the same operating characteristic are used for each terminal.

The grading margin Tc of terminal A and terminal B is given by the following expression for a fault at point F 2 in Figure 2.4.5.2.

$$
\mathrm{Tc}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{\mathrm{m}}
$$

where, $\quad \mathrm{T}_{1}$ : circuit breaker clearance time at B
$\mathrm{T}_{2}$ : relay reset time at A
$\mathrm{T}_{\mathrm{m}}$ : time margin
When single-phase autoreclose is used, the minimum time of the earth fault overcurrent protection must be set longer than the time from fault occurrence to reclosing of the circuit breaker. This is to prevent three-phase final tripping from being executed by the overcurrent protection during a single-phase autoreclose cycle.

### 2.4.5.2Definite Time Overcurrent Backup Protection

In a system in which the fault current does not vary a great deal in relation to the position of the fault, the advantages of the IDMT characteristics are not fully used. In this case, definite time overcurrent protection is applied. The operating time can be set irrespective of the magnitude of the fault current.
The definite time overcurrent protection consists of instantaneous overcurrent elements and delayed pick-up timers started by them.

Identical current values can be set for terminals, but graded settings are better than identical settings in order to provide a margin for current sensitivity. The farther from the power source the terminal is located, the higher sensitivity (i.e. the lower setting) is required.

The operating time of the overcurrent element at each terminal is constant irrespective of the magnitude of the fault current and selective protection is implemented by graded settings of the delayed pick-up timer. As a result, the circuit breaker of the terminal most remote from the power source is tripped in the shortest time.

When setting the delayed pick-up timers, time grading margin Tc is obtained in the same way as explained in Section 2.4.5.1.

## Setting

The setting elements necessary for the definite time overcurrent backup protection and their setting ranges are shown below.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| OC | $0.5-100.0 \mathrm{~A}$ | 0.1 A | 6.0 A | Phase overcurrent |
|  | $(0.1-20.0 \mathrm{~A}$ | 0.1 A | $1.2 \mathrm{~A})\left({ }^{*}\right)$ |  |
| TOC | $0.00-10.00 \mathrm{~s}$ | 0.01 s | 3.00 s | OC delayed tripping |
| EF | $0.5-5.0 \mathrm{~A}$ | 0.1 A | 1.0 A | Residual overcurrent |
|  | $(0.10-1.00 \mathrm{~A}$ | 0.01 A | $0.20 \mathrm{~A})\left({ }^{*}\right)$ |  |
| TEF | $0.00-10.00 \mathrm{~s}$ | 0.01 s | 3.00 s | EF delayed tripping |
| [OCBT] | OFF/ON |  | ON | OC backup protection |
| [EFBT] | OFF/ON |  | ON | EF backup protection |
| [EFBTAL] | OFF/ON |  | ON | EF backup trip alarm |

$\left(^{*}\right)$ Current values shown in the parentheses are in the case of 1 A rating. Other current values are in the case of 5 A rating.

### 2.4.6 Thermal Overload Protection

Thermal overload protection is provided with GRZ100 model 100, 200, 300 series.
The temperature of electrical plant rises according to an $\mathrm{I}^{2} \mathrm{t}$ function and the thermal overload protection in GRZ100 provides a good protection against damage caused by sustained overloading. The protection simulates the changing thermal state in the plant using a thermal model.

The thermal state of the electrical system can be shown by equation (1).

$$
\begin{equation*}
\theta=\frac{\mathrm{I}^{2}}{\mathrm{I}_{\mathrm{AOL}}^{2}}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right) \times 100 \% \tag{1}
\end{equation*}
$$

where:
$\theta=$ thermal state of the system as a percentage of allowable thermal capacity,
I = applied load current,
$\mathrm{I}_{\text {AOL }}=$ allowable overload current of the system,
$\tau=$ thermal time constant of the system.
The thermal state $0 \%$ represents the cold state and $100 \%$ represents the thermal limit, which is the point at which no further temperature rise can be safely tolerated and the system should be disconnected. The thermal limit for any given system is fixed by the thermal setting $\mathrm{I}_{\mathrm{AOL}}$. The relay gives a trip output when $\theta=100 \%$.

The thermal overload protection measures the largest of the three phase currents and operates according to the characteristics defined in IEC60255-8. (Refer to Appendix O for the implementation of the thermal model for IEC60255-8.)
Time to trip depends not only on the level of overload, but also on the level of load current prior to the overload - that is, on whether the overload was applied from 'cold' or from 'hot'.

Independent thresholds for trip and alarm are available.
The characteristic of the thermal overload element is defined by equation (2) and equation (3) for 'cold' and 'hot'. The cold curve is a special case of the hot curve where prior load current Ip is zero, catering to the situation where a cold system is switched on to an immediate overload.
$\mathrm{t}=\tau \cdot \operatorname{Ln}\left[\frac{\mathrm{I}^{2}}{\mathrm{I}^{2}-\mathrm{I}_{\mathrm{AOL}}^{2}}\right]$
$\mathrm{t}=\tau \cdot \operatorname{Ln}\left[\frac{\mathrm{I}^{2}-\mathrm{I}_{\mathrm{P}}{ }^{2}}{\mathrm{I}^{2}-\mathrm{I}_{\mathrm{AOL}}^{2}}\right]$
where:

$$
\begin{aligned}
& \mathrm{t}=\text { time to trip for constant overload current } \mathrm{I} \text { (seconds) } \\
& \mathrm{I}=\text { overload current (largest phase current) (amps) } \\
& \mathrm{I}_{\mathrm{AOL}}=\text { allowable overload current (amps) } \\
& \mathrm{I}_{\mathrm{P}}=\text { previous load current (amps) } \\
& \tau=\text { thermal time constant (seconds) } \\
& L n=\text { natural logarithm }
\end{aligned}
$$

Figure 2.4.6.1 illustrates the IEC60255-8 curves for a range of time constant settings. The left-hand chart shows the 'cold' condition where an overload has been switched onto a previously un-loaded system. The right-hand chart shows the 'hot' condition where an overload is switched onto a system that has previously been loaded to $90 \%$ of its capacity.


Figure 2.4.6.1 Thermal Curves

## Scheme Logic

Figure 2.4.6.2 shows the scheme logic of the thermal overload protection.
The thermal overload element THM has independent thresholds for alarm and trip, and outputs alarm signal THM_ALARM and trip signal THM_TRIP. The alarming threshold level is set as a percentage of the tripping threshold.

The alarming and tripping can be disabled by the scheme switches [THMAL] and [THMT] respectively or binary input signals THMA_BLOCK and THM_BLOCK.


Figure 2.4.6.2 Thermal Overload Protection Scheme Logic

## Setting

The table below shows the setting elements necessary for the thermal overload protection and their setting ranges.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| THM | $2.0-10.0 \mathrm{~A}$ | 0.1 A | 5.0 A | Thermal overload setting. |
|  | $(0.40-2.00 \mathrm{~A})\left({ }^{*}\right)$ | $(0.01 \mathrm{~A})$ | $(1.00 \mathrm{~A})$ | (THM = laoL: allowable overload current) |
| THMIP | $0.0-5.0 \mathrm{~A}$ | 0.1 A | 0.0 A | Previous load current |
|  | $(0.00-1.00 \mathrm{~A})\left({ }^{*}\right)$ | $(0.01 \mathrm{~A})$ | $(0.00 \mathrm{~A})$ |  |
| TTHM | $0.5-300.0 \mathrm{~min}$ | 0.1 min | 10.0 min | Thermal time constant |
| THMA | $50-99 \%$ | $1 \%$ | $80 \%$ | Thermal alarm setting. (Percentage of THM setting.) |
| [THMT] | Off $/$ On |  | Off | Thermal OL enable |
| [THMAL] | Off $/$ On |  | Off | Thermal alarm enable |

${ }^{(*)}$ Current values shown in the parenthesis are in the case of a 1 A rating. Other current values are in the case of a 5 A rating.
Note: THMIP sets a minimum level of previous load current to be used by the thermal element, and is only active when testing ([THMRST] = "ON").

### 2.4.7 Switch-Onto-Fault Protection

In order to quickly remove a fault which may occur when a faulted line or busbar is energized, the switch-onto-fault (SOTF) protection functions for a certain period after the circuit breaker is closed.

The SOTF protection is performed by a non-directional overcurrent element and distance measuring elements. The overcurrent protection is effective in detecting close-up three-phase faults on the line in particular when the voltage transformer is installed on the line side. This is because the voltage input to the distance measuring elements is absent continuously before and after the fault, and thus it is difficult for the distance measuring elements to detect the fault.

The distance measuring elements can operate for faults other than close-up three-phase faults. One of the zone 1 to zone ND elements can be used for the SOTF protection.

## Scheme logic

The scheme logic for the SOTF protection is shown in Figure 2.4.7.1. The SOTF protection issues a three-phase tripping signal M-TRIP for the operation of an overcurrent element OCH or distance measuring elements Z 1 to ZND for 500 ms after the circuit breaker is closed ( $\mathrm{CB}-\mathrm{OR}=1$ ) and/or for 500 ms after the undervoltage dead line detector resets. The method of controlling the SOTF protection by CB closing and/or by undervoltage dead line detection is selected by scheme switch [SOTF-DL]. Elements UVFS and UVLG provide undervoltage dead line detection.
Tripping by each element can be disabled by the scheme switches [SOTF-OC] to [SOTF-ZND]. When a VT failure is detected ( NON VTF $=0$ ), tripping by the distance measuring elements is blocked.


Figure 2.4.7.1 SOTF Scheme Logic

## Setting

The setting elements necessary for the SOTF protection and their setting ranges are as follows:

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| OCH | $2.0-15.0 \mathrm{~A}$ | 0.1 A | 6.0 A | Overcurrent setting |
|  | $(0.4-3.0 \mathrm{~A}$ | 0.1 A | $1.2 \mathrm{~A})\left(^{*}\right)$ |  |
| TSOTF | $0-300 \mathrm{~s}$ | 1 s | 5 s | SOTF check timer |


| Element | Range | Step | Default |
| :--- | :--- | :--- | :--- | Remarks | SOTF - OC | OFF/ON | ON | Overcurrent tripping |
| :--- | :--- | :--- | :--- |
| SOTF - Z1 | OFF/ON | OFF | Zone 1 tripping |
| SOTF - Z2 | OFF/ON | OFF | Zone 2 tripping |
| SOTF - Z2 | OFF/ON | OFF | Zone 3 tripping |
| SOTF - ZF | OFF/ON | OFF | Zone F tripping |
| SOTF - ZR1 | OFF/ON | OFF | Zone R1 tripping |
| SOTF - ZR2 | OFF/ON | OFF | Zone R2 tripping |
| SOTF - ZND | OFF/ON | OFF | Zone ND tripping |
| SOTF-DL | CB/UV/BOTH | CB | SOTF control |

${ }^{*}$ ) Current values shown in the parentheses are in the case of 1 A rating. Other current values are in the case of 5 A rating.

The OCH element and its setting are common with the stub protection.

### 2.4.8 Stub Protection

In the case of a busbar with a one-and-a-half breaker arrangement, the VT is generally installed on the line side. If the line is separated from the busbar, the distance protection does not cover to the "stub" area between the two CTs and line isolator. This is because the line VT cannot supply a correct voltage for a fault in the "stub" area. For a fault in the stub area under such conditions, fast overcurrent protection is applied.

## Scheme logic

The scheme logic for the stub protection is shown in Figure 2.4.8.1. The stub protection performs three-phase tripping on the condition that the line disconnector is open (DS_N/O_CONT $=0$ ) and the overcurrent element has operated $(\mathrm{OCH}=1)$. CB condition (STUB_CB) can be added by using programmable BI function (PLC function). Tripping can be disabled by the scheme switch [STUB].


Figure 2.4.8.1 Stub Protection Scheme Logic

## Setting

The setting elements necessary for the stub protection and their setting ranges are as follows:

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| OCH | $2.0-10.0 \mathrm{~A}$ | 0.1 A | 6.0 A | Overcurrent setting |
|  | $(0.4-2.0 \mathrm{~A}$ | 0.1 A | $1.2 \mathrm{~A})\left(^{*}\right)$ |  |
| STUB | OFF/ON |  | OFF | Stub protection |

$\left(^{*}\right)$ Current values shown in the parentheses are in the case of 1 A rating. Other current values are in the case of 5 A rating.

The OCH element and its setting are common with the SOTF protection.

### 2.4.9 Overvoltage and Undervoltage Protection

### 2.4.9.10vervoltage Protection

GRZ100 provides four independent overvoltage elements with programmable dropoff/pickup(DO/PU) ratio for phase-to-phase voltage input and phase voltage input. OVS1 and OVS2 are used for phase-to-phase voltage input, and OVG1 and OVG2 for phase voltage input. OVS1 and OVG1 are programmable for inverse time (IDMT) or definite time (DT) operation. OVS2 and OVG2 have definite time characteristic only.
The OVS1 and OVG1 overvoltage protection elements have an IDMT characteristic defined by equation (1):

$$
\begin{equation*}
t=T M S \times\left[\frac{1}{(V / V s)-1}\right] \tag{1}
\end{equation*}
$$

where:
$\mathrm{t}=$ operating time for constant voltage V (seconds),
$\mathrm{V}=$ energising voltage ( V ),
Vs = overvoltage setting (V),
TMS = time multiplier setting.
The IDMT characteristic is illustrated in Figure 2.4.9.1.
The OVS2 and OVG2 elements are used for definite time overvoltage protection.

## Definite time reset

The definite time resetting characteristic is applied to the OVS1 and OVG1 elements when the inverse time delay is used.
If definite time resetting is selected, and the delay period is set to instantaneous, then no intentional delay is added. As soon as the energising voltage falls below the reset threshold, the element returns to its reset condition.

If the delay period is set to some value in seconds, then an intentional delay is added to the reset period. If the energising voltage exceeds the setting for a transient period without causing tripping, then resetting is delayed for a user-definable period. When the energising voltage falls below the reset threshold, the integral state (the point towards operation that it has travelled) of the timing function (IDMT) is held for that period.

This does not apply following a trip operation, in which case resetting is always instantaneous.
Overvoltage elements OVS1, OVS2, OVG1 and OVG2 have a programmable dropoff/pickup (DO/PU) ratio.


Figure 2.4.9.1 IDMT Characteristic

## Scheme Logic

Figures 2.4.9.2 and 2.4.9.4 show the scheme logic of the OVS1 and OVG1 overvoltage protection with selective definite time or inverse time characteristic. The definite time protection is selected by setting [OV $* 1 \mathrm{EN}$ ] to "DT", and trip signal $\mathrm{OV} * 1$ _TRIP is given through the delayed pick-up timer TO*1. The inverse time protection is selected by setting [OV*1EN] to "IDMT", and trip signal OV $* 1$ _TRIP is given.

The OVS1 and OVG1 protections can be disabled by the scheme switch [OV*1EN] or the PLC signal OV*1_BLOCK.

These protections are available to trip instantaneously by the PLC signal OV*1_INST_TP except for [OV*1EN]="OFF" setting.

Figures 2.4.9.3 and 2.4.9.5 show the scheme logic of the OVS2 and OVG2 protection with definite time characteristic. The OV*2 gives the PLC signal OV*2_ALARM through delayed pick-up timer TO*2.

The OV*2_ALARM can be blocked by incorporated scheme switch [OV*2EN] and the PLC signal OV*2_BLOCK.

These protections are also available to alarm instantaneously by the PLC signal OV*2_INST_TP.


Figure 2.4.9.2 OVS1 Overvoltage Protection


Figure 2.4.9.3 OVS2 Overvoltage Protection


Figure 2.4.9.4 OVG1 Overvoltage Protection


Figure 2.4.9.5 OVG2 Overvoltage Protection

## Setting

The table shows the setting elements necessary for the overvoltage protection and their setting ranges.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| OVS1 | $5.0-150.0 \mathrm{~V}$ | 0.1 V | 120.0 V | OVS1 threshold setting. |
| TOS1I | $0.05-100.00$ | 0.01 | 10.00 | OVS1 time multiplier setting. Required if [OVS1EN] = IDMT. |
| TOS1 | $0.00-300.00 \mathrm{~s}$ | 0.01 s | 0.10 s | OVS1 definite time setting. Required if [OVS1EN] = DT. |
| TOS1R | $0.0-300.0 \mathrm{~s}$ | 0.1 s | 0.0 s | OVS1 definite time delayed reset. |
| OS1DP | $10-98 \%$ | $1 \%$ | $95 \%$ | OVS1 DO/PU ratio setting. |
| OVS2 | $5.0-150.0 \mathrm{~V}$ | 0.1 V | 140.0 V | OVS2 threshold setting. |
| TOS2 | $0.00-300.00 \mathrm{~s}$ | 0.01 s | 0.10 s | OVS2 definite time setting. |
| OS2DP | $10-98 \%$ | $1 \%$ | $95 \%$ | OVS2 DO/PU ratio setting. |
| OVG1 | $5.0-150.0 \mathrm{~V}$ | 0.1 V | 70.0 V | OVG1 threshold setting. |
| TOG1I | $0.05-100.00$ | 0.01 | 10.00 | OVG1 time multiplier setting. Required if [OVG1EN]=IDMT. |
| TOG1 | $0.00-300.00 \mathrm{~s}$ | 0.01 s | 0.10 s | OVG1 definite time setting. Required if [ZOV1EN]=DT. |
| TOG1R | $0.0-300.0 \mathrm{~s}$ | 0.1 s | 0.0 s | OVG1 definite time delayed reset. |
| OG1DP | $10-98 \%$ | $1 \%$ | $95 \%$ | OVG1 DO/PU ratio |
| OVG2 | $5.0-150.0 \mathrm{~V}$ | 0.1 V | 80.0 V | OVG2 threshold setting |
| TOG2 | $0.00-300.00 \mathrm{~s}$ | 0.01 s | 0.10 s | OVG2 definite time setting |
| OG2DP | $10-98 \%$ | $1 \%$ | $95 \%$ | OVG2 DO/PU ratio |
| [OVS1EN] | Off / DT / IDMT |  | Off | OVS1 Enable |
| [OVS2EN] | Off / On |  | Off | OVS2 Enable |
| [OVG1EN] | Off / DT / IDMT |  | Off | OVG1 Enable |
| [OVG2EN] | Off / On |  | Off | OVG2 Enable |

### 2.4.9.2Undervoltage Protection

GRZ100 provides four independent undervoltage elements for phase and earth fault protection. UVS1 and UVS2 are used for phase fault protection, and UVG1 and UVG2 for earth fault protection. UVS1 and UVG1 are programmable for inverse time (IDMT) or definite time (DT) operation. UVS2 and UVG2 have definite time characteristic only.
The UVS1 and UVG1 undervoltage protection elements have an IDMT characteristic defined by equation (2):

$$
\begin{equation*}
t=T M S \times\left[\frac{1}{1-\left(V / V_{S}\right)}\right] \tag{2}
\end{equation*}
$$

where:
$t=$ operating time for constant voltage $V$ (seconds),
$\mathrm{V}=$ energising voltage ( V ),
Vs = undervoltage setting (V),
TMS = time multiplier setting.
The IDMT characteristic is illustrated in Figure 2.4.9.6.
The UVS2 and UVG2 elements are used for definite time undervoltage protection.

## Definite time reset

The definite time resetting characteristic is applied to the UVS1 and UVG1 elements when the inverse time delay is used.
If definite time resetting is selected, and the delay period is set to instantaneous, then no intentional delay is added. As soon as the energising voltage rises above the reset threshold, the element returns to its reset condition.
If the delay period is set to some value in seconds, then an intentional delay is added to the reset period. If the energising voltage is below the undercurrent setting for a transient period without causing tripping, then resetting is delayed for a user-definable period. When the energising voltage rises above the reset threshold, the integral state (the point towards operation that it has travelled) of the timing function (IDMT) is held for that period.
This does not apply following a trip operation, in which case resetting is always instantaneous.


Figure 2.4.9.6 IDMT Characteristic

## Scheme Logic

Figures 2.4.9.7 and 2.4.9.9 show the scheme logic of the UVS1 and UVG1 undervoltage protection with selective definite time or inverse time characteristic. The definite time protection is selected by setting [UV*1EN] to "DT", and trip signal UV*1_TRIP is given through the delayed pick-up timer TU*1. The inverse time protection is selected by setting [UV*1EN] to "IDMT", and trip signal UV*1_TRIP is given.
The UVS1 and UVG1 protections can be disabled by the scheme switch [UV*1EN] or the PLC signal UV*1_BLOCK.
These protections are available to trip instantaneously by the PLC signal UV $* 1$ _INST_TP except for [UV*1EN]="OFF" setting.

Figures 2.4.9.8 and 2.4.9.10 show the scheme logic of the UVS2 and UVG2 protection with
definite time characteristic. The UV*2 gives the PLC signal UV*2_ALARM through delayed pick-up timer TU*2.

The UV*2_ALARM can be blocked by incorporated scheme switch [UV*2EN] and the PLC signal UV*2_BLOCK.

These protections are also available to alarm instantaneously by the PLC signal UV*2_INST_TP.
In addition, there is user programmable voltage threshold UVSBLK and UVGBLK. If all three phase voltages drop below this setting, then both $U V * 1$ and $U V * 2$ are prevented from operating. This function can be blocked by the scheme switch [VBLKEN]. The [VBLKEN] should be set to "OFF" (not used) when the UV elements are used as fault detectors, and set to "ON" (used) when used for load shedding.

Note: The UVSBLK and UVGBLK must be set lower than any other UV setting values.


Figure 2.4.9.7 UVS1 Undervoltage Protection


Figure 2.4.9.8 UVS2 Undervoltage Protection


Figure 2.4.9.9 UVG1 Undervoltage Protection


Figure 2.4.9.10 UVG2 Undervoltage Protection

## Setting

The table shows the setting elements necessary for the undervoltage protection and their setting ranges.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| UVS1 | $5.0-150.0 \mathrm{~V}$ | 0.1 V | 60.0 V | UVS1 threshold setting |
| TUS1I | $0.05-100.00$ | 0.01 | 10.00 | UVSI time multiplier setting. Required if [UVS1EN] = IDMT. |
| TUS1 | $0.00-300.00 \mathrm{~s}$ | 0.01 s | 0.10 s | UVS1 definite time setting. Required if [UV1EN] = DT. |
| TUS1R | $0.0-300.0 \mathrm{~s}$ | 0.1 s | 0.0 s | UVS1 definite time delayed reset. |
| UVS2 | $5.0-150.0 \mathrm{~V}$ | 0.1 V | 40.0 V | UV2 threshold setting. |
| TUS2 | $0.00-300.00 \mathrm{~s}$ | 0.01 s | 0.10 s | UV2 definite time setting. |
| VSBLK | $5.0-20.0 \mathrm{~V}$ | 0.1 V | 10.0 V | Undervoltage block threshold setting. |
| UVG1 | $5.0-150.0 \mathrm{~V}$ | 0.1 V | 35.0 V | UVS1 threshold setting |
| TUG1I | $0.05-100.00$ | 0.01 | 10.00 | UVSI time multiplier setting. Required if [UVS1EN] = IDMT. |
| TUG1 | $0.00-300.00 \mathrm{~s}$ | 0.01 s | 0.10 s | UVS1 definite time setting. Required if [UV1EN] = DT. |
| TUG1R | $0.0-300.0 \mathrm{~s}$ | 0.1 s | 0.0 s | UVS1 definite time delayed reset. |
| UVG2 | $5.0-150.0 \mathrm{~V}$ | 0.1 V | 25.0 V | UV2 threshold setting. |
| TUG2 | $0.00-300.00 \mathrm{~s}$ | 0.01 s | 0.10 s | UV2 definite time setting. |
| VGBLK | $5.0-20.0 \mathrm{~V}$ | 0.1 V | 10.0 V | Undervoltage block threshold setting. |
| [UVS1EN] | Off / DT / IDMT |  | Off | UVS1 Enable |
| [UVG1EN] | Off / DT / IDMT |  | Off | UVG1 Enable |
| [UVS2EN] | Off / On |  | Off | UVS2 Enable |
| [UVG2EN] | Off / On |  | Off | UVG2 Enable |
| [VBLKEN] | Off / On |  | Off | UV block Enable |

### 2.4.10 Broken Conductor Protection

Series faults or open circuit faults which do not accompany any earth faults or phase faults are caused by broken conductors, breaker contact failure, operation of fuses, or false operation of single-phase switchgear.
Figure 2.4.10.1 shows the sequence network connection diagram in the case of a single-phase series fault assuming that the positive, negative and zero sequence impedance of the left and right side system of the fault location is in the ratio of $k_{1}$ to $\left(1-k_{1}\right)$, $k_{2}$ to $\left(1-k_{2}\right)$ and $k_{0}$ to $\left(1-k_{0}\right)$.


Figure 2.4.10.1 Equivalent Circuit for a Single-phase Series Fault

Positive phase sequence current $\mathrm{I}_{1 \mathrm{~F}}$, negative phase sequence current $\mathrm{I}_{2 \mathrm{~F}}$ and zero phase sequence current $\mathrm{I}_{\mathrm{OF}}$ at fault location in a single-phase series fault are given by:

$$
\begin{align*}
& \mathrm{I}_{1 \mathrm{~F}}+\mathrm{I}_{2 \mathrm{~F}}+\mathrm{I}_{0 \mathrm{~F}}=0  \tag{1}\\
& \quad \mathrm{Z}_{2 \mathrm{~F}} \mathrm{I}_{2 \mathrm{~F}}-\mathrm{Z}_{0 \mathrm{~F}} \mathrm{I}_{0 \mathrm{~F}}=0  \tag{2}\\
& \quad \mathrm{E}_{1 \mathrm{~A}}-\mathrm{E}_{1 \mathrm{~B}}=\mathrm{Z}_{1 \mathrm{~F}} \mathrm{I}_{1 \mathrm{~F}}-\mathrm{Z}_{2 \mathrm{~F}} \mathrm{I}_{2 \mathrm{~F}} \tag{3}
\end{align*}
$$

where,
$\mathrm{E}_{1 \mathrm{~A}}, \mathrm{E}_{1 \mathrm{~B}}$ : power source voltage
$\mathrm{Z}_{1}$ : positive sequence impedance
$Z_{2}$ : negative sequence impedance
$\mathrm{Z}_{0}$ : zero sequence impedance
From the equations (1), (2) and (3), the following equations are derived.

$$
\begin{gathered}
\mathrm{I}_{1 \mathrm{~F}}=\frac{\mathrm{Z}_{2}+\mathrm{Z}_{0}}{\mathrm{Z}_{1} \mathrm{Z}_{2}+\mathrm{Z}_{1} \mathrm{Z}_{0}+\mathrm{Z}_{2} \mathrm{Z}_{0}}\left(\mathrm{E}_{1 \mathrm{~A}}-\mathrm{E}_{1 \mathrm{~B}}\right) \\
\mathrm{I}_{2 \mathrm{~F}}=\frac{-\mathrm{Z}_{0}}{\mathrm{Z}_{1} \mathrm{Z}_{2}+\mathrm{Z}_{1} \mathrm{Z}_{0}+\mathrm{Z}_{2} \mathrm{Z}_{0}}\left(\mathrm{E}_{1 \mathrm{~A}}-\mathrm{E}_{1 \mathrm{~B}}\right) \\
\mathrm{I}_{0 \mathrm{~F}}=\frac{-\mathrm{Z}_{2}}{\mathrm{Z}_{1} \mathrm{Z}_{2}+\mathrm{Z}_{1} \mathrm{Z}_{0}+\mathrm{Z}_{2} \mathrm{Z}_{0}}\left(\mathrm{E}_{1 \mathrm{~A}}-\mathrm{E}_{1 \mathrm{~B}}\right)
\end{gathered}
$$

The magnitude of the fault current depends on the overall system impedance, difference in phase angle and magnitude between the power source voltages behind both ends.
Broken conductor protection element BCD detects series faults by measuring the ratio of negative to positive phase sequence currents ( $\mathrm{I}_{2 \mathrm{~F}} / \mathrm{I}_{\mathrm{IF}}$ ). This ratio is given with negative and zero sequence impedance of the system:

$$
\frac{\mathrm{I}_{2 \mathrm{~F}}}{\mathrm{I}_{1 \mathrm{~F}}}=\frac{\left|\mathrm{I}_{2 \mathrm{~F}}\right|}{\left|\mathrm{I}_{1 \mathrm{~F}}\right|}=\frac{\mathrm{Z}_{0}}{\mathrm{Z}_{2}+\mathrm{Z}_{0}}
$$

The ratio is higher than 0.5 in a system when the zero sequence impedance is larger than the negative sequence impedance. It will approach 1.0 in a high-impedance earthed or a one-end earthed system.

The characteristic of BCD element is shown in Figure 2.4.10.2 to obtain the stable operation.


Figure 2.4.10.2 BCD Element Characteristic

## Scheme Logic

Figure 2.4.10.3 shows the scheme logic of the broken conductor protection. BCD element outputs trip signals BCD TRIP through a delayed pick-up timer TBCD.
The tripping can be disabled by the scheme switch [BCDEN] or the PLC signal BCD BLOCK.


Figure 2.4.10.3 Broken Conductor Protection Scheme Logic

## Settings

The table below shows the setting elements necessary for the broken conductor protection and their setting ranges.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| BCD | $0.10-1.00$ | 0.01 | 0.20 | $\mathrm{I}_{2} / \mathrm{I}_{1}$ |
| TBCD | $0.00-300.00 \mathrm{~s}$ | 0.01 s | 1.00 s | BCD definite time setting |
| $[B C D E N]$ | Off $/$ On |  | Off | BCD Enable |

Minimum setting of the BC threshold is restricted by the negative phase sequence current normally present on the system. The ratio $\mathrm{I}_{2} / \mathrm{I}_{1}$ of the system is measured in the relay continuously and displayed on the metering screen of the relay front panel, along with the maximum value of the last 15 minutes $\mathrm{I}_{21}$ max. It is recommended to check the display at the commissioning stage. The BCD setting should be 130 to $150 \%$ of $I_{2} / I_{1}$ displayed.

Note: It must be noted that $\mathrm{I}_{2} / \mathrm{I}_{1}$ is displayed only when the positive phase sequence current (or load current ) in the secondary circuit is larger than $2 \%$ of the rated secondary circuit current.

TBCD should be set to more than 1 cycle to prevent unwanted operation caused by a transient operation such as CB closing.

### 2.4.11 Breaker Failure Protection

When fault clearance fails due to a breaker failure, the breaker failure protection (BFP) clears the fault by backtripping adjacent circuit breakers.
If the current continues to flow even after a trip command is output, the BFP judges it as a breaker failure. The existence of the current is detected by an overcurrent element provided for each phase. For high-speed operation of the BFP, a high-speed reset overcurrent element is used.
In order to prevent the BFP from starting by accident during maintenance work and testing, and thus tripping adjacent breakers, the BFP has the optional function of retripping the original breaker. To make sure that the breaker has actually failed, a trip command is made to the original breaker again before tripping the adjacent breakers to prevent unnecessary tripping of the adjacent breakers following the erroneous start-up of the BFP. It is possible to choose not to use retripping at all, or use retripping with trip command plus delayed pick-up timer, or retripping with trip command plus overcurrent detection plus delayed pick-up timer.
Tripping by the BFP is three-phase final tripping and autoreclose is blocked.
An overcurrent element and delayed pick-up timer are provided for each phase which also operate correctly during the breaker failure routine in the event of an evolving fault.

## Scheme logic

The BFP is performed on an individual phase basis. Figure 2.4.11.1 shows the scheme logic for one phase. The BFP is started by an initiation signal EXT_CBFIN from the external line protection or an internal initiation signal CBF_INIT. The external initiation signals EXT_CBFIN-A, -B, -C are assigned by binary input signals (PLC signals). Starting with an external initiation signal can be disabled by the scheme switch [BFEXT]. These signals must continuously exist as long as the fault is present.


Figure 2.4.11.1 BFP Scheme Logic
The backtripping signal to the adjacent breakers BF-TRIP is output if the overcurrent element OCBF operates continuously for the setting time of the delayed pick-up timer TBF2 after initiation. Tripping of adjacent breakers can be blocked with the scheme switch [BF2].
There are two kinds of modes of the retrip signal to the original breaker RETRIP, the mode in which RETRIP is controlled by the overcurrent element OCBF, and the direct trip mode in which RETRIP is not controlled. The retrip mode together with the trip block can be selected with the scheme switch [BF1].
Figure 2.4.11.2 shows a sequence diagram for the BFP when a retrip and backup trip are used. If the circuit breaker trips normally, the OCBF is reset before timer TBF1 or TBF2 is picked up and the BFP is reset.

If the OCBF continues to operate, a retrip command is given to the original breaker after the setting time of TBF1. Unless the breaker fails, the OCBF is reset by retrip. TBF2 does not time-out and the BFP is reset. This sequence of events may happen if the BFP is initiated by mistake and unnecessary tripping of the original breaker is unavoidable.
If the original breaker fails, retrip has no effect and the OCBF continues operating and the TBF2 finally picks up. A trip command BF-TRIP is given to the adjacent breakers and the BFP is completed.


Figure 2.4.11.2 Sequence Diagram

## Setting

The setting elements necessary for the breaker failure protection and their setting ranges are as follows:

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| OCBF | $0.5-10.0 \mathrm{~A}$ | 0.1 A | 4.0 A | Overcurrent setting |
|  | $(0.1-2.0 \mathrm{~A}$ | 0.1 A | $0.8 \mathrm{~A})\left({ }^{*}\right)$ |  |
| TBF1 | $50-500 \mathrm{~ms}$ | 1 ms | 150 ms | Retrip timer |
| TBF2 | $50-500 \mathrm{~ms}$ | 1 ms | 200 ms | Related breaker trip timer |
| BFEXT | OFF/ON |  | OFF | External start |
| BF1 | OFF/T/TOC |  | OFF | Retrip mode |
| BF2 | OFF/ON |  | OFF | Related breaker trip |

$\left(^{*}\right)$ Current values shown in the parentheses are in the case of 1 A rating. Other current values are in the case of 5 A rating.

The overcurrent element OCBF checks that the circuit breaker has opened and that the current has disappeared. Therefore, since it is allowed to respond to load current, it can be set to 10 to $200 \%$ of the rated current.
The settings of TBF1 and TBF2 are determined by the opening time of the original circuit breaker (Tcb in Figure 2.4.11.2) and the reset time of the overcurrent element (Toc in Figure 2.4.11.2). The timer setting example when using retrip can be obtained as follows.

$$
\begin{aligned}
\text { Setting of TBF1 }= & \text { Breaker opening time }+ \text { OCBF reset time }+ \text { Margin } \\
= & 40 \mathrm{~ms}+10 \mathrm{~ms}+20 \mathrm{~ms} \\
= & 70 \mathrm{~ms} \\
\text { Setting of TBF2 }= & \text { TBF1 }+ \text { Output relay operating time }+ \text { Breaker opening time }+ \\
& \text { OCBF reset time }+ \text { Margin } \\
= & 70 \mathrm{~ms}+10 \mathrm{~ms}+40 \mathrm{~ms}+10 \mathrm{~ms}+10 \mathrm{~ms} \\
= & 140 \mathrm{~ms}
\end{aligned}
$$

If retrip is not used, the setting of the TBF2 can be the same as the setting of the TBF1.

### 2.4.12 Out-of-Step Protection

## Application

For an out-of-step condition on a power system, power system separation is executed in order to recover power system stability or prevent the failure from extending to the entire system. Power system separation by the distance protection with several operating zones is not desirable because it is not always carried out at the optimal points. For optimal power system separation, the GRZ100 has an out-of-step tripping (OST) function. The OST function uses independent impedance measuring elements to discriminate against transient power swings and reliably detects out-of-steps and operates only when the out-of-step locus crosses the protected line.

## Scheme logic

The out-of-step element has three operating areas $\mathrm{A}, \mathrm{B}$ and C by combining two impedance measuring elements ZM and ZN as shown in Figure 2.4.12.1.

If an out-of-step occurs, the impedance viewed from the impedance measuring element moves through the areas $\mathrm{A}, \mathrm{B}$ and C in the sequence of $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$ or $\mathrm{C} \rightarrow \mathrm{B} \rightarrow \mathrm{A}$. The out-of-step tripping logic shown in Figure 2.4.12.2 outputs a three-phase tripping command M-TRIP to the circuit breaker when the impedance viewed from the impedance measuring element passes through those areas in the sequence above and enters the third area and it stays in area A and area C for the time set with the timers TOST1 and TOST2. The tripping command continues for 100 ms. The output signal is blocked when the scheme switch [OST] is set to "OFF" or binary signal OST_BLOCK is input. The tripping signal of the out-of-step protection can be separated from other protection tripping signals by the switch [OST]. In this case, the switch [OST] is set to "BO" and the tripping signal OST-BO is assigned to a desired binary output number (for details, see Section 4.2.6.9). When the tripping signal of the out-of-step protection is not separated from other protection tripping signals, the switch [OST] is set to "TRIP".

The tripping logic does not operate for cases other than out-of-steps, for example, a power swing in which the impedance moves from areas $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{A}$ or $\mathrm{C} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$ or a system fault in which the impedance passes through area A or C instantaneously.

Out-of-step tripping can be disabled with the scheme switch [OST].


Figure 2.4.12.1 Out-of-Step Element


Figure 2.4.12.2 Out-of-Step Tripping Logic

## Setting

The setting elements for the out-of-step protection and their setting ranges are as follows:

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| OSTXF | $1.0-50.0 \Omega$ | $0.1 \Omega$ | $6.0 \Omega$ | Forward reactive reach |
|  | $(5-250 \Omega$ | $1 \Omega$ | $30 \Omega)\left(^{*}\right)$ |  |
| OSTXB | $0.2-10.0 \Omega$ | $0.1 \Omega$ | $1.0 \Omega$ | Reverse offset reach |
|  | $(1-50 \Omega$ | $1 \Omega$ | $5 \Omega)$ |  |
| OSTR1 | $3.0-30.0 \Omega$ | $0.1 \Omega$ | $5.1 \Omega$ | Resistive reach (right) |
|  | $(15-150 \Omega$ | $1 \Omega$ | $25 \Omega)$ |  |
| OSTR2 | $1.0-10.0 \Omega$ | $0.1 \Omega$ | $2.5 \Omega$ | Resistive reach (left) |
|  | $(5-50 \Omega$ | $1 \Omega$ | $12 \Omega)$ |  |
| TOST1 | $0.01-1.00 \mathrm{~s}$ | 0.01 s | 0.04 s | Out - of - step timer |
| TOST2 | $0.01-1.00 \mathrm{~s}$ | 0.01 s | 0.04 s | Out - of - step timer |
| OST | OFF/TRIP/BO |  | OFF | Out - of - step protection |

$\left(^{*}\right)$ Ohmic values shown in the parentheses are in the case of 1 A rating. Other ohmic values are in the case of 5 A rating.

### 2.4.13 Voltage Transformer Failure Supervision

When a fault occurs in the secondary circuit of the voltage transformer (VT), the voltage dependent measuring elements may operate incorrectly. GRZ100 incorporates a VT failure supervision function (VTFS) as a measure against such incorrect operation. When the VTFS detects a VT failure, it blocks the following voltage dependent protections instantaneously. In 10 seconds, it displays the VT failure and outputs an alarm.

- Zone 1-3, F, R1, R2 and ND distance protection
- Zone 1 extension protection
- Directional earth fault protection
- Command protection

Resetting of the blocks above and resetting of the display and alarm are automatically performed when it is confirmed that all three phases are healthy.
A binary input signal to indicate a miniature circuit breaker trip in the VT circuits is also available for the VTFS.

## Scheme logic

Figure 2.4.13.1 shows the scheme logic for the VTFS. VT failures are detected under any one of the following conditions and then a trip block signal VTF is output.

VTF1: The phase-to-phase undervoltage element UVFS or phase-to-earth undervoltage element UVFG operates (UVFS = 1 or UVFG =1) when the three phases of the circuit breaker are closed ( $\mathrm{CB}-\mathrm{AND}=1$ ) and the phase current change detection element OCD does not operate ( $\mathrm{OCD}=0$ ).

VTF2: The residual overcurrent element EFL does not operate ( $\mathrm{EFL}=0$ ), the residual overvoltage element OVG operates $(\mathrm{OVG}=1)$ and the phase current change detection element OCD does not operate $(O C D=0)$.

In order to prevent detection of false VT failures due to unequal pole closing of the circuit breaker, the VTFS is blocked for 200 ms after line energisation.
The trip block signal VTF is reset 100 milliseconds after the VT failure condition has reset. When the VTF continues for 10s or more, an alarm signal VTF-ALM is output.
Further, the VT failure is detected when the binary input signal (PLC signal) EXT_VTF is received.

This function can be enabled or disabled by the scheme switch [VTF1EN] or [VTF2EN] and has a programmable reset characteristic. When set to "ON", the latched operation for VTF1 is reset by reset of UVFS/UVFG element, and that for VTF2 is reset by reset of OVG element. Set to "OPT-ON" to reset the latched operation when OCD or EFL operates.

The VTFS can be disabled by the PLC signal VTF_BLOCK.


Figure 2.4.13.1 VTFS Logic

## Setting

The setting elements necessary for the VTFS and their setting ranges are as follows:

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| UVFS | $50-100 \mathrm{~V}$ | 1 V | 88 V | Phase - to - phase undervoltage |
| UVFG | $10-60 \mathrm{~V}$ | 1 V | 51 V | Phase - to - earth undervoltage |
| EFL | $0.5-5.0 \mathrm{~A}$ | 0.1 A | 1.0 A | Residual overcurrent |
|  | $(0.10-1.00 \mathrm{~A}$ | 0.01 A | $0.20 \mathrm{~A})\left(^{*}\right)$ |  |
| [VTF1EN] | Off/On/OPT-On |  | On | VTF1 supervision |
| [VTF2EN] | Off/On/OPT-On |  | On | VTF2 supervision |
| [VTF-Z4] | Off / On |  | On | Z4 blocked by VTF |

$\left(^{*}\right)$ Current values shown in the parentheses are in the case of 1 A rating. Other current values are in the case of 5 A rating.

The following elements have fixed setting values.

| Element | Setting | Remarks |
| :--- | :--- | :--- |
| OCD | Fixed to 0.5 A | Current change detection |
|  | (Fixed to 0.1 A ) |  |
| OVG | Fixed to 20 V | Residual overvoltage |

(*) Current value shown in the parentheses is in the case of 1 A rating. Other current value is in the case of 5 A rating.

When setting the UVFS, UVFG and EFL, the maximum detection sensitivity of each element should be set with a margin of 15 to $20 \%$ taking account of variations in the system voltage, the asymmetry of the primary system and CT and VT error.

### 2.4.14 Power Swing Blocking

When a power swing occurs on the power system, the impedance seen by the distance measuring element moves away from the load impedance area into the operating zone of the distance measuring element. The operation of the distance measuring element due to the power swing occurs in many points of interconnected power systems. Therefore, tripping due to the operation of the distance measuring element during a power swing is generally not allowed. The power swing blocking function (PSB) of the GRZ100 detects the power swing and blocks tripping by the distance measuring element. The GRZ100 provides PSBSZ and PSBGZ for phase fault measuring elements and earth fault measuring elements. Their functions and characteristics are same.
Once the PSB is in operation, tripping of zone 1 to zone 3 of the time-stepped distance protection, zone 1 extension protection, additional forward zone ZF, backup protection for reverse faults and command protection using distance measuring elements can be blocked. These tripping blocks can be disabled by setting the scheme switches.
Tripping of the non-directional zone ZND is not blocked. If a zero-phase current has been detected, the PSB is inhibited. This allows tripping in the event of an earth fault during a power swing or high resistance earth fault by which the resistance at the fault point changes gradually.
GRZ100 can provide a high-speed protection for one- and two-phase faults which occur during a power swing by using negative sequence directional element and any of the command protection PUP, POP, UOP and BOP.

Three-phase faults during a power swing are eliminated by distance and overcurrent backup protection.

## Scheme logic

A power swing is detected by using two PSB elements PSBIN and PSBOUT. They are composed of blinder elements and reactance elements as shown in Figure 2.4.14.1. PSBOUT encloses PSBIN with a settable width of PSBZ.
Figure 2.4.14.2 shows the power swing detection logic. During a power swing, the impedance viewed from the PSB elements passes through the area between the PSBOUT and PSBIN in a certain time. In the event of a system fault, the impedance passes through this area instantaneously. Therefore, a power swing is detected in a time which commences on operation of the PSBOUT until PSBIN starts to operate, if longer than the set value of delayed pick-up timer TPSB. If the residual overcurrent element EFL operates, detection of the power swing is inhibited.
The trip block signal PSB generated as a result of the detection of a power swing is reset 500 ms after the PSBOUT is reset by delayed timer T 2 .


Figure 2.4.14.1 Power Swing Blocking Element

PSBSZ and PSBGZ have same functions and characteristics as shown in Figures 2.4.14.1 and 2.4.14.2, and block tripping of phase and earth fault elements respectively.


Figure 2.4.14.2 Power Swing Detection Logic

One- and two-phase faults can be protected with the command protection even during a power swing.

The PSB can be disabled or reset by the PLC signal PSB_BLOCK or PSB_F.RESET.
Figure 2.4.14.3 shows the scheme logic to control the sending signal of PUP, POP, UOP or BOP. The scheme logic is valid when the scheme switch [PSB-TP] is set to "ON". CS1 is an original sending signal for the distance and DEF command protection and CS2 is a controlled sending signal. When a power swing is continuing (PSB_DET=1) and an internal fault is not detected (PSB-CS=0), the sending signal of PUP or POP is forced to be 0 (that is, a trip permission signal sending is blocked), and that of UOP or BOP is forced to be 1 (that is, a trip block signal is continuously sent).


Figure 2.4.14.3 Sending Signal Control

When an internal fault occurs during the power swing and all of the following conditions are established, C/R SEND-PSB (PSB-CS) becomes 1 and the trip permission signal is sent for the PUP or POP, and the trip block signal sending is stopped for the UOP or BOP as shown in Figure 2.4.14.4.

- Power swing is continuing (PSB_DET=1).
- Current change detection element operates (OCDP=1).
- Reverse looking negative sequence directional element does not operate (DOCNR=0).
- Forward looking negative sequence directional element operates (DOCNF=1).
- Scheme switch PSB-TP is on.
- Command protection is in service.

When a trip permission signal is received for the PUP or POP (CR=1), or no trip block signal is received for the UOP or $\mathrm{BOP}(\mathrm{CR}=0)$ as well as the conditions mentioned above are established (PSB-CS=1), three-phase tripping signal is output (M-TRIP=1).
Reverse looking DOCNR is used for the current reversal logic (for current reversal logic, see Section 2.4.3.6) in all the command protections.


Figure 2.4.14.4 Scheme Logic to Protect Faults during Power Swing

## Setting

The setting elements necessary for the PSB and their setting ranges are as shown in the table below.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| PSBSZ | $0.50-15.00 \Omega$ | $0.01 \Omega$ | $2.00 \Omega$ | PSBS detection zone |
|  | $(2.5-75.0 \Omega$ | $0.1 \Omega$ | $10.0 \Omega)\left(^{*}\right)$ |  |
| PSBGZ | $0.50-15.00 \Omega$ | $0.01 \Omega$ | $2.00 \Omega$ | PSBG detection zone |
|  | $(2.5-75.0 \Omega$ | $0.1 \Omega$ | $10.0 \Omega)\left(^{*}\right)$ |  |
| EFL | $0.5-5.0 \mathrm{~A}$ | 0.1 A | 1.0 A | Residual overcurrent |
|  | $(0.10-1.00 \mathrm{~A}$ | 0.01 A | $0.20 \mathrm{~A})$ |  |
| TPSB | $20-60$ | 1 ms | 40 ms | Power swing timer |
| OCDP | $0.5-10.0 \mathrm{~A}$ | 0.1 A | 4.0 A | Current change |
|  | $(0.1-2.0 \mathrm{~A}$ | 0.1 A | $0.8 \mathrm{~A})$ | detection element |
| DOCNF | 4.0 A fixed |  |  | Forward looking negative |


| Element | Range | Step | Default | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| DOCNR | (0.8A fixed) |  | sequence directional element |  |
|  | 6 V fixed |  |  |  |
|  | 4.0 A fixed |  |  | Reverse looking negative |
|  | (0.8A fixed) |  |  | sequence directional element |
|  | 6 V fixed |  |  |  |
| PSB-Z1 | OFF/ON |  | ON | Z1 blocked under power swing |
| PSB-Z1X | OFF/ON |  | ON | Z1X blocked under power swing |
| PSB-Z2 | OFF/ON |  | ON | Z2 blocked under power swing |
| PSB-Z3 | OFF/ON |  | OFF | Z3 blocked under power swing |
| PSB-CR | OFF/ON |  | ON | Carrier trip blocked under power swing |
| PSB-ZF | OFF/ON |  | OFF | ZF blocked under power swing |
| PSB-ZR1 | OFF/ON |  | OFF | ZR1 blocked under power swing |
| PSB-ZR2 | OFF/ON |  | OFF | ZR2 blocked under power swing |
| PSB-TP | OFF/ON |  | ON | Command protection for faults under power swing |

$\left(^{*}\right)$ Values shown in the parentheses are in the case of 1A rating. Other values are in the case of 5A rating.

Residual overcurrent element EFL is used in common with the following functions.

- VT failure detection
- Earth fault distance protection

The PSBIN reach is set automatically to coordinate with the Z3 and Z4 settings.
Note: In the case of the quadrilateral characteristic, if the ZF and ZR 2 reach is larger than the Z 3 and Z4 respectively, the PSBIN reach depends on the ZF and ZR2 reach. Therefore, the ZF and ZR2 must be set less than the Z3 and Z4 respectively whether the ZF and ZR2 used or not.

The right side forward and reverse blinders for PSBIN are shared with the right side forward and reverse blinders of the distance protection characteristic, BFRS/BFRG and BRRS/BRRG respectively, ensuring that the PSB element coordinates properly with the protection, for both mho and quadrilateral characteristics.

The positive reactive reach setting is fixed so that the setting makes the reactance element tangential to the Z 3 distance element when the Z 3 is mho-based or takes the same value as the Z 3 reactive reach setting when the Z 3 is quadrilateral-based.
The negative resistive reach takes the same value as that of the positive reach. The negative reactive reach setting is fixed so that the setting makes the reactance element tangential to the Z 4 distance element when the Z 4 is mho-based or takes the same value as the Z 4 reactive reach setting when the Z 4 is quadrilateral-based.

PSBOUT encloses PSBIN and the margin between the two is determined by the user-settable power swing detection zone width, PSBSZ and PSBGZ, for phase and earth fault characteristics respectively.

### 2.4.15 Tripping Output Signals

The single-phase tripping signals drive the high-speed tripping output relays according to the tripping logic in Figure 2.4.15.1.
Two sets of output relays are provided for each phase and each relay has one normally open contact.

The tripping output relays reset $60 \mathrm{~ms}\left({ }^{*}\right)$ after the S-TRIP or M-TRIP signal disappears by clearing the fault. The tripping circuit must be opened with a circuit breaker auxiliary contact prior to the trip relay resetting in order to prevent the tripping relay from directly interrupting the circuit breaker tripping coil current.
(*) Reset time is adjustable by PLC function. Default setting is 60 ms .
In the following cases, per-phase-based tripping is converted to three-phase tripping.

- When autoreclose is prohibited by a binary input signal (ARC_BLOCK = 1)
- When the tripping mode selection switch [TPMODE] is set to "3PH"
(This applies to the GRZ100 model 100s which does not have autoreclose.)
- When the autoreclose mode selection switch [ARC-M] is set to "EXT3P"
- PLC command "3P_TRIP" is established.

For the following trips, the logic level of M-TRIPA becomes 1, and single-phase tripping is then forced to convert to three-phase tripping. For details of M-TRIPA, see Figure 2.6.2.1.

- Tripping while reclaim is in progress.
- Tripping when the reclose mode selection switch [ARC-M] is set to "Disabled" or "TPAR" The signals TRIP-A, TRIP-B and TRIP-C are used to start the autoreclose.

The signal TRIP is used to initiate the breaker failure protection.


Figure 2.4.15.1 Tripping Logic

A tripping output relay is user configurable for the adjacent breakers tripping in the breaker failure protection. For the default setting, see Appendix D.

## Setting

The setting element necessary for the tripping output circuit and its setting range is as follows:

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| TPMODE | $1 \mathrm{PH} / 3 \mathrm{PH}$ |  | $3 P H$ | Model 100 series |

The switch [TPMODE] is used to combine Model 100 series with external autoreclose equipment.
When the external autorelose is set to the single-phase or single- or three-phase mode, set the switch to "1PH". GRZ100 outputs a single-phase tripping command in a single-phase fault and three-phase trip command in multi-phase fault.
When the external autoreclose is set to the three-phase mode, set the switch to "3PH". GRZ100 outputs a three-phase tripping command in single- and multi-phase fault.
If the signal No. 1727 "3P_TRIP"assigned by PLC is activated, GRZ100 outputs a three-phase tripping command without regard to faulted phase.

### 2.4.16 Fault Detector

GRZ100 model 400s and 500s are provided with a fault detector (FD) which functions as a check relay and enhances security, or prevents false tripping due to a single failure in the protection system.
The FD is an independent module and incorporates the following six fault detection elements. The FD output signal is an ORing of the elements output signals shown in Figure 2.4.16.1.

- Current change detection element (OCDF)
- Multi-level overcurrent element (OCMF)
- Earth fault overcurrent element (EFF)
- Undervoltage element for earth fault detection (UVGF)
- Undervoltage element for phase fault detection (UVSF)
- Undervoltage change detection element (UVDF)


Figure 2.4.16.1 Fault Detector Logic
The FD output signal drives two sets of high-speed checking output relays. The checking output relay resets $60 \mathrm{~ms}\left({ }^{*}\right)$ after the fault detection elements are reset by clearing the fault.
(*) Reset time is adjustable by PLC function. Default setting is 60 ms .
The OCDF operates in response to load current if it is a steeply fluctuating one. When the relay is used for a line with such a load current, the OCDF can be disabled by short-circuiting dedicated paired pins on the module with a receptacle.
All the FD elements have fixed operating threshold levels. But if the earth fault current due to unbalance in the network is significant, the EFF can be desensitized in the same way as described above.

Note: To give high independency to the module, the human machine interface on the front panel or PC has no access to the FD module except for the user configurable binary output relays mounted on it.

When it is desirable to disable the OCMF, disable the OCDF or desensitize the EFF, take the following steps:

- Pull out the FD module. For a description of how the module is removed, refer to Section6.7.3.
- Four pairs of pins J1 and J2 are arranged lengthwise on the front at the top of the module as shown in Figure 2.4.16.2.


Figure 2.4.16.2 FD Module

- Short-circuit the pins 1-2 (located topmost) for the J1 to disable the OCMF.

Short-circuit the pins 3-4 (located second from the top) for the J1 to disable the OCDF.

- Short-circuit the pins 3-4 for the J2 to energize the output auxiliary relay FD2 only by the OCMF.
- Short-circuit the pins 5-6 (located second from the bottom) and open-circuit the pins 7-8 (located bottom) to change the EFF operating threshold level to $15 \%$ of the rated current.
Short-circuit pins 7-8 and open-circuit pins 5-6 to change the EFF operating threshold level to $20 \%$ of rated current.
In other cases, the nominal operating threshold level ( $10 \%$ of the rated current) is kept. Short-circuit both of the pins 5-6 and 7-8 to disable the EFF.
- The pins 1-2 for the J 2 is used to set the rated frequency. It is fixed before shipping.

Caution: Do not change the pins 1-2 for the J2.

| Element | Setting | Pairs of pins for J1 |  |  |  | Pairs of pins for J2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1-2 | 3-4 | 5-6 | 7-8 | 1-2 | 3-4 |
| OCMF | Enabled <br> Disabled | Open <br> Short |  |  |  |  |  |
| OCDF | Enabled <br> Disabled |  | Open <br> Short |  |  |  |  |
| EFF | Disabled <br> $10 \%$ of rated current $15 \%$ of rated current 20\% of rated current |  |  | Short <br> Open <br> Short <br> Open | Short <br> Open <br> Open <br> Short |  |  |
| FD | 50 Hz rating 60 Hz rating |  |  |  |  | Open <br> Short |  |
| FD2 | Normal Only OCMF |  |  |  |  |  | Open <br> Short |

All the FD elements retain the nominal operating threshold when none of the paired pins are
short-circuited.
Figure 2.4.16.3 shows the tripping output circuit when the FD is in service. The checking output contact is connected with A- to C-phase tripping output contacts in series. They are connected outside the relay as shown by the broken line.


Figure 2.4.16.3 Tripping Output

## Setting

All the fault detection elements have fixed settings as follows:

| Element | Setting | Remarks |
| :---: | :---: | :---: |
| OCMF | L1:0.1In, L2:0.16In, L3:0.26In, L4:0.41In, L5:0.66In, L6:1.05In, L7:1.68In | In: Rated current |
| OCDF | 0.11 n |  |
| EFF | $0.1 \mathrm{ln}, 0.15 \mathrm{ln}, 0.2 \mathrm{ln}$ |  |
| UVGF | 46 V | $0.8 \times 100 \mathrm{~V} / \sqrt{3}$ |
| UVSF | 80V | $0.8 \times 100 \mathrm{~V}$ |
| UVDF | 0.93 Vr | Vr: Pre-fault voltage |

### 2.5 Characteristics of Measuring Elements

### 2.5.1 Distance Measuring Elements Z1, Z1X, Z2, ZF, Z3, Z4, ZR1, ZR2, ZND and PSB

The GRZ100 provides eight distance measuring zones with mho-based characteristics or quadrilateral characteristics.

As shown in Figure 2.5.1.1, mho-based zone characteristics are composed of mho element, offset mho element, impedance element, reactance element, and blinder element for phase fault protection and earth fault protection.
Z1 (zone 1), Z1X (zone 1 extension), Z2 (zone 2), ZF (zone F) and ZR1 (reverse zone 1) are a combination of the reactance element, mho element and blinder element.
Z3 (zone 3), ZR2 (reverse zone 2), and Z4 use the mho element and blinder element, but Z4 for phase faults uses the offset mho element instead of mho element. This makes it possible to detect a reverse close-up fault at high speed if Z 4 for phase faults is used for the command protection.
ZND (non-directional zone) uses the impedance element and blinder element.
The blinder element is normally used to restrict the resistive reach of the mho or offset mho element if their operating range encroaches upon the load impedance.
The blinder element (BFR) can be provided for each forward zone. The setting of blinder element can be set independently or set common to forward zones by the scheme switch [BLZONE].

(a) Phase fault element

(b) Earth fault element

Figure 2.5.1.1 Mho-based Characteristics
As shown in Figure 2.5.1.2, quadrilateral zone characteristics are composed of reactance element, directional element and blinder element. Z 4 for phase faults uses the offset directional element to ensure a reverse close-up fault detection.
The forward offset reach of reverse zones (ZR1, ZR2) for both mho-based and quadrilateral characteristics is fixed as 7.5 ohms for 1A rating or 1.5 ohms for 5 A rating. However, when they are used for back-up tripping ( $[\mathrm{ZR} * \mathrm{BT}]=$ "ON"), the forward offset reach is limited to the zone 1 reach setting, as shown in Figure 2.5.1.3. Z4, on the other hand, is normally used to provide
blocking in the command schemes, and its offset is not limited by the zone 1 reach setting. It is fixed at $7.5 \Omega$ (or $1.5 \Omega$ ) in order to give reliable, fast blocking for a close-up reverse fault.

(a) Phase fault element

(b) Earth fault element

Figure 2.5.1.2 Quadrilateral Four Zone Characteristics


Figure 2.5.1.3 ZR1S and ZR2S Characteristic Offset Reach for Backup Tripping

Zone 1, zone 1X, zone 2 and zone F can trip on condition that zone 3 has operated, in both characteristics.

The power swing blocking elements (PSBS and PSBG) are a combination of the reactance element and blinder element as shown in Figure 2.5.1.4. The outer element PSBOUT encloses the inner element PSBIN with a settable width of PSBZ.


Figure 2.5.1.4 Power Swing Blocking Element

## Mho element

The characteristic of the mho element is obtained by comparing the phases between signals S1 and S2. If the angle between these signals is $90^{\circ}$ or more, it means that the fault is within the mho characteristic, and the mho element will operate.

$$
\begin{aligned}
& \mathrm{S} 1=\mathrm{V}-\mathrm{IZs} \\
& \mathrm{~S} 2=\mathrm{Vp}
\end{aligned}
$$

where,

$$
\begin{aligned}
& \text { V = fault voltage } \\
& \mathrm{I}=\text { fault current } \\
& \mathrm{Zs} \text { = zone reach setting } \\
& \text { Vp = polarizing voltage }
\end{aligned}
$$

Figure 2.5.1.5 is a voltage diagram, which shows that the mho characteristic is obtained by the phase comparison if V and Vp are in-phase.

The mho characteristic on the impedance plane is obtained by dividing the voltage in Figure 2.5.1.5 by current I.


Figure 2.5.1.5 Mho Element

Both the phase fault mho element and earth fault mho element of the GRZ100 employ a dual polarization (self-polarization plus cross-polarization). Its polarizing voltage Vp is expressed by the following equations.

For B-to-C-phase phase fault element

$$
\mathrm{V}_{\mathrm{pbc}}=\sqrt{3}\left(\mathrm{~V}_{\mathrm{a}}-\mathrm{V}_{0}\right) \angle-90^{\circ}+\mathrm{V}_{\mathrm{bc}}
$$

For an A-phase earth fault element

$$
\mathrm{V}_{\mathrm{pa}}=\sqrt{3}\left(\mathrm{~V}_{\mathrm{a}}-\mathrm{V}_{0}\right)+\mathrm{V}_{\mathrm{bc}} \angle 90^{\circ}
$$

where,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=\mathrm{A} \text {-phase voltage } \\
& \mathrm{V}_{0}=\text { zero-sequence voltage } \\
& \mathrm{V}_{\mathrm{bc}}=\mathrm{B} \text {-to-C-phase voltage }
\end{aligned}
$$

The dual-polarization improves the directional security when applied to heavily loaded lines or weak infeed terminals.

The polarizing voltage for the phase fault mho element has a memory action for the close-up three-phase fault. $\mathrm{V}_{\mathrm{a}}$ and $\mathrm{V}_{\mathrm{bc}}$ mentioned above are the memorized pre-fault voltages. This memory is retained for two cycles after a fault occurs. The polarizing voltage for the earth fault mho element has no memory action.

When a three-phase fault occurs within zone 1 , the phase fault mho element for zone 1 is modified to an offset mho characteristic as shown in Figure 2.5.1.6. This, together with voltage memory action, enables zone 1 to perform tripping with a time delay as well as instantaneous tripping for the close-up three-phase fault.
The Z1X, Z2, ZF and Z3 do not have the modifying function mentioned above.


Figure 2.5.1.6 Offset of $\mathbf{Z 1}$ in Three-phase Fault

## Offset mho element

Three independent offset mho elements are used for Z 1 for phase faults, reverse zone ZR2 and Z4 for phase faults.
The characteristics of each offset mho element are obtained by comparing the phases between signals S1 and S2.
If the angle between these signals is $90^{\circ}$ or more, the offset mho element operates.

$$
\begin{aligned}
& \mathrm{S} 1=\mathrm{V}-\mathrm{IZs} \\
& \mathrm{~S} 2=\mathrm{V}+\mathrm{IZso}
\end{aligned}
$$

where,
$\mathrm{V}=$ fault voltage
I = fault current
$\mathrm{Zs}=$ zone reach setting
Zso = offset zone reach setting
Figure 2.5.1.7 is a voltage diagram showing the offset mho characteristics obtained by the phase comparison between S 1 and S2.

The offset mho characteristic on the impedance plane is obtained by dividing the voltage in Figure 2.5.1.7 by current I.


Figure 2.5.1.7 Offset Mho Element

## Reactance element

The reactance elements of Z1 and Z1X have a composite characteristic with the two straight lines, one is parallel and the other is gradual descent toward the R-axis as shown in Figure 2.5.1.8.
The characteristic is defined by the reach setting Xs and the angle settings $\theta 1$ and $\theta 2$. This composite characteristic is obtained only when the load current is transmitted from local to remote terminal. When the load current flows from remote to local terminal or the load current does not flow or $\theta 1$ is set to $0^{\circ}$, the reactance element characteristic is a horizontal line which is parallel to the R-axis.

The characteristic is expressed by the following equations.
For horizontal characteristic

$$
\mathrm{X} \leq \mathrm{Xs}
$$

For gradient characteristic

$$
\mathrm{R} \leq \mathrm{Xs} \tan \left(90^{\circ}-\theta 2\right)+(\mathrm{Xs}-\mathrm{X}) \tan \left(90^{\circ}-\theta 1\right)
$$

where,
$\mathrm{R}=$ resistance component of measured impedance
$\mathrm{X}=$ reactance component of measured impedance
$\mathrm{Xs}=$ reach setting
The reactance element characteristic of $\mathrm{Z} 2, \mathrm{ZF}$ and ZR 1 is given by a parallel line to the R axis.
R and X are calculated using an integration approximation algorithm. The reactance element provides high measurement accuracy even in the presence of power system frequency fluctuations and distorted transient waveforms containing low-frequency spectral components.

A decision to operate is made 6 times in each power frequency cycle using the above-mentioned equation. The reactance element operates when two consecutive measurements are made if the distance to a fault is within $90 \%$ of the reach setting. If the distance to a fault is more than $90 \%$, the reactance element operates when four consecutive measurements are made.
This decision method prevents transient overreaching occurring for faults close to the element boundary.


Figure 2.5.1.8 Reactance Element

The setting of $\theta 1$ (Z1 $\theta 1$ ) and $\theta 2$ (Z1 $\theta 2$ ) are set to the following:

$$
\mathrm{Z} 1 \theta 2<\tan ^{-1}\left(\mathrm{X} / \mathrm{R}_{\mathrm{F}}\right)
$$

Where,
$\mathrm{X}=$ reactance component
$\mathrm{R}_{\mathrm{F}}=$ fault resistance

$$
\begin{array}{r}
\mathrm{Z} 101<\tan ^{-1}\left\{\mathrm{I}_{\mathrm{L} \max } /\left(\mathrm{I}_{\mathrm{Lmax}}+\mathrm{I}_{\mathrm{Fmin}}\right)\right\} \\
\mathrm{I}_{\mathrm{L} \max }=\text { maximum load current } \\
\mathrm{I}_{\mathrm{Fmin}}=\text { minimum fault current }
\end{array}
$$

## Blinder element

The blinder element is commonly applicable to Z1, Z1X, Z2, ZF, Z3, ZR1, ZR2 and Z4. As shown in Figure 2.5.1.9, the blinder element provides the forward blinder and the reverse blinder. The operating area of the forward blinder is the zone enclosed by the lines BFR and BFL, and that of the reverse blinder is the zone enclosed by the lines BRR and BRL. The BFR has an angle $\theta$ of $75^{\circ}$ to the R-axis and BFL $90^{\circ}$ to $135^{\circ}$. The angle of BRL is linked with that of BFL.

(a) Forward blinder

(b) Reverse blinder

Figure 2.5.1.9 Blinder element

The characteristic of the BFR is obtained by the following equation.

$$
\mathrm{X} \geq(\mathrm{R}-\mathrm{Rs}) \tan 75^{\circ}
$$

where,
$R=$ resistance component of measured impedance
$\mathrm{X}=$ reactance component of measured impedance
Rs = reach setting
The characteristic BFL is obtained by the following equation. Polarizing voltage employed is the same as employed for mho element.
$\mathrm{VpI} \cos \left(\phi+\theta-90^{\circ}\right)>0$
where,
$\mathrm{Vp}=$ polarizing voltage
$\mathrm{I}=$ fault current
$\phi=$ lagging angle of I to Vp
$\theta$ = angle setting
A blinder applicable to the offset mho element for the power swing blocking also has the same characteristics as BFR.

The characteristics of BRR and BRL are expressed by the following equations.
For BRR

$$
\mathrm{X} \leq(\mathrm{R}+\mathrm{Rs}) \tan 75^{\circ}
$$

For BRL

$$
X \leq(R-R s) \tan \left(180^{\circ}-\theta\right)
$$

where,
$\mathrm{R}=$ resistance component of measured impedance
X = reactance component of measured impedance
Rs = reach setting
The reach settings of BFR and BRR are made on the R-axis. The BRL setting is interlinked with the BRR setting.

If the minimum load impedance is known, then assuming a worst case load angle of $30^{\circ}$ and a margin of $80 \%$, then the following equation can be used to calculate the blinder element resistive settings:

$$
\mathrm{R}_{\text {set }}<0.8 \times \mathrm{Z}_{\mathrm{L} \min } \times\left(\cos 30-\frac{\sin 30}{\tan 75}\right)
$$

## Directional element

The directional element is used for the quadrilateral four zone characteristics.


Figure 2.5.1.10 Directional Element
The characteristic of the directional element is obtained by the following equation.

$$
\mathrm{I} \cdot \mathrm{Vp} \cos (\theta-\phi) \geq 0
$$

where,

$$
\begin{aligned}
& I=\text { fault current } \\
& \text { Vp = polarizing voltage } \\
& \phi=\text { lagging angle of } \mathrm{I} \text { to } \mathrm{Vp} \\
& \theta=\text { directional angle setting }
\end{aligned}
$$

The polarizing voltage V p is the same one as employed in the mho element.
For B-to-C-phase phase fault element

$$
\mathrm{V}_{\mathrm{pbc}}=\sqrt{3}\left(\mathrm{~V}_{\mathrm{a}}-\mathrm{V}_{0}\right) \angle-90^{\circ}+\mathrm{V}_{\mathrm{bc}}
$$

For an A-phase earth fault element

$$
\mathrm{V}_{\mathrm{pa}}=\sqrt{3}\left(\mathrm{~V}_{\mathrm{a}}-\mathrm{V}_{0}\right)+\mathrm{V}_{\mathrm{bc}} \angle 90^{\circ}
$$

where,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=\mathrm{A} \text {-phase voltage } \\
& \mathrm{V}_{0}=\text { zero-sequence voltage } \\
& \mathrm{V}_{\mathrm{bc}}=\mathrm{B} \text {-to-C-phase voltage }
\end{aligned}
$$

The polarizing voltage for the phase fault element has a memory action for the close-up three-phase fault. $\mathrm{V}_{\mathrm{a}}$ and $\mathrm{V}_{\mathrm{bc}}$ mentioned above are the memorized pre-fault voltages. This memory is retained for two cycles after a fault occurs. The polarizing voltage for the earth fault element has no memory action.
When a three-phase fault occurs within zone 1 , the phase fault element for zone 1 is modified to an offset characteristic as shown in Figure 2.5.1.11. This, together with voltage memory action, enables zone 1 to perform tripping with a time delay as well as instantaneous tripping for the close-up three-phase fault.
The Z1X, Z2, ZF and Z3 do not have the modifying function mentioned above.


Figure 2.5.1.11 Quadrilateral characteristic

## Offset directional element

The offset directional element is used only in Z4 for phase faults in the quadrilateral four zone characteristics.


Figure 2.5.1.12 Offset Directional Element
The characteristic of the offset directional element is obtained by the following equation.

$$
\mathrm{X}+\mathrm{R} \tan \theta \leqq \mathrm{Z}_{\mathrm{B}}
$$

where,
$\mathrm{X}=$ reactance component of measured impedance
$\mathrm{R}=$ resistance component of measured impedance
$\theta=$ directional angle setting (interlinked with directional element angle setting)
$\mathrm{Z}_{\mathrm{B}}=$ offset reach setting (fixed to $1.5 \Omega$ in 5 A rating and $7.5 \Omega$ in 1 A rating)

### 2.5.2 Phase Selection Element UVC

The phase selection element has the undervoltage characteristic shown in Figure 2.5.2.1 and is used to select a faulty phase in case of a single-phase-to-earth fault.


Figure 2.5.2.1 Phase Selection Element
The characteristic is obtained by a combination of the equations below. If equation (1) or equation (2), or both equations (3) and (4) are established, the UVC operates.

$$
\begin{align*}
& |\mathrm{V}| \leq \mathrm{Vs}  \tag{1}\\
& |\mathrm{~V}-\mathrm{IZs}| \leq \mathrm{Vs}  \tag{2}\\
& -\mathrm{Vs} \leq \mathrm{V} \sin \theta \leq \mathrm{Vs}  \tag{3}\\
& 0 \leq \mathrm{V} \cos \theta \leq|\mathrm{IZs}| \tag{4}
\end{align*}
$$

where,
$\mathrm{V}=$ fault voltage
I = fault current
$\theta=$ angle difference between V and IZs
$\mathrm{Zs}=$ impedance setting
Vs = undervoltage setting
When the value and angle of Zs are set to those similar to the impedance of the protected line, the phase selection element will detect all single-phase earth faults that have occurred on the protected line even with a strong source and the voltage drop is small.
As a result of current compensation, the operating zone expands only in the direction leading the current by the line impedance angle. Therefore, the effect of current compensation is very small under load conditions where the current and voltage have almost the same phase angle.

### 2.5.3 Directional Earth Fault Elements DEFF and DEFR

There are two types of directional earth fault element, the forward looking element (DEFF) and reverse looking element (DEFR). Their characteristics are shown in Figure 2.5.3.1.
Both the DEFF and DEFR use a residual voltage as their polarizing voltage and determine the fault direction based on the phase relationship between the residual current and polarizing voltage.


Figure 2.5.3.1 Directional Earth Fault Element
The operation decision is made using the following equation.
DEFF

$$
3 \mathrm{I}_{0} \cdot \cos (\phi-\theta) \geq \mathrm{I}_{\mathrm{Sf}}
$$

$$
3 \mathrm{~V}_{0} \geq \mathrm{V}_{\mathrm{sf}}
$$

DEFR
$3 \mathrm{I}_{0} \cos \left(\phi-\theta-180^{\circ}\right) \geq \mathrm{I}_{\mathrm{Sr}}$
$3 \mathrm{~V}_{0} \geq \mathrm{V}_{\mathrm{Sr}}$
where,
$3 \mathrm{I}_{0}=$ residual current
$3 \mathrm{~V}_{0}=$ residual voltage
$-3 \mathrm{~V}_{0}=$ polarizing voltage
$\phi=$ lagging angle of $\left(3 \mathrm{I}_{0}\right)$ to $\left(-3 \mathrm{~V}_{0}\right)$
$\theta=$ characteristic angle setting (lagging to polarizing voltage)
$\mathrm{I}_{\mathrm{Sf}}, \mathrm{I}_{\mathrm{Sr}}=$ current setting
$\mathrm{V}_{\mathrm{Sf}}, \mathrm{V}_{\mathrm{Sr}}=$ voltage setting

### 2.5.4 Inverse Definite Minimum Time (IDMT) OC, EF, DEF Elements

As shown in Figure 2.5.4.1, the IDMT element has one long time inverse characteristic and three inverse time characteristics in conformity with IEC 60255-3. One of these characteristics can be selected.


Figure 2.5.4.1 IDMT Characteristics
These characteristics are expressed by the following equations.
Long Time Inverse

$$
\mathrm{t}=\mathrm{T} \times \frac{120}{(\mathrm{I} / \mathrm{ss})-1}
$$

Standard Inverse

$$
\mathrm{t}=\mathrm{T} \times \frac{0.14}{(\mathrm{I} / \mathrm{Is})^{0.22}-1}
$$

Very Inverse

$$
\mathrm{t}=\mathrm{T} \times \frac{13.5}{(\mathrm{I} / \mathrm{Is})-1}
$$

Extremely Inverse

$$
\mathrm{t}=\mathrm{T} \times \frac{80}{(\mathrm{I} / \mathrm{Is})^{2}-1}
$$

where,
$\mathrm{t}=$ operating time
I = fault current
Is = current setting
$\mathrm{T}=$ time multiplier setting

## Definite time reset

The definite time resetting characteristic is provided.
If the delay period is set to instantaneous (TOCIR, TEFIR, TDEFR or TDERR=0.0s), then no intentional delay is added. As soon as the energising current falls below the reset threshold, the element returns to its reset condition.

If the delay period is set to some value in seconds, then an intentional delay is added to the reset period. If the energising current exceeds the setting for a transient period without causing tripping, then resetting is delayed for a user-definable period. When the energising current falls below the reset threshold, the integral state (the point towards operation that it has travelled) of the timing function (IDMT) is held for that period.

This does not apply following a trip operation, in which case resetting is always instantaneous.

### 2.5.5 Out-of-Step Element OST

The out-of-step element used for out-of-step tripping contains two impedance measuring elements with quadrilateral characteristics, ZM and ZN. Figure 2.5.5.1 shows their characteristics. The quadrilateral characteristic of ZM is formed by the reactance lines parallel to the R-axis and the ohm lines with a leading angle of $75^{\circ}$ to the R-axis.

The characteristics of ZN can be obtained by shifting ZM in the -R -axis direction by (OSTR1-OSTR2).


Figure 2.5.5.1 Out-of-Step Element

Operation of the impedance measuring element Z 1 is expressed by the following equations.
-OSTXB $\leq \mathrm{X} \leq$ OSTXF
$(\mathrm{R}-\mathrm{OSTR} 1) \tan 75^{\circ} \leq \mathrm{X} \leq(\mathrm{R}-$ OSTR2 $) \tan 75^{\circ}$
where,
X = measured reactance
$\mathrm{R}=$ measured resistance
OSTXB, OSTXF = reactive reach setting
OSTR1, OSTR2 = resistive reach setting

### 2.5.6 Voltage and Synchronism Check Elements OVL, UVL, OVB, UVB, and SYN

The voltage check and synchronism check elements are used for autoreclose.
The output of the voltage check element is used to check whether the line and busbar are dead or live. The voltage check element has undervoltage detectors UVL and UVB, and overvoltage detectors OVL and OVB for the line voltage and busbar voltage check. The under voltage detector checks that the line or busbar is dead while the overvoltage detector checks that it is live. These detectors function in the same manner as other level detectors described later.

Figure 2.5.6.1 shows the characteristics of the synchronism check element used for the autoreclose if the line and busbar are live.

The synchronism check element operates if both the voltage difference and phase angle difference are within their setting values.


Figure 2.5.6.1 Synchronism Check Element

For the element SYN1, the voltage difference is checked by the following equations.

$$
\begin{aligned}
& \mathrm{SY1OV} \leq \mathrm{VB} \leq \mathrm{SY} 1 \mathrm{UV} \\
& \mathrm{SY1OV} \leq \mathrm{VL} \leq \mathrm{SY} 1 \mathrm{UV}
\end{aligned}
$$

where,

> VB = busbar voltage
$\mathrm{VL}=$ line voltage
SY1OV = lower voltage setting

SY1UV = upper voltage setting
The phase difference is checked by the following equations.
VB $\cdot \mathrm{VL} \cos \theta \geq 0$
$\mathrm{VB} \cdot \mathrm{VL} \sin (\mathrm{SY} 1 \theta \mathrm{~s}) \geq \mathrm{VB} \cdot \mathrm{VL} \sin \theta$
where,
$\theta=$ phase difference between VB and VL
$\mathrm{SY} 1 \theta \mathrm{~s}=$ phase difference setting
A detected slip cycle is determined by the following equation:

$$
\mathrm{f}=\frac{\theta \mathrm{s}}{180^{\circ} \times \mathrm{TSYN}}
$$

where,
$\mathrm{f}=$ slip cycle
TSYN = synchronism check timer setting

### 2.5.7 Current Change Detection Elements OCD and OCDP

As shown in Figure 2.5.7.1, the current change detection element operates if the vectorial difference between currents $\mathrm{I}_{\mathrm{M}}$ and $\mathrm{I}_{\mathrm{N}}$ observed one cycle apart is larger than the fixed setting. Therefore, the operating sensitivity of this element is not affected by the quiescent load current and can detect a fault current with high sensitivity.
The OCD element is used for the VT failure supervision circuit and the OCDP element used for the fault detection during a power swing.


Figure 2.5.7.1 Current Change Detection

The operation decision is made by the following equation.

$$
\left|\mathrm{I}_{\mathrm{M}}-\mathrm{I}_{\mathrm{N}}\right|>\mathrm{Is}
$$

where,
$\mathrm{I}_{\mathrm{M}}=$ present current
$\mathrm{I}_{\mathrm{N}}=$ current one cycle before
$\mathrm{I}_{\mathrm{S}}=$ fixed setting ( $10 \%$ of rated current)

### 2.5.8 Negative Sequence Directional Elements DOCNF and DOCNR

There are two types of negative sequence directional element, the forward looking element (DOCNF) and reverse looking element (DOCNR). They are used to detect faults during a power swing. Their characteristics are shown in Figure 2.5.8.1.

Both the DOCNF and DOCNR use negative sequence current and voltage and determine a fault direction based on the phase relationship between the current and voltage.
The operation decision is made using the following equation.

$$
\begin{aligned}
& \text { DOCNF } \\
& \quad Z_{k} I_{2}{ }^{2}-V_{2} \mathrm{I}_{2} \sin \phi \geq \mathrm{V}_{2 \mathrm{k}}\left|\mathrm{I}_{2}\right| \\
& \quad \mathrm{I}_{2} \geq \mathrm{I}_{2 \mathrm{k}} \\
& \text { DOCNR } \\
& \quad \mathrm{Z}_{\mathrm{k}} \mathrm{I}_{2}{ }^{2}+\mathrm{V}_{2} \mathrm{I}_{2} \sin \phi \geq \mathrm{V}_{2 \mathrm{k}}\left|\mathrm{I}_{2}\right| \\
& \mathrm{I}_{2} \geq \mathrm{I}_{2 \mathrm{k}}
\end{aligned}
$$

where,
$\mathrm{I}_{2}=$ negative sequence current
$\mathrm{V}_{2}=$ negative sequence voltage
$\phi=$ lagging angle of $\mathrm{I}_{2}$ to $\mathrm{V}_{2}$
$\mathrm{I}_{2 \mathrm{k}}=0.267 \times$ rated current (fixed)
$\mathrm{V}_{2 \mathrm{k}}=6 \mathrm{~V}$ (fixed)
$\mathrm{Z}_{\mathrm{k}}=2.5$ ohm ( 1 A rating, fixed) / 0.5 ohm ( 5 A rating, fixed)


Figure 2.5.8.1 Negative Sequence Directional Element

### 2.5.9 Level Detectors

In addition to those explained above, GRZ100 has overcurrent, overvoltage, and undervoltage level detectors described below.
All level detectors except for undervoltage level detectors UVFS and UVFG, and overcurrent level detector OCBF which require high-speed operation, operate in a similar manner.
That is, the operation decision is made by comparing the current or voltage amplitude with the relevant setting.

## Overcurrent detector OCH and OC

This detector measures A, B, and C phase currents and its sensitivity can be set. The detector OCH is commonly used for the SOTF and stub protection. The detector OC is commonly used for backup protection.

## Residual overcurrent detector EF and EFL

This detector measures a residual current and its sensitivity can be set. The EF is used for backup protection. The EFL is used for the earth fault detection of distance protection and VT failure supervision.

## Overvoltage detector OVS1/OVS2/OVG1/OVG2 and undervoltage detector UVS1/UVS2/UVG1/UVG2

The OVS* and UVS* measure a phase-to-phase voltage while the OVG* and UVG* measure a phase-to-earth voltage. These detectors are used for overvoltage and undervoltage protection as described in Section 2.4.9.

## Residual overvoltage detector OVG

This detector measures a residual voltage and its sensitivity is fixed at 20 V . This detector is used for supervision of VT failure.

## Undervoltage detector UVLS and UVLG

The UVLS measures a phase-to-phase voltage while the UVLG measures a phase-to-earth voltage. Their sensitivity can be set. These detectors are used for weak infeed tripping.

## Undervoltage detector UVFS and UVFG

The UVFS measures a phase-to-phase voltage while the UVFG measures a phase-to-earth voltage. Their sensitivity can be set. These detectors are commonly used for the VT failure supervision and signal channel test.

## Undervoltage detector UVPWI

The UVPWI measures a phase-to-earth voltage and its sensitivity is 30 V fixed. The UVPWI is used for countermeasures for overreaching of a leading-phase distance element at positive phase weak infeed condition.

## Broken conductor detector BCD

The BCD measures the ratio of negative to positive phase sequence currents ( $\mathrm{I}_{2 \mathrm{~F}} / \mathrm{I}_{1 \mathrm{~F}}$ ).

## Overcurrent detector OCBF

This detector measures A, B, and C phase currents and its sensitivity can be set. This detector is used for breaker failure protection and resets when the current falls below $80 \%$ of the operating value.

### 2.5.10 Fault Detector Elements

The fault detector incorporates the following six fault detection elements.

## Multi-level overcurrent element OCMF

The OCMF is used as a fault detector for the out-of-step protection.
The current fluctuates in an out-of-step situation. To detect this current securely, the OCMF has seven current level detectors. Each current level detector LD1 to LD7 operates when the current exceeds each setting L1 to L7 and resets when the current falls below $80 \%$ of the setting. The settings are fixed as shown in Table 2.5.10.1 as a ratio to the rated current In.

Table 2.5.10.1 Level Detector Settings

| Detector | Operate | Reset |
| :--- | :--- | :--- |
| LD1 | $0.10 \times \mathrm{ln}$ | $0.08 \times \mathrm{ln}$ |
| LD2 | $0.16 \times \mathrm{ln}$ | $0.13 \times \mathrm{ln}$ |
| LD3 | $0.26 \times \mathrm{ln}$ | $0.21 \times \mathrm{ln}$ |
| LD4 | $0.41 \times \mathrm{ln}$ | $0.33 \times \mathrm{ln}$ |
| LD5 | $0.66 \times \mathrm{ln}$ | $0.53 \times \mathrm{ln}$ |
| LD6 | $1.05 \times \mathrm{ln}$ | $0.84 \times \mathrm{ln}$ |
| LD7 | $1.68 \times \mathrm{ln}$ | $1.34 \times \mathrm{ln}$ |
| (In: Rated current) |  |  |

Figure 2.5.10.1 shows the characteristics of the OCMF element.


Figure 2.5.10.1 OCMF Element

Figure 2.5.10.2 shows the OCMF output logic. The OCMF operates and keeps operating for five seconds when any of the level detectors operate and reset without time delay when all of the level detectors reset.

The level detection is performed for phase-to-phase current on A- and B-phase.


Figure 2.5.10.2 OCMF Output Logic

## Current change detection element OCDF

The characteristic of the OCDF is same as the OCD element, see Section 2.5.7.

## Undervoltage change detection element UVDF

The UVDF operates if a voltage drops by 7 percent compared to that of one cycle before. Therefore, the operating sensitivity of this element is related not to the rated voltage but to the running voltage.

The following are the level detectors and the operation decision is made by comparing the current or voltage amplitude with the relevant setting.

## Earth fault overcurrent element EFF

The EFF measures the residual current and its detecting level is fixed at $10 \%$ of the rated current.

## Undervoltage element UVSF and UVGF

The UVSF measures a phase-to-phase voltage while the UVGF measures a phase-to-earth voltage. Their detecting level is fixed at 80 V and 46 V , respectively. However, in case of fault with more than 80 V , the undervoltage change detection element UVDF detects the fault.

### 2.6 Autoreclose

### 2.6.1 Application

Most faults that occur on high voltage or extra-high voltage overhead lines are transient faults caused by lightning. If a transient fault occurs, the circuit breaker is tripped to isolate the fault, and then reclosed following a time delay to ensure that the gases caused by the fault arc have de-ionized. This makes it possible to recover power transmission.

The time between clearing the fault and reclosing the circuit breaker, that is, the dead time, should be made as short as possible to keep the power system stable. From the viewpoint of de-ionization of the fault arc, the fault arc is de-ionized more thoroughly as the period of this dead time is extended. The de-ionization commences when the circuit breakers for all terminals of the line are tripped. Therefore, the dead time can be set at its minimum level if all terminals of the line are tripped at the same time.
Autoreclose of the GRZ100 is started by any of the following protections that ensure high-speed protection of all terminals.

- command protection
- zone 1 extension protection
- specific zone 1 tripping

The GRZ100 provides two autoreclose systems, single-shot autoreclose and multi-shot autoreclose.

## Single-shot autoreclose

Three types of single-shot autoreclose modes are provided: single-phase autoreclose, three-phase autoreclose, and single- and three-phase autoreclose. An optimal mode is selected form among "Off (disable)" "SPAR", "TPAR", "SPAR\&TPAR", "EXT1P" and "EXT3P" by the autoreclose mode selection switch [ARC-M] or PLC signals (No. 1683 - 1688). The PLC signals have priority over the switch [ARC-M] setting. In any case, autoreclose is performed only once. If the fault state still continues after reclosing, three-phases final tripping is activated.

Single-phase autoreclose:
In this mode, only the faulty phase is tripped, and then reclosed if a single-phase earth fault occurs. In the case of a multi-phase fault, three phases are tripped, but reclosing is not made. Since power can be transmitted through healthy phases even during dead time, this mode is convenient for maintaining power system stablility. On the other hand, the capacitive coupling effect between the healthy phase and faulty phase may cause a longer de-ionization time when compared to a three-phase autoreclose. As a result, a longer dead time is required.
It is essential to correctly determine a faulty phase. The GRZ100 is equipped with an undervoltage element with current compensation to correctly determine the faulty phase(s).
For single-phase autoreclose, each phase of the circuit breaker must be segregated.
This reclosing mode is simply expressed as "SPAR" in the following descriptions.
Three-phase autoreclose:
In this autoreclose mode, three phases are tripped, and then reclosed regardless of the fault mode, whether single-phase fault or multi-phase fault. A shorter dead time can be set in this mode when compared to the single-phase autoreclose. For the three-phase autoreclose, synchronism check and voltage check between the busbar and the line are required.
This reclosing mode is simply expressed as "TPAR" in the following descriptions.

Single- and three-phase autoreclose:
In this autoreclose mode, single-phase tripping and reclosing are performed if a single-phase fault occurs, while three-phase tripping and reclosing are performed if a multi-phase fault occurs.

This reclosing mode is simply expressed as "SPAR \& TPAR" in the following descriptions.
Shingle-shot autoreclose can be applied to one-breaker reclosing and two-breaker reclosing in the one-and-a-half breaker busbar system.

## Multi-shot autoreclose

In the multi-shot autoreclose, any of two- to four-shot reclosing can be selected. In any case, the first shot is selected from three types of autoreclose modes as described in the above single-shot autoreclose. All successive shots (up to three times), which are applied if the first shot fails, are three-phase tripping and reclosing.

Multi-shot autoreclose cannot be applied to two-breaker reclosing in the one-and-a-half breaker busbar system..

The autoreclose can also be activated from an external line protection. At this time, all autoreclose modes described above are effective.

If a fault occurs under the following conditions, three-phase final tripping is performed and autoreclose is blocked.

- Reclosing block signal is received from external unit locally or remotely.
- Throughout the reclaim time

For evolving faults that occurred during the dead time between single-phase tripping and reclosing, "SPAR \& TPAR" functions as follows.
For evolving faults that occurred within the period of time set from the first fault, the reclosing mode enters the three-phase autoreclose mode. At this time, the total dead time becomes the dead time for three-phase autoreclose added to the dead time for single-phase autoreclose which has been used until the evolving fault occurs.
For evolving faults occurred after the set time, three-phase final tripping is performed, and reclosing is not performed.

If an evolving fault occurs when "SPAR" is selected, three-phase final tripping is performed, and reclosing is not performed.

### 2.6.2 Scheme Logic

### 2.6.2.1 One-breaker Autoreclose

Figure 2.6.2.1 shows the simplified scheme logic for the single-shot autoreclose. Autoreclose for a further fault incident is available when the circuit breaker is closed and ready for autoreclose (CB1 READY=1), the autoreclose mode by the switch [ARC-M] or the PLC is set to "SPAR", "TPAR" or "SPAR \& TPAR" and the on-delay timer TRDY1 is picked up. The TRDY1 is used to determine the reclaim time.


Figure 2.6.2.1 Autoreclose Scheme Logic

If the autoreclose is ready, the internal tripping signal TRIP-A, B, C or external tripping signal EXT_TRIP-A, B, C for each phase of the circuit breaker activates the autoreclose. These tripping signals are output from the command protection, zone 1 extension protection, and specific zone 1 tripping. Whether or not the external trip signals are used to activate the reclosing is selected by the scheme switch [ARC-EXT].

Once this autoreclose is activated, it is maintained by a flip-flop circuit until one reclosing cycle is completed.

Autoreclose is not activated in the following conditions.

- When the tripping is output by the directional earth fault command protection (CT-DG $=1$ ) and the autoreclose selection switch [ARC-DEF] is set to "OFF".
- When the tripping is performed by the out-of-step protection (OSTT =1), stub fault protection $(S T U B=1)$, switch-onto-fault protection $(S O T F=1)$ breaker failure protection (RETRIP=1) or
time-delayed backup protection (BUP =1).
- When an autoreclose prohibiting binary input signal is applied (ARC_BLOCK =1)

If autoreclosing is not ready, a three-phase tripping command M-TRIP is output for all tripping modes. At this time, autoreclose is not activated.

## Autoreclose for single-phase fault

If the autoreclose mode is set to "SPAR" or "SPAR \& TPAR", single-phase tripping is performed. The dead time counter TSPR for single-phase reclosing is started by any of the tripping signals TRIP-A to C. After the dead time has elapsed, reclosing command ARC is output.
If the autoreclose mode is set to "TPAR", three-phase tripping is performed and the dead time counter TTPR1 for three-phase reclosing is started. After the dead time has elapsed, reclosing command ARC is output based on the operating conditions of the voltage and synchronism check elements output signal SYN-OP.
If the autoreclose mode is set to "Disable"("Off"), three-phase tripping is performed and autoreclose is not started. Even though the autoreclose is started, the autoreclose is reset if all phases of the CB are closing.

## Autoreclose for multi-phase fault

Regardless of the autoreclose mode, three-phase tripping is performed and TRIP-A to C are activated. If the autoreclose mode is set to "TPAR" or "SPAR \& TPAR", the dead time counter TTPR1 for three-phase reclosing is started. After the dead time has elapsed, reclosing command ARC is output based on the operating conditions of the voltage and synchronism check elements output signal SYN-OP. (The SYN-OP is assigned by the PLC as a default setting.)
If the autoreclose mode is set to "SPAR" or "Disable"("Off"), autoreclose is not activated.
If the operating conditions of the voltage and synchronism check elements are not satisfied during three-phase reclosing, TRR is then picked up and reclosing is reset.

## Autoreclose for evolving fault

Figure 2.6.2.2 shows the sequence diagram of autoreclose for an evolving fault. If single-phase tripping is performed, the evolving fault detection timer TEVLV is started at the same time as the TSPR is started. If no evolving faults occur, single-phase reclosing is performed when TSPR is picked up.


Figure 2.6.2.2 Autoreclose for Evolving Fault

As shown in the figure, if an evolving fault occurs before TEVLV is picked up, three-phase tripping is performed. If this occurs, TSPR and TEVLV are reset, and TTPR1 is now started.
After TTPR1 is picked up, three-phase reclosing is performed based on the status of the voltage and synchronism check elements output signal SYN-OP. If an evolving fault occurs after the TEVLV has picked up, autoreclose is reset and reclosing is not performed.

## Voltage and synchronism check

There are four voltage modes as shown below when all three phases of the circuit breaker are opened. The voltage and synchronism check is applicable to voltage modes 1 to 3 and controls the energizing process of the lines and busbars in the three-phase autoreclose mode.

| Voltage Mode | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| :--- | :--- | :--- | :--- | :--- |
| Busbar voltage $\left(\mathrm{V}_{\mathrm{B}}\right)$ | live | live | dead | dead |
| Line voltage $\left(\mathrm{V}_{\mathrm{L}}\right)$ | live | dead | live | dead |

The synchronism check is performed for voltage mode 1 while the voltage check is performed for voltage modes 2 and 3 .


Figure 2.6.2.3 Energizing Control Scheme
Figure 2.6.2.3 shows the energizing control scheme. The voltage and synchronism check output signal SYN-OP is generated when the following conditions have been established;

- Synchronism check element SYN1 operates and on-delay timer TSYN1 is picked up.
- Busbar overvoltage detector OVB and line undervoltage detector UVL1 operate, and on-delay timer TLBD1 is picked up. (This detects live bus and dead line condition.)
- Busbar undervoltage detector UVB and line overvoltage detector OVL1 operate, and on-delay timer TDBL1 is picked up. (This detects dead bus and live line condition.)

Using the scheme switch [VCHK], the energizing direction can be selected.

| Setting of [VCHK] | Energizing control |
| :--- | :--- |
| LB | Reclosed under "live bus and dead line" condition or with synchronism check |
| DB | Reclosed under "dead bus and live line" condition or with synchronism check |
| SY | Reclosed with synchronism check only. |
| OFF | Reclosed without voltage and synchronism check. |

When [VCHK] is set to "LB", the line is energized in the direction from the busbar to line under the "live bus and dead line" condition. When [VCHK] is set to "DB", the lines are energized in the direction from the line to busbar under the "dead bus and live line" condition.

When a synchronism check output exists, autoreclose is executed regardless of the position of the scheme switch.

When [VCHK] is set to "SY", a three-phase autoreclose is performed with synchronism check only.
When [VCHK] is set to "OFF", three-phase autoreclose is performed without voltage and synchronism check.

The voltage and synchronism check require a single-phase voltage from the busbar or line as a reference voltage. If the three-phase voltages that are used for the distance protection are supplied from the line voltage transformer, the reference voltage has to be supplied from the busbar voltage transformer. On the contrary, if the three-phase voltages that are used for the distance protection are supplied from the busbar voltage transformer, the reference voltage has to be supplied from the line voltage transformer.
Additionally, it is not necessary to fix the phase of the reference voltage.
The signal 3PLL shown in Figure 2.6.2.3 is output when all three phase voltages are live, and it is available by the [3PH-VT] = LINE setting.
To match the busbar voltage and line voltage for the voltage and synchronism check option mentioned above, the GRZ100 has the following three switches and VT ratio settings as shown in Figure 2.6.2.4.
[VTPH-SEL]: This switch is used to match the voltage phases. If the A-phase voltage or A-phase to B-phase voltage is used as a reference voltage, "A" is selected.
[VT-RATE]: This switch is used to match the magnitude and phase angle. "PH/G" is selected when the reference voltage is a single-phase voltage while " $\mathrm{PH} / \mathrm{PH}$ " is selected when it is a phase-to-phase voltage.
[3PH-VT]: "Bus" is selected when the three-phase voltages are busbar voltages while "Line" is selected when they are the line voltages.
VT: This setting is set to the VT ratio of busbar or line voltage for distance protection
VTs1: $\quad$ This setting is set to the VT ratio of line or busbar reference voltage for voltage check and synchronism check.


Figure 2.6.2.4 Matching of Busbar Voltage and Line Voltage

## Autoreclosing requirement

Using PLC function, various reclose requirements can be designed. In Figure 2.6.2.1, a reclose requirement for "SPAR", "TPAR" or "SPAR\&TPAR" can be respectively assigned to the following signals by PLC:

| "SPAR": | [SPR.L-REQ] |
| :--- | :---: |
| "TPAR": | [TPR.L-REQ] |
| "SPAR\&TPAR": | $[S P R . L-R E Q],[T P R . L-R E Q] ~$ |

The default setting is as follows:

| Reclose requirement | Default setting | Remarks |
| :--- | :--- | :--- |
| "SPAR" | $[$ SPR.L-REQ $=$ CONSTANT_1 | No condition |
| "TPAR" | $[$ TPR.L-REQ $]=$ SYP-ON | Voltage and synchronism check |

## Permanent fault

When reclose-onto-a-fault is activated when a permanent fault exists, three-phase final tripping is performed. However, this operation is performed only in the single-shot autoreclose mode. In the multi-shot autoreclose mode, reclosing is retried as described below.

## Multi-shot autoreclose

In multi-shot autoreclose, low-speed autoreclose is executed up to three times after high-speed autoreclose fails. The first shot is high-speed autoreclose that functions in the same manner as described for single-shot autoreclose. Figure 2.6.2.5 shows the simplified scheme logic for the low-speed autoreclose of the second to fourth shot.
The multi-shot mode, two to four shots, is set with the scheme switch [ARC-SM].


Figure 2.6.2.5 Scheme Logic for Multi-Shot Autoreclose

In low-speed autoreclose, the dead time counter TS2 for the second shot is activated if high-speed autoreclose is performed ( $\operatorname{ARC}=1$ ), but tripping occurs again (TP = 1). Second shot autoreclose is performed only when the voltage and synchronism check element operates (SYN-OP =1) after a period of time set on TS2 has elapsed. At this time, outputs of the step counter are: SP1 $=1$, SP2 $=$ 0 , and SP3 $=0$.

Autoreclose is completed at this step if the two-shot mode is selected for the multi-shot mode. Therefore, the tripping following the "reclose-onto-a-fault" becomes the final tripping (FT1 = 1).

If the voltage and synchronism check element does not operate within the period of time set on the timer TS2R which is started at the same time as TS2 is started, the multi-shot autoreclose is cancelled (MAR-FT = 1).

When the three shots mode is selected for the multi-shot mode, autoreclose is further retried after the above tripping occurs. At this time, the TS3 and TS3R are started. The third shot autoreclose is performed only when the voltage and synchronism check element operates after the period of time set on the TS3 has elapsed. At this time, outputs of the step counter are: SP1 $=0, \mathrm{SP} 2=1$, and SP3 $=0$.

The three shot mode of autoreclose is then completed. Therefore, the tripping following the "reclose-onto-a-fault" becomes the final tripping (FT2 = 1).
If the voltage and synchronism check element does not function within the period of time set on the TS3R, multi-shot autoreclose is cancelled.
When four-shot autoreclose is selected, low-speed autoreclose is further retried once again for tripping that occurs after the "reclose-onto-a-fault". This functions in the same manner as the three-shot autoreclose.

## Use of external automatic reclosing equipment

To use external automatic reclosing equipment instead of the built-in autoreclose function of the GRZ100, the autoreclose mode is set to "EXT1P" or "EXT3P". When "EXT1P" is selected, the GRZ100 performs single-phase tripping for a single-phase fault and three-phase tripping for a multi-phase fault. When "EXT3P" is selected, three-phase tripping is performed for all faults. At the same time, one binary signal for individual phase is output as an autoreclose start signal.

### 2.6.2.2Two-breaker autoreclose

As shown in Figure 2.6.2.6, in the one-and-a-half breaker busbar arrangement, two circuit breakers, the busbar breaker and the center breaker, must be reclosed. The GRZ100 series 300s and 500s are provided with the two-breaker autoreclose scheme.

Multi-shot autoreclose is not applicable to two-breaker autoreclose; the scheme switch [ARC-SM] is set to "OFF" for a default setting.

Autoreclose is not activated when an autoreclose prohibiting binary input signal is applied at the local or remote terminal.

- ARC_BLOCK signal common for leader and follower CB
- ARC_BLOCK1 signal for leader CB
- ARC_BLOCK2 signal for follower CB

The autoreclose scheme is different depending on the reclosing mode.


Figure 2.6.2.6 One-and-a-Half Breaker Busbar Arrangement

## Single-phase autoreclose and single- and three-phase autoreclose

The breaker(s) to be reclosed and the reclosing order can be set by the scheme switch [ARC-CB] as follows:

## Setting of [ARC-CB] Autoreclose mode

| ONE | (Set when applied to a one-breaker system) |
| :--- | :--- |
| O1 | Only the busbar breaker is reclosed and the center breaker is subjected to final tripping. |
| O2 | Only the center breaker is reclosed and the busbar breaker is subjected to final tripping. |
| L1 | Single-phase autoreclose: Both breakers are reclosed simultaneously. $\left({ }^{*}\right.$ 1) <br> Three-phase autoreclose: The busbar breaker is reclosed first. If successful, then the center <br> breaker is reclosed. |

Setting of [ARC-CB] Autoreclose mode

| L2 | Single-phase autoreclose: Both breakers are reclosed simultaneously.(*1) |
| :--- | :--- |
| Three-phase autoreclose: The center breaker is reclosed first. If successful, then the busbar |  |
| breaker is reclosed. |  |

Note : "ONE" is set only when the relay is applied to a one-breaker system. Trip and reclose commands are output only for CB1(bus CB).
(*1): Sequential autoreclose can be applied by changing of the dead timer setting or the PLC setting.

The autoreclose scheme logic for the two circuit breakers are independent of each other and are almost the same. The autoreclose scheme logic of the circuit breaker to be reclosed first (lead breaker) is the same as that shown in Figure 2.6.2.1. The scheme logic of the circuit breaker to be reclosed later (follower breaker) is different from that shown in Figure 2.6.2.7 in that the condition that a reclosing command is output to the leader breaker is added to the start of the dead time counter of the three-phase autoreclose.


Figure 2.6.2.7 Autoreclose Scheme for Follower Breaker

The start of the dead time counter can be configured by the PLC. In the default setting, the single-phase autoreclose is started instantaneously after tripping, and the three-phase autoreclose is started after the ARC-SET condition is satisfied.
The "ARC-SET" is a scheme signal whose logical level becomes 1 when a lead breaker's autoreclose command is output.

In default setting, therefore, the dead time of the follower breaker is as follows:

- Three-phase autoreclose: equal to the sum of the dead time setting of the two breakers.
(TTPR1 + TTPR2)
- Single-phase autoreclose: TSPR2

However, the dead time can be set that of the leader breaker by the PLC setting "RF.ST-REQ". The shortening of the dead time can be also applied when the leader breaker is final-tripped because it is no ready.

## Autoreclose start requirement

Using PLC function, various autoreclose start requirements can be designed. In Figure 2.6.2.7, a reclose start requirement for "SPAR", "TPAR" or "SPAR\&TPAR" can be respectively assigned to the following signals by PLC:

```
"SPAR":
                                    [SPR.F-ST.REQ]
"TPAR": [TPR.F-ST.REQ]
"SPAR&TPAR": [SPR.F-ST.REQ], [TPR.F-ST.REQ]
```

The default setting for the follower CB autoreclose start requirement is as follows:

| Reclose start <br> requirement | Default setting | Remarks |
| :--- | :--- | :--- |
| "SPAR" | [SPR.F-ST.REQ] = CONSTANT_1 | No condition |
| "TPAR" | [TPR.F-ST.REQ] = ARC-SET | ARC-SET becomes "1" when the leader <br>  |

## Autoreclose requirement

The autoreclose requirement can be designed by assigning a reclose requirement to the signals [SPR.F-ST.REQ] and [TPR.F-ST.REQ] same as above.
The default setting for the follower CB autoreclose requirement is as follows:

| Reclose requirement | Default setting | Remarks |
| :--- | :--- | :--- |
| "SPAR" | $[$ SPR.F-ST.REQ] = CONSTANT_1 | No condition |
| "TPAR" | $[T P R . F-S T . R E Q]=$ SYP-ON | Voltage and synchronism check |

Others
If the autoreclose start requirement is designed such as starting the follower CB in no-ready condition of the leader CB, it is assigned to the signal [R.F-ST.REQ].

By assigning the autoreclose start requirement to the signal [R.F-ST.REQ], both the leader CB and the follower CB are set the same dead time. The reclose requirement is assigned to the signals [SPR.F2-ST.REQ] and [TPR.F2-ST.REQ].

The default setting for the follower CB is as follows:

| Requirement | Default setting |  |
| :--- | :--- | :--- |
| Reclose requirement | $[$ R.F-ST.REQ $]=$ CONSTANT_0 | (No used) |
|  |  |  |
| Reclose start requirement |  |  |
| "SPAR" | $[$ SPR.F2-REQ $]=$ CONSTANT_0 | (No used) |
| "TPAR" | $[$ TPR.F2-REQ $]=$ CONSTANT_0 | (No used) |

Figure 2.6.2.8 shows the energizing control scheme of the two circuit breakers in the three-phase autoreclose. OVB and UVB are the overvoltage and undervoltage detectors of busbar voltage $V_{B}$ in Figure 2.6.2.6. OVL1 and UVL1 are likewise the overvoltage and undervoltage detectors of line voltage $\mathrm{V}_{\mathrm{L} 1}$.

OVL2 and UVL2 are likewise the overvoltage and undervoltage detectors of line voltage $\mathrm{V}_{\mathrm{L} 2}$.
$\mathrm{V}_{\mathrm{L} 2}$ in the center breaker is equivalent to the busbar voltage $\mathrm{V}_{\mathrm{B}}$ in the busbar breaker.
SYN1 and SYN2 are the synchronism check elements to check synchronization between the two sides of the busbar and center breakers, respectively.
TPARL-SET is a scheme signal whose logical level becomes 1 when a three-phase autoreclose command is output to the lead breaker. SYN-OP is a voltage and synchronism check output.


Note: [ARC-CB] is set to "ONE" only when the relay is applied to one-breaker system. Trip and reclose commands are output only for CB1(bus CB).

Figure 2.6.2.8 Energizing Control Scheme for Two Circuit Breakers

The voltage and synchronism check is performed as shown below according to the [ARC-CB] settings:

| Setting of [ARC-CB] | Voltage and synchronism check |
| :--- | :--- |
| ONE or O1 | A voltage and synchronism check is performed using voltages $\mathrm{V}_{\mathrm{B}}$ and $\mathrm{V}_{\mathrm{L} 1}$. |
| O2 | A voltage and synchronism check is performed using voltages $\mathrm{V}_{\mathrm{L} 1}$ and $\mathrm{V}_{\mathrm{L} 2}$. <br> L 1 |
| Since the logical level of TPARL-SET is 0 , a voltage and synchronism check is performed <br> for the busbar breaker using voltages $\mathrm{V}_{\mathrm{B}}$ and $\mathrm{V}_{\mathrm{L} 1}$. Then, the logical level of TPARL-SET <br> becomes 1 and a voltage and synchronism check is performed for the center breaker <br> using voltages $\mathrm{V}_{\mathrm{L} 1}$ and $\mathrm{V}_{\mathrm{L} 2}$ and a reclosing command is output to the center breaker. |  |
| A voltage and synchronism check is performed for the center breaker using voltages $\mathrm{V}_{\mathrm{L} 1}$ |  |
| and $\mathrm{V}_{\mathrm{L} 2}$. Then, the logical level of TPARL-SET becomes 1 and a voltage and synchronism |  |
| check is performed for the busbar breaker using voltages $\mathrm{V}_{\mathrm{B}}$ and $\mathrm{V}_{\mathrm{L} 1}$. |  |

Note : "ONE" is set only when the relay is applied to one-breaker system. Trip and reclose commands are output only for CB1(bus CB).

The energizing control for the two circuit breakers can be set by the scheme switch [VCHK] as follows:

| Setting of [VCHK] | Energizing control |
| :--- | :--- |
| LB1 | The lead breaker is reclosed under the "live bus and dead line" condition or with <br> synchronism check, and the follower breaker is reclosed with synchronism check only. |
| LB2 | The leader breaker is reclosed under the "live bus and dead line" condition or with <br> synchronism check, and the follower breaker is reclosed under the "dead bus and live line" <br> condition or with synchronism check. |
| DB | Both breakers are reclosed under the "dead bus and live line" condition or with <br> synchronism check. |
| SYN | Both breakers are reclosed with synchronism check only. <br> OFF |

The scheme switch [ARC-SUC] is used to check the autoreclose succeeds. If all three phase CB contacts have been closed within TSUC time after ARC shot output, it is judged that the autoreclose has succeeded (AS). If not, it is judged that the autoreclose has failed (AF), and becomes the final tripping (FT).

The relay provides the user configurable switch [UARCSW] with three-positions (P1, P2, P3) to be programmed by using PLC function. Any position can be selected. If this switch is not used for the PLC setting, it is invalid.

### 2.6.3 Setting

The setting elements necessary for the autoreclose and their setting ranges are shown in the table below.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| VT | $1-20000$ | 1 | 2000 | VT ratio for distance protection |
| VTs1 | $1-20000$ | 1 | 2000 | VT ratio for voltage and synchronism check |
| TSPR1 | $0.01-10.00 \mathrm{~s}$ | 0.01 s | 0.80 s | Dead time for single - phase autoreclose |
| TTPR1 | $0.01-100.00 \mathrm{~s}$ | 0.01 s | 0.60 s | Dead time for three - phase autoreclose |
| TRR | $0.01-100.00 \mathrm{~s}$ | 0.01 s | 2.00 s | Autoreclose reset time |
| TEVLV | $0.01-10.00 \mathrm{~s}$ | 0.01 s | 0.30 s | Dead time reset for evolving fault |
| TRDY1 | $5-300 \mathrm{~s}$ | 1 s | 60 s | Reclaim time |


| Element | Range | Step | Default | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| SYN1 |  |  |  | Synchronism check |
| SY1 $\theta$ | 5-75 ${ }^{\circ}$ | $1{ }^{\circ}$ | $30^{\circ}$ |  |
| SY1UV | 10-150 V | 1 V | 83 V |  |
| SY10V | 10-150 V | 1 V | 51 V |  |
| OVB | 10-150 V | 1 V | 51 V | Live bus check |
| UVB | 10-150 V | 1 V | 13 V | Dead bus check |
| OVL1 | 10-150 V | 1 V | 51 V | Live line check |
| UVL1 | 10-150 V | 1 V | 13 V | Dead line check |
| TSYN1 | $0.01-10.00 \mathrm{~s}$ | 0.01 s | 1.00 s | Synchronism check time |
| TLBD1 | $0.01-1.00 \mathrm{~s}$ | 0.01 s | 0.05 s | Voltage check time |
| TDBL1 | $0.01-1.00$ s | 0.01 s | 0.05 s | Voltage check time |
| T3PLL | $0.01-1.00 \mathrm{~s}$ | 0.01 s | 0.05 s | Three phase live line check |
| TW1 | $0.1-10.0$ s | 0.1 s | 0.2 s | Reclosing signal output time |
| TS2 | $5.0-300.0$ s | 0.1 s | 20.0 s | Second shot dead time |
| TS3 | 5.0-300.0 s | 0.1 s | 20.0 s | Third shot dead time |
| TS4 | 5.0-300.0 s | 0.1 s | 20.0 s | Fourth shot dead time |
| TS2R | 5.0-300.0 s | 0.1 s | 30.0 s | Second shot reset time |
| TS3R | 5.0-300.0 s | 0.1 s | 30.0 s | Third shot reset time |
| TS4R | 5.0-300.0 s | 0.1 s | 30.0 s | Fourth shot reset time |
| ARC - M | Disabled/SPAR/TPAR/ SPAR \& TPAR/EXT1P/EXT3P |  | SPAR \& TPAR | Autoreclose mode |
| ARC - DEF | OFF/ON |  | OFF | DEF autoreclose |
| ARC-BU | OFF/ON |  | OFF | Backup trip autoreclose |
| ARC-EXT | OFF/ON |  | OFF | External start |
| ARC - SM | OFF/S2/S3/S4 |  | OFF | Multi - shot autoreclose mode |
| ARC-SUC | OFF/ON |  | OFF | Autoreclose success checking |
| VCHK | OFF/LB/DB/SY |  | LB | Energizing direction |
| VTPHSEL | A/B/C |  | A | Phase of reference voltage |
| VT-RATE | PH/G / PH/PH |  | PH/G | VT rating |
| 3PH-VT | BUS/LINE |  | LINE | Location of three - phase VTs |
| [UARCSW] | P1/P2/P3 |  | (P1)(*) | User ARC switch for PLC |

(*) If this switch is not used for PLC setting, it is invalid.
"VT" is VT ratio setting of distance protection, and "VTs1" is VT ratio setting of a reference voltage input for voltage and synchronism check element as shown in Figure 2.6.3.1.
In a voltage setting, set "SY1UV", "SY1OV", "OVB", "UVB", "OVL1" and "UVL1" based on the VT rating for voltage and synchronism check. (When a voltage rating between line VT and busbar VT is different as shown in Figure 2.6.3.1, the voltage input from "VT" is matched to the rating of "VTs1" using the setting of "VT" and "VTs1".)


Figure 2.6.3.1 VT and VTs1 Ratio Setting for Busbar or Line Voltage

To determine the dead time, it is essential to find an optimal value while taking factors, de-ionization time and power system stability, into consideration which normally contradict one other.

Normally, a longer de-ionization time is required for a higher line voltage or larger fault current. For three-phase autoreclose, the dead time is generally 15 to 30 cycles. In single-phase autoreclose, the secondary arc current induced from the healthy phases may affect the de-ionization time. Therefore, it is necessary to set a longer dead time for single-phase autoreclose compared to that for three-phase autoreclose.
In three-phase autoreclose, if the voltage and synchronism check does not operate within the period of time set on the delayed pick-up timer TRR which is started at the same time as the dead time counter TTPR1 is started, reclosing is not performed and three-phase autoreclose is reset to its initial state. Therefore, for example, TRR is set to the time setting of the TTPR1 plus 100 ms .
The TEVLV determines the possibility of three-phase reclosing for an evolving fault.
When the TEVLV is set to the same setting as the TSPR, three-phase reclosing is performed for all evolving faults. As the setting for the TEVLV is made shorter, the possibility of three-phase reclosing for an evolving fault becomes small and that of three-phase final tripping becomes large.
For the two-breaker autoreclose, the following additional settings are required.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| VTs2 | $1-20000$ | 1 | 2000 | VT ratio for voltage and synchronism check SYN2 |
| TSPR2 | $0.1-10.0 \mathrm{~s}$ | 0.1 s | 0.1 s | Dead time for single-phase autoreclose of follower breaker |
| TTPR2 | $0.1-10.0 \mathrm{~s}$ | 0.1 s | 0.1 s | Dead time for three-phase autoreclose of follower breaker |
| TRDY2 | $5-300 \mathrm{~s}$ | 1 s | 60 s | Reclaim time of follower breaker |
| SYN2 |  |  |  | Synchronism check |
| SY2 | $5-75^{\circ}$ | $1^{\circ}$ | $30^{\circ}$ |  |
| SY2UV | $10-150 \mathrm{~V}$ | 1 V | 83 V |  |
| SY2OV | $10-150 \mathrm{~V}$ | 1 V | 51 V |  |
| OVL2 | $10-150 \mathrm{~V}$ | 1 V | 51 V | Live line check |
| UVL2 | $10-150 \mathrm{~V}$ | 1 V | 13 V | Dead line check |
| TSYN2 | $0.01-10.00 \mathrm{~s}$ | 0.01 s | 1.00 s | Synchronism check time |
| TLBD2 | $0.01-1.00 \mathrm{~s}$ | 0.01 s | 0.05 s | Voltage check time |
| TDBL2 | $0.01-1.00 \mathrm{~s}$ | 0.01 s | 0.05 s | Voltage check time |
| TW2 | $0.1-10.0 \mathrm{~s}$ | 0.1 s | 0.2 s | Reclosing signal output time |
| [ARC-CB] | ONE/O1/O2/L1/L2 |  | L1 | Two breaker autoreclose mode |
| [VCHK] | OFF/LB1/LB2/DB/SYN |  | LB1 | Energizing direction |

Note : [ARC-CB] is set to "ONE" only when the relay is applied to one-breaker system. Trip and reclose commands are output only for CB1(bus CB).

### 2.6.4 Autoreclose Output Signals

The autoreclose scheme logic has two output reclosing signals: ARC1 and ARC2. ARC1 is a reclosing signal for a single breaker autoreclose or a reclosing signal for the busbar breaker in a two-breaker autoreclose scheme.

ARC2 is the reclosing signal for the center breaker of the two-breaker autoreclose scheme.
The assignment of these reclosing signals to the output relays can be configured, which is done using the setting menu. For more information on this, see Section 3.2.2 and 4.2.6.9. For the default setting, see Appendix D.

### 2.7 Fault Locator

### 2.7.1 Application

The fault locator incorporated in the GRZ100 measures the distance to fault on the protected line using local voltages and currents. The measurement result is expressed as a percentage (\%) of the line length and the distance (km) and is displayed on the LCD on the relay front panel. It is also output to a local PC or RSM (relay setting and monitoring) system.

To measure the distance to fault, the fault locator requires minimum 3 cycles as a fault duration time.

In distance to fault calculations, the change in the current before and after the fault has occurred is used as a reference current, alleviating influences of the load current and arc voltage. As a result, the location error is a maximum of $\pm 2.5 \mathrm{~km}$ for faults at a distance of up to 100 km , and a maximum of $\pm 2.5 \%$ for faults at a distance between 100 km and 250 km .

Note: If abnormal settings far from actual transmission line impedance, e.g. resistance value so larger than reactance value, etc., are done, the location error will be larger.
The fault locator cannot correctly measure the distance to fault during a power swing.
Fault location is enabled or disabled by setting "Fault locator" to "ON" or "OFF" on the "Fault record" screen in the "Record" sub-menu.

### 2.7.2 Distance to Fault Calculation

The distance to fault $x_{1}$ is calculated from equation (1) and (2) using the local voltage and current of the fault phase and a current change before and after the fault occurrence. The current change before and after the fault occurrence represented by $\mathrm{I} \beta$ " and $\mathrm{I} \alpha$ " is used as the reference current. The impedance imbalance compensation factor is used to maintain high measuring accuracy even when the impedance of each phase has great variations.

## Distance calculation for phase fault (in the case of BC-phase fault)

$$
\begin{equation*}
x_{1}=\frac{\mathrm{I}_{\mathrm{m}}\left(\mathrm{~V}_{\mathrm{bc}} \cdot \mathrm{I} \beta^{\prime \prime}\right) \times \mathrm{L}}{\left\{\mathrm{I}_{\mathrm{m}}\left(\mathrm{R}_{1} \cdot \mathrm{I}_{\mathrm{bc}} \times \mathrm{I} \beta^{\prime \prime}\right)+\mathrm{R}_{\mathrm{e}}\left(\mathrm{X}_{1} \cdot \mathrm{Ibc} \cdot \mathrm{I} \beta^{\prime \prime}\right)\right\} \times \mathrm{K}_{\mathrm{bc}}} \tag{1}
\end{equation*}
$$

where,
$\mathrm{V}_{\mathrm{bc}}=$ fault voltage between faulted phases $=\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{C}}$
$\mathrm{I}_{\mathrm{bc}}=$ fault current between faulted phases $=\mathrm{I}_{\mathrm{b}}-\mathrm{I}_{\mathrm{C}}$
$\mathrm{I} \beta^{\prime \prime}=$ change of fault current before and after fault occurrence $=\left(\mathrm{I}_{\mathrm{b}}-\mathrm{I}_{\mathrm{C}}\right)-\left(\mathrm{I}_{\mathrm{Lb}}-\mathrm{ILC}_{\mathrm{Lc}}\right)$
ILb, $\mathrm{ILc}_{\mathrm{L}}=$ load current
$\mathrm{R}_{1}=$ resistance component of line positive sequence impedance
$\mathrm{X}_{1}=$ reactance component of line positive sequence impedance
$K_{b c}=$ impedance imbalance compensation factor
$\mathrm{I}_{\mathrm{m}}()=$ imaginary part in parentheses
$\mathrm{Re}_{\mathrm{e}}()=$ real part in parentheses
$\mathrm{L}=$ line length (km)

## Distance calculation for earth fault (in the case of A-phase earth fault)

$$
\begin{equation*}
x_{1}=\frac{\mathrm{I}_{\mathrm{m}}\left(\mathrm{~V}_{\mathrm{a}} \cdot \mathrm{I}_{\alpha^{\prime \prime}}\right) \times \mathrm{L}}{\left\{\mathrm{I}_{\mathrm{m}}\left(\mathrm{R}_{1} \cdot \mathrm{I}_{\alpha} \cdot \mathrm{I}_{\alpha}{ }^{\prime \prime}+\mathrm{R}_{0} \cdot \mathrm{I}_{0 S} \cdot \mathrm{I}_{\alpha}{ }^{\prime \prime}+\mathrm{R}_{0 \mathrm{~m}} \cdot \mathrm{I}_{0_{m}} \cdot \mathrm{I}_{\alpha} \alpha^{\prime}\right)+\mathrm{R}_{\mathrm{e}}\left(\mathrm{X}_{1} \cdot \mathrm{I}_{\alpha} \cdot \mathrm{I}_{\alpha}{ }^{\prime \prime}+\mathrm{X}_{0} \cdot \mathrm{I}_{0 S} \cdot \mathrm{I}_{\alpha}{ }^{\prime \prime}+\mathrm{X}_{0 \mathrm{~m}} \cdot \mathrm{I}_{0_{\mathrm{m}}} \cdot \mathrm{I}_{\alpha}{ }^{\prime \prime}\right)\right\} \times \mathrm{K}_{\mathrm{a}}} \tag{2}
\end{equation*}
$$

where,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=\text { fault voltage } \\
& \mathrm{I}_{\alpha}=\text { fault current }=\left(2 \mathrm{I}_{\mathrm{a}}-\mathrm{I}_{\mathrm{b}}-\mathrm{I}_{\mathrm{C}}\right) / 3 \\
& \mathrm{I}_{\alpha} \text { " }=\text { change of fault current before and after fault occurrence } \\
& \quad=\frac{2 \mathrm{I}_{\mathrm{a}}-\mathrm{Ib}_{\mathrm{b}}-\mathrm{I}_{\mathrm{C}}}{3}-\frac{2 \mathrm{I}_{\mathrm{La}}-\mathrm{I}_{\mathrm{Lb}}-\mathrm{I}_{\mathrm{Lc}}}{3} \\
& \mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{C}}=\text { fault current } \\
& \mathrm{I}_{\mathrm{La}}, \mathrm{I}_{\mathrm{Lb}}, \mathrm{I}_{\mathrm{LC}}=\text { load current } \\
& \mathrm{I}_{0 \mathrm{~s}}=\text { zero sequence current } \\
& \mathrm{I}_{0 \mathrm{~m}}=\text { zero sequence current of parallel line } \\
& \mathrm{R}_{1}=\text { resistance component of line positive sequence impedance } \\
& \mathrm{X}_{1} \text { = reactance component of line positive sequence impedance } \\
& \mathrm{R}_{0}=\text { resistance component of line zero sequence impedance } \\
& \mathrm{X}_{0}=\text { reactance component of line zero sequence impedance } \\
& \mathrm{R}_{0 \mathrm{~m}}=\text { resistance component of line mutual zero sequence impedance } \\
& \mathrm{X}_{0 \mathrm{~m}}=\text { reactance component of line mutual zero sequence impedance } \\
& \mathrm{K}_{\mathrm{a}}=\text { impedance imbalance compensation factor } \\
& \mathrm{I}_{\mathrm{m}}()=\text { imaginary part in parentheses } \\
& \mathrm{R}_{\mathrm{e}}()=\text { real part in parentheses } \\
& \mathrm{L}=\text { line length (km) }
\end{aligned}
$$

Equations (1) and (2) are general expressions when lines are treated as having lumped constants and these expressions are sufficient for lines within 100 km . For lines exceeding 100 km , influences of the distributed capacitance must be considered. For this fault locator, the following equation is used irrespective of line length to find the compensated distance $x_{2}$ with respect to distance $x_{1}$ which was obtained in equation (1) or (2).

$$
\begin{equation*}
x_{2}=x_{1}-\mathrm{k}^{2} \cdot \frac{x_{1}^{3}}{3} \tag{3}
\end{equation*}
$$

where,

$$
\mathrm{k}=\text { propagation constant of the protected line }=0.001 \mathrm{~km}^{-1}(\text { fixed })
$$

### 2.7.3 Starting Calculation

Calculation of the fault location is initiated by one of the following tripping signals.

- command protection trip
- zone 1 trip
- zone 2 trip
- zone 3 trip
- zone F trip
- zone 1 extension trip
- external main protection trip


### 2.7.4 Displaying Location

The measurement result is stored in the "Fault record" and displayed on the LCD of the relay front panel or on the local or remote PC. For displaying on the LCD, see Section 4.2.3.1.

In the two-terminal line, the location is displayed as a distance (km) and a percentage (\%) of the line length.
"*OB" and "*NC" may display after the location result. These mean the followings:
*OB: Fault point is over the boundary.
*NC: Fault calculation has not converged.
In case of a fault such as a fault duration time is too short, the fault location is not displayed and the "---" marked is displayed.

### 2.7.5 Setting

The setting items necessary for the fault location and their setting ranges are shown in the table below. The settings of $\mathrm{R}_{0 \mathrm{~m}}$ and $\mathrm{X}_{0 \mathrm{~m}}$ are only required for the double circuit lines. The reactance and resistance values are input in expressions on the secondary side of CT and VT.

When there are great variations in the impedance of each phase, equation (4) is used to find the positive sequence impedance, zero sequence impedance and zero sequence mutual impedance, while equation (5) is used to find imbalance compensation factors $\mathrm{K}_{\mathrm{ab}}$ to $\mathrm{K}_{\mathrm{a}}$.

When variations in impedance of each phase can be ignored, the imbalance compensation factor is set to $100 \%$.

$$
\begin{align*}
& \mathrm{Z}_{1}=\left\{\left(\mathrm{Z}_{\mathrm{aa}}+\mathrm{Z}_{\mathrm{bb}}+\mathrm{Z}_{\mathrm{cc}}\right)-\left(\mathrm{Z}_{\mathrm{ab}}+\mathrm{Z}_{\mathrm{bc}}+\mathrm{Z}_{\mathrm{ca}}\right)\right\} / 3 \\
& \mathrm{Z}_{0}=\left\{\left(\mathrm{Z}_{\mathrm{aa}}+\mathrm{Z}_{\mathrm{bb}}+\mathrm{Z}_{\mathrm{cc}}\right)+2\left(\mathrm{Z}_{\mathrm{ab}}+\mathrm{Z}_{\mathrm{bc}}+\mathrm{Z}_{\mathrm{ca}}\right)\right\} / 3  \tag{4}\\
& \mathrm{Z}_{0 \mathrm{~m}}=\left(\mathrm{Z}_{\mathrm{am}}+\mathrm{Z}_{\mathrm{bm}}+\mathrm{Z}_{\mathrm{cm}}\right) / 3
\end{align*}
$$

$$
\mathrm{K}_{\mathrm{ab}}=\left\{\left(\mathrm{Z}_{\mathrm{aa}}+\mathrm{Z}_{\mathrm{bb}}\right) / 2-\mathrm{Z}_{\mathrm{ab}}\right\} / \mathrm{Z}_{1}
$$

$$
\mathrm{K}_{\mathrm{bc}}=\left\{\left(\mathrm{Z}_{\mathrm{bb}}+\mathrm{Z}_{\mathrm{cc}}\right) / 2-\mathrm{Z}_{\mathrm{bc}}\right\} / \mathrm{Z}_{1}
$$

$$
\begin{equation*}
\mathrm{K}_{\mathrm{Ca}}=\left\{\left(\mathrm{Z}_{\mathrm{Cc}}+\mathrm{Z}_{\mathrm{aa}}\right) / 2-\mathrm{Z}_{\mathrm{Ca}}\right\} / \mathrm{Z}_{1} \tag{5}
\end{equation*}
$$



$$
\mathrm{K}_{\mathrm{a}}=\left\{\mathrm{Z}_{\mathrm{aa}}-\left(\mathrm{Z}_{\mathrm{ab}}+\mathrm{Z}_{\mathrm{ca}}\right) / 2\right\} / \mathrm{Z}_{1}
$$

$$
\mathrm{K}_{\mathrm{b}}=\left\{\mathrm{Z}_{\mathrm{bb}}-\left(\mathrm{Z}_{\mathrm{bc}}+\mathrm{Z}_{\mathrm{ab}}\right) / 2\right\} / \mathrm{Z}_{1}
$$

$$
\mathrm{K}_{\mathrm{C}}=\left\{\mathrm{Z}_{\mathrm{CC}}-\left(\mathrm{Z}_{\mathrm{ca}}+\mathrm{Z}_{\mathrm{ab}}\right) / 2\right\} / \mathrm{Z}_{1}
$$

The scheme switch [FL-Z0B] is used for zero sequence compensation in double circuit line.
The switch [FL-ZOB] is set to "OFF" when the current input to the earth fault measuring element is compensated by residual current of the parallel line. When not, the switch [FL-ZOB] is set to "ON" and ZOB-L and ZOB-R are set instead of $\mathrm{R}_{0 \mathrm{~m}}$ and $\mathrm{X}_{0 \mathrm{~m}}$ as follows:

Z0B-L = zero sequence back source impedance at local terminal
Z0B-R = zero sequence back source impedance at remote terminal
In double circuit line, however, it is recommended that the current input compensated by residual
current of the parallel line is used in order for the earth fault measuring element to correctly measure the impedance.

In the case of single circuit line, the switch [FL-Z0B] is set to "OFF".

| Item | Range | Step | Default | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| R1 | 0.0-199.99 $\Omega$ | $0.01 \Omega$ | $0.20 \Omega$ |  |
|  | (0.0-999.9 $\Omega$ | $0.1 \Omega$ | 1.0 ) ( ${ }^{*}$ |  |
| $\mathrm{X}_{1}$ | 0.0-199.99 $\Omega$ | $0.01 \Omega$ | $2.00 \Omega$ |  |
|  | (0.0-999.9 $\Omega$ | $0.1 \Omega$ | 10.0 ) |  |
| Ro | 0.0-999.99 $\Omega$ | $0.01 \Omega$ | $0.70 \Omega$ |  |
|  | (0.0-999.9 $\Omega$ | $0.1 \Omega$ | 3.5S) |  |
| $\mathrm{X}_{0}$ | 0.0-199.99 $\Omega$ | $0.01 \Omega$ | $6.80 \Omega$ |  |
|  | (0.0-999.9 $\Omega$ | $0.1 \Omega$ | 34.0 $)^{\text {) }}$ |  |
| Rom | 0.0-199.99 $\Omega$ | $0.01 \Omega$ | $0.20 \Omega$ |  |
|  | (0.0-999.9 $\Omega$ | $0.1 \Omega$ | 1.0, |  |
| $\mathrm{X}_{0} \mathrm{~m}$ | 0.0-199.99 $\Omega$ | $0.01 \Omega$ | $2.00 \Omega$ |  |
|  | (0.0-999.9 $\Omega$ | $0.1 \Omega$ | 10.0 ) |  |
| Kab | 80-120\% | 1\% | 100\% |  |
| Kbc | 80-120\% | 1\% | 100\% |  |
| $\mathrm{K}_{\mathrm{ca}}$ | 80-120\% | 1\% | 100\% |  |
| Ka | 80-120\% | 1\% | 100\% |  |
| Kb | 80-120\% | 1\% | 100\% |  |
| K ${ }_{\text {c }}$ | 80-120\% | 1\% | 100\% |  |
| Line | 0.0-399.9 km | 0.1 km | 50.0 km | Line length from local terminal to junction if three-terminal application |
| FL-ZOB | OFF/ON |  | OFF |  |
| ZOB-L | 0.0-199.99 $\Omega$ | $0.01 \Omega$ | $2.00 \Omega$ |  |
|  | (0.0-999.9 $\Omega$ | $0.1 \Omega$ | 10.0 ) |  |
| ZOB-R | 0.0-199.99 $\Omega$ | $0.01 \Omega$ | $2.00 \Omega$ |  |
|  | (0.0-999.9 $\Omega$ | $0.1 \Omega$ | 10.0 $)^{\text {) }}$ |  |
| UVLS | 50-100V | 1V | 77 V | Phase fault detection |

(*) Ohmic values shown in the parentheses are in the case of 1 A rating. Other ohmic values are in the $_{\text {the }}$ case of 5A rating.

## 3. Technical Description

### 3.1 Hardware Description

### 3.1.1 Outline of Hardware Modules

The GRZ100 models are classified into two types by their case size. Models 101, 102, 201, 204 and 301 have type A cases, while models 202, 203, 205, 206, 302, 303, 401 and 501 have type B cases. Case outlines are shown in Appendix F.

The hardware structures of their models are shown in Figure 3.1.1.1 to Figure 3.1.1.5. The front view shows the equipment without the human machine interface module.

The GRZ100 consists of the following hardware modules. The human machine interface module is provided with the front panel. The hardware modules depend on the relay model.

- Transformer module (VCT)
- Signal processing module (SPM)
- Binary input and output module 1 (IO1)
- Binary input and output module 8 (IO8)
- Binary input and output module 2 (IO2)
- Human machine interface module (HMI)
- Binary output module 3 (IO3)
- Binary output module 4 (IO4)
- Binary output module 5 (IO5)
- Binary output module 6 (IO6)
- Fault detector module (FD)

Front view


Figure 3.1.1.1 Hardware Structure (Model: 101)


VCT IO\#3 IO\#2 SPM IO\#1
IO\#1: IO1(Model 102, 201, 301), IO8(Model 204)
IO\#2: IO2
IO\#3: IO3(Model 102, 201, 301), IO6(Model 204)
Figure 3.1.1.2 Hardware Structure (Model: 102, 201, 204, 301)


Figure 3.1.1.3 Hardware Structure (Model: 202, 205, 302)


VCT IO\#2 SPM IO\#4 IO\#1 IO\#3
IO\#1: IO1(Model 203, 303), IO8(Model 206)
IO\#2: IO2
IO\#3: IO4(Model 203, 303), IO5(Model 206)
IO\#4: IO4

Figure 3.1.1.4 Hardware Structure (Model: 203, 206, 303)


Figure 3.1.1.5 Hardware Structure (Model: 401, 501)

The relationship between each model and module used is as follows:

| Models <br> Module | 101 | $\begin{gathered} 102,201 \\ 301 \end{gathered}$ | $\begin{aligned} & 202 \\ & 302 \end{aligned}$ | 204 | 205 | 206 | $\begin{aligned} & 203 \\ & 303 \end{aligned}$ | $\begin{aligned} & 401 \\ & 501 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VCT | $\times$ |
| SPM | $\times$ |
| 101 | $\times$ | $\times$ | $\times$ |  |  |  | $\times$ | $\times$ |
| 102 | $\times$ |
| 103 |  | $\times$ |  |  |  |  |  |  |
| 104 |  |  | $\times$ |  |  | $\times$ | $\times 2$ | $\times$ |
| 105 |  |  |  |  | $\times$ | $\times$ |  |  |
| 106 |  |  |  | $\times$ |  |  |  |  |
| 108 |  |  |  | $\times$ | $\times$ | $\times$ |  |  |
| FD |  |  |  |  |  |  |  | $\times$ |
| HMI | $\times$ |

Note: The VCT and SPM modules are not interchangeable among different models.

The hardware block diagrams of the GRZ100 using these modules are shown in Figure 3.1.1.6 and Figure 3.1.1.8.


Figure 3.1.1.6 Hardware Block Diagram (Models 101, 102, 201, 202, 204, 205, 301 and 302)


Figure 3.1.1.7 Hardware Block Diagram (Models 203, 206 and 303)


Figure 3.1.1.8 Hardware Block Diagram (Models 401 and 501)

### 3.1.2 Transformer Module

The transformer module (VCT module) provides isolation between the internal and external AC circuits through an auxiliary transformer and transforms the magnitude of AC input signals to suit the electronic circuits. The AC input signals are as follows:

- three-phase currents ( $\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}$ and $\mathrm{I}_{\mathrm{C}}$ )
- residual current ( $3 \mathrm{I}_{0}$ )
- residual current of parallel line ( 3 I 0 m )
- three-phase voltages $\left(\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}}\right.$ and $\left.\mathrm{V}_{\mathrm{C}}\right)$
- autoreclose reference voltage $\left(\mathrm{V}_{\mathrm{s} 1}\right)$
- autoreclose reference voltage $\left(\mathrm{V}_{\mathrm{s} 2}\right)$

Figure 3.1.2.1 shows a block diagram of the transformer module. There are 5 auxiliary CTs mounted in the transformer module, and 4 or 5 auxiliary VTs depending on the relay model. (The relationship between the relay model and number of AC input signals, is given in Table 3.2.1.1.)
" 3 I 0 m " in Figure 3.1.2.1 is the residual current from the parallel line in a double-circuit line, and is used for mutual coupling compensation. $\mathrm{V}_{\mathrm{S} 1}$ and $\mathrm{V}_{\mathrm{S} 2}$ are the busbar or line voltages necessary for the voltage and synchronism check for the autoreclose.

The transformer module is also provided with an IRIG-B port. This port collects the serial IRIG-B format data from the external clock for synchronization of the relay calendar clock. The IRIG-B port is insulated from the external circuit by a photo-coupler. A BNC connector is used as the input connector.


Figure 3.1.2.1 Transformer Module

### 3.1.3 Signal Processing Module

The signal processing and communication module (SPM) incorporates a signal processing circuit and a communication control circuit. Figure 3.1.3.1 shows the block diagram.

The signal processing circuit consists of an analog filter, multiplexer, analog to digital (A/D) converter, main processing unit (MPU1) and memories (RAM and ROM), and executes all kinds of processing including protection, measurement, recording and display.

The analog filter performs low-pass filtering for the corresponding current and voltage signals.
The A/D converter has a resolution of 16 bits and samples input signals at sampling frequencies of 2400 Hz (at 50 Hz ) and 2880 Hz (at 60 Hz ).
The MPU1 carries out operations for the measuring elements and scheme logic operations for protection, recording, displaying and signal transmission control. It implements 60 MIPS and uses two RISC (Reduced Instruction Set Computer) type 32-bit microprocessors.

The SPM can be provided with Optical interface or Ethernet LAN interface for serial communication system.


Figure 3.1.3.1 Signal Processing and Communication Module

### 3.1.4 Binary Input and Output Module

### 3.1.4.1IO1 and IO8 Module

IO1 and IO8 provide a DC/DC converter, binary inputs and binary outputs for tripping.
As shown in Figure 3.1.4.1, the IO1 module incorporates a DC/DC converter, 15 photo-coupler circuits (BI) for binary input signals and 6 auxiliary relays (TP-A1 to TP-C2) dedicated to the circuit breaker tripping command.

As shown in Figure 3.1.4.2, the IO8 module incorporates a DC/DC converter, 12 photo-coupler circuits (BI) for binary input signals and 3 auxiliary relays (TP) dedicated to the circuit breaker tripping command. The 12 binary inputs have dedicated positive and negative inputs suitable for double-pole switching.

The input voltage rating of the DC/DC converter is $24 \mathrm{~V}, 48 \mathrm{~V}, 110 \mathrm{~V} / 125 \mathrm{~V}$ or $220 \mathrm{~V} / 250 \mathrm{~V}$. The normal range of input voltage is $-20 \%$ to $+20 \%$.

The six or three tripping command auxiliary relays are the high-speed operation type and have one normally open output contact.


Figure 3.1.4.1 101 Module


Figure 3.1.4.2 IO8 Module

### 3.1.4.2IO2 Module

As shown in Figure 3.1.4.3, the IO2 module incorporates 3 photo-coupler circuits (BI) for binary input signals, 14 auxiliary relays (BOs and FAIL ) for binary output signals and an RS485 transceiver.

The auxiliary relay FAIL has one normally closed contact, and operates when a relay failure or abnormality in the DC circuit is detected. Each BO has one normally open contact. BO13 is a high-speed operation type.
The RS485 is used for the link with serial communication system such as RSM (Relay Setting and Monitoring) or IEC60870-5-103 etc. The external signal is isolated from the relay internal signal.


Figure 3.1.4.3 IO2 Module

### 3.1.4.3IO3 and IO4 Modules

The IO3 and IO4 modules are used to increase the number of binary outputs.
The IO3 module incorporates 10 auxiliary relays (BO) for binary outputs. The IO4 module incorporates 14 auxiliary relays (BO) for binary outputs and 3 photo-coupler circuits (BI). All auxiliary relays each have one normally open contact.


Figure 3.1.4.4 IO3 Module


Figure 3.1.4.5 IO4 Module

### 3.1.4.4IO5 and IO6 Modules

The IO5 and IO6 modules are used to increase the number of binary inputs and outputs.
The IO5 module incorporates 10 photo-coupler circuits (BI) for binary inputs and 10 auxiliary relays (BO) for binary outputs. The IO6 module incorporates 7 photo-coupler circuits (BI) for binary inputs and 6 auxiliary relays (BO) for binary outputs. All auxiliary relays each have one normally open contact.


Figure 3.1.4.6 IO5 Module


Figure 3.1.4.7 IO6 Module

### 3.1.5 Human Machine Interface (HMI) Module

The operator can access the GRZ100 via the human machine interface (HMI) module. As shown in Figure 3.1.5.1, the HMI module has a liquid crystal display (LCD), light emitting diodes (LED), view and reset keys, operation keys, monitoring jacks and an RS232C connector on the front panel.
The LCD consists of 40 columns by 4 rows with a backlight and displays record, status and setting data.

There are a total of 8 LED indicators and their signal labels and LED colors are defined as follows:

| Label | Color | Remarks |
| :--- | :--- | :--- |
| IN SERVICE | Green | Lit when relay is in service. |
| TRIP | Red | Lit when trip command is issued. |
| ALARM | Red | Lit when failure is detected. |
| TESTING | Red | Lit when automatic monitoring function is off. |
| LED1 | Red | Configurable LED to assign signals with or without latch when <br> relay operates. <br> Configurable LED to assign signals with or without latch when <br> relay operates. <br> Configurable LED to assign signals with or without latch when <br> relay operates. <br> Configurable LED to assign signals with or without latch when <br> relay operates. |
| LED3 | Red | Red |

LED1 to LED4 are user-configurable. Each is driven via a logic gate which can be programmed for OR gate or AND gate operation. Further, each LED has a programmable reset characteristic, settable for instantaneous drop-off, or for latching operation. For the setting, see Section 4.2.6.10. For the operation, see Section 4.2.1.

The model 100, 200 and 300 series provide the scheme switch [AOLED] which controls whether the TRIP LED is lit or not by an output of alarm element such as THM_ALARM, OV*2_ALARM and UV*2_ALARM, etc.

The VIEW key starts the LCD indication and switches between windows. The RESET key clears the LCD indication and turns off the LCD backlight.

The operation keys are used to display the record, status and setting data on the LCD, input the settings or change the settings.

The monitoring jacks and two pairs of LEDs, A and B, on top of the jacks can be used while the test mode is selected in the LCD window. Signals can be displayed on LED A or LED B by selecting the signal to be observed from the "Signal List" or "Variable Timer List" and setting it in the window and the signals can be output to an oscilloscope via the monitoring jacks. (For the "Signal List" or "Variable Timer List", see Appendix B or C.)
The RS232C connector is a 9-way D-type connector for serial RS232C connection. This connector is used for connection with a local personal computer.


RS232C connector

Figure 3.1.5.1 Front Panel

### 3.1.6 Fault Detector Module

Models 400 and 500 series have an independent fault detector in the form of a check relay, and provide the highest order of security against non-power system fault tripping.
As shown in Figure 3.1.6.1, the fault detector module consists of an analog filter, multiplexer, analog to digital (A/D) converter, main processing unit (MPU) and output auxiliary relays. The entire processing from filtering to operation for the measuring elements and output control is carried out within this module.
The fault detector module receives 3 voltage ( $\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}}, \mathrm{V}_{\mathrm{C}}$ ) inputs and 4 current ( $\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{C}}, 3 \mathrm{I}_{0}$ ) inputs. The analog filter carries out low-pass filtering for the corresponding current and voltage signals.
The A/D converter has a resolution of 12 bits and samples input signals at sampling frequencies of 2400 Hz (at 50 Hz ) and 2880 Hz (at 60 Hz ).
The MPU implements 60 MIPS and uses a RISC (Reduced Instruction Set Computer) type 32-bit microprocessor. Once the fault detector measuring elements start operating, the high-speed auxiliary relays FD1 and FD2 operate.
The fault detector module incorporates 8 binary output auxiliary relays (BO1-BO8) each with one normally open contact.


Figure 3.1.6.1 Fault Detector Module

### 3.2 Input and Output Signals

### 3.2.1 Input Signals

## AC input signals

Table 3.2.1.1 shows the AC input signals necessary for each of the GRZ100 models and their respective input terminal numbers. The AC input signals are input via terminal block TB1 for all models.

For single or double busbar applications, one voltage signal is required for voltage and synchronism check of autoreclose function, while for one-and-a-half circuit breaker arrangements, two voltage signals are required.

Table 3.2.1.1 AC Input Signals

| Terminal No. | GRZ100-101, 102, 201, 202, 203, <br> 204, 205, 206, 401 | GRZ100-301, 302, 303, 501 |
| :---: | :--- | :--- |
| $1-2$ | A phase Current | A phase Current |
| $3-4$ | B phase Current | B phase Current |
| $5-6$ | C phase Current | C phase Current |
| $7-8$ | Residual Current (Protected line) | Residual Current (Protected line) |
| $9-10$ | Residual Current (Parallel line) | Residual Current (Parallel line) |
| $11-14$ | A phase Voltage | A phase Voltage |
| $12-14$ | B phase Voltage | B phase Voltage |
| $13-14$ | C phase Voltage | C phase Voltage |
| $15-16$ | Voltage for Autoreclose | Voltage for Autoreclose |
| $17-18$ |  | Voltage for Autoreclose |
| 20 | (earth) | (earth) |

## Binary input signals

Input signals are configurable and depend on the GRZ100 models. See Appendix G for the default settings and external connections.
The binary input circuit of the GRZ100 is provided with a logic level inversion function as shown in Figure 3.2.1.1. Each input circuit has a binary switch BISW which can be used to select either normal or inverted operation. This allows the inputs to be driven either by normally open or normally closed contact.
If a signal is not input, the function concerned is disabled.
Further, all binary input functions are programmable by PLC (Programmable Logic Controller) function.

The operating voltage (pick-up) of binary input signal is typical 74 V DC at $110 \mathrm{~V} / 125 \mathrm{~V}$ DC rating and 138 V DC at $220 / 250 \mathrm{~V}$ DC. The minimum operating voltage is 70 V DC at $110 / 125 \mathrm{~V}$ DC rating and 125 V DC at $220 / 250 \mathrm{~V}$ DC.

Table 3.2.1.2 Default Binary Input Allocation

| No. | Model |  |  |  |  |  |  |  |  |  | Model |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | NO-ARC,NO-FD |  | 1CB-ARC,NO-FD |  |  | 2CB-ARC,NO-FD |  |  | 1CB-ARC,FD | 2CB-ARC,FD | 1CB-ARC,NO-FD |  |  |
|  | 101 | 102 | 201 | 202 | 203 | 301 | 302 | 303 | 401 | 501 | 204 | 205 | 206 |
| Bl1 | CB1-A |  |  |  |  |  |  |  |  |  | CB1-A |  |  |
| B12 | CB1-B |  |  |  |  |  |  |  |  |  | CB1-B |  |  |
| B13 | CB1-C |  |  |  |  |  |  |  |  |  | CB1-C |  |  |
| B14 | Signal Receive(CH1) |  |  |  |  |  |  |  |  |  | Signal Receive(CH1) |  |  |
| B15 | Signal Receive(CH2) or Z1X init |  |  |  |  |  |  |  |  |  | Signal Receive(CH2) or Z1X init |  |  |
| B16 | EXT VTF |  |  |  |  |  |  |  |  |  | EXT VTF |  |  |
| B17 | DS-N/O |  |  |  |  |  |  |  |  |  | DS-N/O |  |  |
| B18 | DS-N/C |  |  |  |  |  |  |  |  |  | DS-N/C |  |  |
| B19 | Carrier block |  |  |  |  |  |  |  |  |  | Carrier block |  |  |
| B110 | (SPARE) |  | CB1 ready |  |  |  |  |  |  |  | IND.RESET |  |  |
| B111 | (SPARE) |  | (SPARE) |  |  | CB2 ready |  |  | (SPARE) | CB2 ready | PROT BLCOK |  |  |
| Bl12 | (SPARE) |  | REC BLOCK |  |  |  |  |  |  |  | Z1X INIT |  |  |
| Bl13 | IND.RESET |  |  |  |  |  |  |  |  |  | -- |  |  |
| Bl14 | M-prot Trip |  |  |  |  |  |  |  |  |  | -- |  |  |
| Bl15 | M-prot On |  |  |  |  |  |  |  |  |  | -- |  |  |
| B116 | EXT trip-A |  |  |  |  |  |  |  |  |  | EXT trip-A |  |  |
| B117 | EXT trip-B |  |  |  |  |  |  |  |  |  | EXT trip-B |  |  |
| B118 | EXT trip-C |  |  |  |  |  |  |  |  |  | EXT trip-C |  |  |
| B119 | -- |  |  | (SPARE) |  | -- | CB2-A |  | (SPARE) | CB2-A | OCIBLOCK |  |  |
| B120 |  | -- |  | (SPARE) |  | -- | CB2-B |  | (SPARE) | CB2-B | EFI BLOCK |  |  |
| B121 |  | -- |  | (SPARE) |  | -- | CB2-C |  | (SPARE) | CB2-C | OC BLOCK |  |  |
| Bl22 | -- |  |  |  |  |  |  |  |  |  | DEF BLOCK |  |  |
| B123 | -- |  |  |  |  |  |  |  |  |  | EXTTP BLOCK |  |  |
| Bl24 | -- |  |  |  |  |  |  |  |  |  | STUB BLOCK |  |  |
| B125 | -- |  |  |  |  |  |  |  |  |  | SOTF BLOCK |  |  |
| B126 | -- |  |  |  |  |  |  |  |  |  | -- | ARC BLOCK |  |
| B127 | -- |  |  |  |  |  |  |  |  |  | -- | CB1 READY |  |
| Bl28 | -- |  |  |  |  |  |  |  |  |  | -- | CBF BLOCK |  |
| Bl34 | -- |  |  |  | (SPARE) | -- |  | (SPARE) | -- |  | -- |  | (SPARE) |
| Bl35 | -- |  |  |  | (SPARE) | -- |  | (SPARE) | -- |  | -- |  | (SPARE) |
| B136 | -- |  |  |  | (SPARE) | -- |  | (SPARE) | -- |  | -- |  | (SPARE) |



Figure 3.2.1.1 Binary Input Circuit

The binary input signals of circuit breaker auxiliary contact are transformed as shown in Figure 3.2.1.2 to use in the scheme logic.


Figure 3.2.1.2 Circuit Breaker Signals Transformation

### 3.2.2 Binary Output Signals

The number of binary output signals and their output terminals vary depending on the relay models. For all models, all outputs except the tripping command and relay failure signal can be configured.

The signals shown in the signal list in Appendix B can be assigned to the output relay individually or in arbitrary combinations. Signals can be combined using either an AND circuit or OR circuit with 6 gates each as shown in Figure 3.2.2.1. The output circuit can be configured according to the setting menu. Appendix D shows the factory default settings.
A 0.2s delayed drop-off timer can be attached to these assigned signals. The delayed drop-off time is disabled by the scheme switch [BOTD].
The GRZ100 can implement transmission of signals to the remote terminal either by opening or closing the output contact in response to a request from the telecommunication equipment. The transmission signal is assigned to BO 13 of IO2 by the binary output setting.
The relay failure contact closes the contact when a relay defect or abnormality in the DC power supply circuit is detected.


Figure 3.2.2.1 Configurable Output

### 3.2.3 PLC (Programmable Logic Controller) Function

GRZ100 is provided with a PLC function allowing user-configurable sequence logics on binary signals. The sequence logics with timers, flip-flops, AND, OR, XOR, NOT logics, etc. can be produced by using the PC software "PLC editor tool" and linked to signals corresponding to relay elements or binary circuits.

Configurable binary inputs, binary outputs and LEDs, and the initiation trigger of disturbance record are programmed by the PLC function. Temporary signals are provided for complicated logics or for using a user-configured signal in many logic sequences.
PLC logic is assigned to protection signals by using the PLC editor tool. For PLC editor tool, refer to PLC editor instruction manual.


Figure 3.2.3.1 Sample Screen of PLC Editor

### 3.3 Automatic Supervision

### 3.3.1 Basic Concept of Supervision

Though the protection system is in non-operating state under normal conditions, it is waiting for a power system fault to occur at any time and must operate for the fault without fail. Therefore, the automatic supervision function, which checks the health of the protection system during normal operation, plays an important role. The numerical relay based on the microprocessor operations is suitable for implementing this automatic supervision function of the protection system. The GRZ100 implements the automatic supervision function taking advantage of this feature based on the following concept:

- The supervising function should not affect protection performance.
- Perform supervision with no omissions wherever possible.
- When a failure occurs, it should be able to easily identify the location of the failure.

Note: Automatic supervision function includes automatic monitor function and automatic test function. For the terminology, refer to IEC IEV 448.

In a fault during automatic testing, the tripping outputs are blocked for approximately 100 ms .

### 3.3.2 Relay Monitoring and Testing

The following items are supervised:

## AC input imbalance monitoring

The AC voltage and current inputs are monitored to check that the following equations are satisfied and the health of the AC input circuits is checked.

- Zero sequence voltage monitoring

$$
\left|\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}+\mathrm{V}_{\mathrm{c}}\right| / 3 \geq 6.35(\mathrm{~V})
$$

- Negative sequence voltage monitoring
$\mid \mathrm{Va}_{\mathrm{a}}+\mathrm{a}^{2} \mathrm{~V}_{\mathrm{b}}+\mathrm{aV}$ $\mid / 3 \geq 6.35$ (V)
where,
$\mathrm{a}=$ Phase shifter of $120^{\circ}$
- Zero sequence current monitoring
$\left|\mathrm{I}_{\mathrm{a}}+\mathrm{Ib}_{\mathrm{b}}+\mathrm{I}_{\mathrm{C}}-\mathrm{I}_{\mathrm{n}}\right| / 3 \geq 0.1 \times \operatorname{Max}\left(\left|\mathrm{I}_{\mathrm{a}}\right|,|\mathrm{I} \mathrm{b}|,\left|\mathrm{I}_{\mathrm{C}}\right|\right)+\mathrm{k} 0$
where,
$\mathrm{I}_{\mathrm{n}}=$ Residual current
$\operatorname{Max}\left(\left|I_{a}\right|,\left|I_{b}\right|,\left|I_{c}\right|\right)=$ Maximum amplitude among $I_{a}, I_{b}$ and $I_{C}$
$\mathrm{k}_{0}=5 \%$ of rated current
These zero sequence monitoring and negative sequence monitoring allow high sensitivity detection of failures that have occurred in the AC input circuits.
The negative sequence voltage monitoring allows high sensitivity detection of failures in the voltage input circuit, and it is effective for detection particularly when cables have been connected with the incorrect phase sequence.
The zero sequence current monitoring allows high sensitivity detection of failures irrespective of
the presence of the zero sequence current on the power system by introduction of the residual circuit current.

Only zero sequence monitoring is carried out for the current input circuit, because zero sequence monitoring with the introduction of the residual circuit current can be performed with higher sensitivity than negative sequence monitoring.

## A/D accuracy checking

An analog reference voltage is input to a prescribed channel in the analog-to-digital (A/D) converter, and it is checked that the data after $\mathrm{A} / \mathrm{D}$ conversion is within a prescribed range and that the $\mathrm{A} / \mathrm{D}$ conversion characteristics are correct.

## Memory monitoring

The memories are monitored as follows depending on the type of the memory and checked that the memory circuits are healthy:

- Random access memory monitoring: Writes/reads prescribed data and checks the storage function.
- Program memory monitoring: Checks the checksum value of the written data.
- Setting value monitoring: Checks discrepancy between the setting values stored in duplicate.


## Watchdog Timer

A hardware timer which is cleared periodically by software is provided and it is checked that the software is running normally.

## DC Supply monitoring

The secondary voltage level of the built-in DC/DC converter is monitored and checked that the DC voltage is within a prescribed range.

### 3.3.3 CT Circuit Current Monitoring

The CT circuit is monitored to check that the following equation is satisfied and the health of the CT circuit is checked.

$$
\begin{aligned}
& \operatorname{Max}\left(\left|\mathrm{I}_{\mathrm{a}}\right|,\left|\mathrm{I}_{\mathrm{b}},\left|\mathrm{I}_{\mathrm{C}}\right|\right)-4 \times \operatorname{Min}\left(\left|\mathrm{I}_{\mathrm{a}}\right|,|\mathrm{I} \mathrm{~b}|,\left|\mathrm{I}_{\mathrm{c}}\right|\right) \geq \mathrm{k}_{0}\right. \\
& \text { where, } \\
& \operatorname{Max}\left(\left|\mathrm{I}_{\mathrm{a}}\right|,\left|\mathrm{I}_{\mathrm{b}},\left|\mathrm{I}_{\mathrm{C}}\right|\right)=\text { Maximum amplitude among } \mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}} \text { and } \mathrm{I}_{\mathrm{C}}\right. \\
& \operatorname{Min}\left(\left|\mathrm{Ia}_{\mathrm{a}},\left|\mathrm{I}_{\mathrm{b}}\right|,\left|\mathrm{I}_{\mathrm{C}}\right|\right)=\text { Minimum amplitude among } \mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}} \text { and } \mathrm{I}_{\mathrm{C}}\right. \\
& \mathrm{k}_{0}=20 \% \text { of rated current }
\end{aligned}
$$

The CT circuit current monitoring allows high sensitivity detection of failures that have occurred in the AC input circuit. This monitoring can be disabled by the scheme switch [CTSV].

### 3.3.4 Signal Channel Monitoring and Testing

## Signal channel monitoring

In the PUP, POP or UOP schemes, when a trip permission signal is received consecutively for 10 seconds, this is considered to be an error of the signal channel and an alarm is issued. When the signal modulation is a frequency shift method, if neither the trip permission signal nor the guard signal can be received, an alarm of "Ch-R1. fail" is issued.

## Signal channel testing

In the BOP scheme, the signal circuit including the remote end is automatically tested at a prescribed time interval. Testing commences when a signal is transmitted from the local to remote end. When the remote end receives the signal, it returns the signal on condition that there is no fault on the power system. The terminal which is carrying out the testing checks that the transmission path is healthy by receiving the return signal from the remote end within a prescribed time after the carrier signal is transmitted from the local end.
If the signal cannot be received after the prescribed time, an alarm signal of carrier channel failure is generated and a message " Remote 1 fail" is displayed on the LCD when manual testing.
To start the channel testing, the switch [CHMON] is set to "ON" and set the channel test interval. The channel test interval can be set from 1 to 12 hours. And then, the OR logic output of the signal No.225:EXT_CAR-S and the signal No.252:SBT is assigned the binary output BO13 of IO2.
Note 1: The time count for test interval is initialized when manual test is started or DC supply is turned on.
Note 2: Under any of the following conditions, the signal channel test does not start.

- BOP is not selected as the protection scheme.
- Telecommunication equipment is out-of-service.
- Scheme switch [CHMON] is set to "Off".
- Undervoltage elements operate.
- Circuit breaker is open.


### 3.3.5 Disconnector Monitoring

The disconnector is monitored because a disconnector contact signal is used for the stub fault protection in a one-and-a-half circuit breaker arrangement.
To monitor the disconnector, one pair of normally open contact and normally closed contact is introduced. Disconnector failure is detected when both contacts are simultaneously in the open or closed state for a prescribed period.

Monitoring is blocked by setting the scheme switch [LSSV] to "OFF". Default setting of the [LSSV] is "OFF" to prevent a false failure detection when the disconnector contacts are not introduced.

### 3.3.6 Failure Alarms

When a failure is detected by the automatic supervision, it is followed with an LCD message, LED indication, external alarm and event recording if a signal assigned. Table 3.3.6.1 summarizes the supervision items and alarms.
The alarms are retained until the failure has recovered.
The alarms can be disabled collectively by setting the scheme switch [AMF] to "OFF". The setting is used to block unnecessary alarms during commissioning, test or maintenance.

When the Watch Dog Timer detects that the software is not running normally, LCD display and event recording of the failure may not function normally.

Table 3.3.6.1 Supervision Items and Alarms

| Supervision item | LCD message | LED <br> "IN SERVICE" | LED <br> "ALARM" | External <br> alarm | Event record <br> message |
| :--- | :---: | :---: | :---: | :---: | :---: |
| AC input imbalance <br> monitoring Vo, V2, Io | $(1)$ | on/off (5) | on | $(4)$ | V0 err / V2 err / <br> I0 err |
| CT circuit monitoring | $(1)$ | on/off (6) | on | $(4)$ | CT err |
| A/D accuracy check <br> Memory monitoring | A/D err | off | on | $(3)$ | Relay fail |
| Watch Dog Timer | - | off | on | $(3)$ | - |
| DC supply monitoring | - | off | $(2)$ | $(3)$ | Relay fail-A |
| Signal channel monitoring | Ch-R1. fail (7) | on | -- | $(4)$ | Ch-R1. fail |
| Disconnector monitoring | DS fail | on | on | $(4)$ | DS fail |
| VT monitoring | VT fail | on | on | $(4)$ | VTF |

(1) There are various messages such as " $\cdots$ err" and $" \cdots$ fail "as shown in the table in Section 6.7.2.
(2) It depends on the degree of voltage drop.
(3) The binary output relay "FAIL" operates.
(4) The binary output relay "FAIL", etc. operates if the supervision function is applied.
(5) The LED is on when the scheme switch [SVCNT] is set to "ALM" and off when set to "ALM \& BLK".
(6) The LED is on when the scheme switch [CTSV] is set to "ALM" and off when set to "ALM \& BLK".
(7) It is displayed only when manual testing.

### 3.3.7 Trip Blocking

When a failure is detected by the following supervision items, the trip function is blocked as long as the failure exists and is restored when the failure is removed:

- A/D accuracy checking
- Memory monitoring
- Watch Dog Timer
- DC supply monitoring

The trip function is valid when a failure is detected by tripping output monitoring or disconnector monitoring.

When a failure is detected by AC input imbalance monitoring or CT circuit current monitoring, the scheme switch [SVCNT] or [CTSV] setting can be used to determine if both tripping is blocked and an alarm is output, or, if only an alarm is output. The CT circuit current monitoring can be disabled by the [CTSV].

### 3.3.8 Setting

The setting elements necessary for the automatic supervision and their setting ranges are shown in the table below.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| $[$ LSSV $]$ | OFF/ON |  | OFF | Disconnector monitoring |
| $[$ SVCNT $]$ | ALM\&BLK/ALM |  | ALM\&BLK | Alarming and/or blocking selection |
| $[$ CHMON] | OFF/ON |  | ON | Carrier monitoring/testing |
| Chann | 1-24 hours | 1 hour | 8 hours | Signal channel testing interval |
| $[$ CTSV] | OFF/ALM\&BLK/ALM |  | OFF | CT circuit monitoring |

### 3.4 Recording Function

The GRZ100 is provided with the following recording functions:
Fault recording
Event recording
Disturbance recording
These records are displayed on the LCD of the relay front panel or on the local or remote PC. For samples of LCD screen, see Section 4.2.

### 3.4.1 Fault Recording

Fault recording is started by a tripping command of the GRZ100, a tripping command of the external main protection or PLC command by user-setting (max. 4) and the following items are recorded for one fault:

Date and time of fault occurrence
Faulted phase
Tripping phase
Tripping mode
Fault location
Relevant events
Power system quantities
Up to 8 most-recent faults are stored as fault records. If a new fault occurs when 8 faults have been stored, the record of the oldest fault is deleted and the record of the latest fault is then stored.

## Date and time of fault occurrence

The time resolution is 1 ms using the relay internal clock.
To be precise, this is the time at which a tripping command has been output, and thus it is approximately 10 ms after the occurrence of the fault.

## Fault phase

The faulted phase is displayed when tripping by a distance measuring element. The fault phase is determined by the "fault phase detection logic". However, the fault phase depends on the setting of the phase selection element UVC.
In case of the tripping by a backup protection, the fault phase is not displayed and the "---" marked is displayed.

## Tripping phase

This is the phase to which a tripping command is output.

## Tripping mode

This shows the protection scheme that the tripping command is output.

## Fault location

The fault location is displayed against the fault within the protected line tripped by a distance measuring element. The distance to the fault point calculated by the fault locator is recorded.

The distance is expressed in km and as a percentage (\%) of the line length.
For the fault locator, see Section 2.7.4.

## Relevant events

Such events as autoreclose, re-tripping following the reclose-on-to-a fault or autoreclose and tripping for evolving faults are recorded with time-tags.

## Power system quantities

The following power system quantities in pre-faults and post-faults are recorded. The pre-fault power system quantities are values at 10 seconds before tripping.
(However, the power system quantities are not recorded for evolving faults.)

- Magnitude and phase angle of phase voltage ( $\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}}, \mathrm{V}_{\mathrm{C}}$ )
- Magnitude and phase angle of phase-to-phase voltage ( $\left.\mathrm{V}_{\mathrm{ab}}, \mathrm{V}_{\mathrm{bc}}, \mathrm{V}_{\mathrm{ca}}\right)$
- Magnitude and phase angle of symmetrical component voltage ( $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{0}$ )
- Magnitude and phase angle of phase voltage for autoreclose $\left(\mathrm{V}_{\mathrm{s} 1}, \mathrm{~V}_{\mathrm{s} 2}\right)$
- Magnitude and phase angle of phase current ( $\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{C}}$ )
- Magnitude and phase angle of phase-to-phase current ( $\mathrm{I}_{\mathrm{ab}}, \mathrm{I}_{\mathrm{bc}}, \mathrm{I}_{\mathrm{ca}}$ )
- Magnitude and phase angle of symmetrical component current ( $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{0}$ )
- Magnitude of parallel line zero sequence current ( I 0 m )
- Resistive and reactive component of phase impedance ( $\mathrm{R}_{\mathrm{a}}, \mathrm{R}_{\mathrm{b}}, \mathrm{R}_{\mathrm{C}}, \mathrm{X}_{\mathrm{a}}, \mathrm{X}_{\mathrm{b}}, \mathrm{X}_{\mathrm{C}}$ )
- Resistive and reactive component of phase-to-phase impedance ( $\mathrm{R}_{\mathrm{ab}}, \mathrm{R}_{\mathrm{bc}}, \mathrm{R}_{\mathrm{ca}}, \mathrm{X}_{\mathrm{ab}}, \mathrm{X}_{\mathrm{bc}}$, $\mathrm{X}_{\mathrm{ca}}$ )
- Percentage of thermal capacity (THM\%)

Phase angles above are expressed taking that of positive sequence voltage as a reference phase angle. Phase impedance and phase-to-phase impedance are the ones seen by the reactance elements.

### 3.4.2 Event Recording

The events shown are recorded with a 1 ms resolution time-tag when the status changes. The user can set a maximum of 128 recording items, and their status change mode. The event items can be assigned to a signal number in the signal list. The status change mode is set to "On" (only recording On transitions) or "On/Off"(recording both On and Off transitions) mode by setting. The "On/Off" mode events are specified by "Bi-trigger events" setting. If the "Bi-trigger events" is set to " 100 ", No. 1 to 100 events are "On/Off" mode and No. 101 to 128 events are "On" mode.
The name of an event cannot be set on LCD. It can set only by RSM100. Maximum 22 characters can be set and can be viewed on both of the LCD and RSM Setting(view) screen. But the LCD screen of event record displays only 11 characters. Therefore, it is recommended the maximum 11 characters are set.
The elements necessary for event recording and their setting ranges are shown in the table below. The default setting of event record is shown in Appendix H.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| BITRN | $0-128$ | 1 | 100 | Number of bi-trigger(on/off) events |
| EV1-EV128 | $0-3071$ |  |  | Assign the signal number |

Up to 480 records can be stored. If an additional event occurs when 480 records have been stored, the oldest event record is deleted and the latest event record is then stored.

### 3.4.3 Disturbance Recording

Disturbance recording is started when overcurrent or undervoltage starter elements operate or a tripping command is output, or PLC command by user-setting (max. 4) is outputted. The records include 8 analog signals ( $\left.\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}}, \mathrm{V}_{\mathrm{C}}, \mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{C}}, 3 \mathrm{I}_{0}, 3 \mathrm{I}_{0 \mathrm{~m}}\right), 32$ binary signals and the dates and times at which recording started. Any binary signal in shown in Appendix B can be assigned by the binary signal setting of disturbance record. The default setting of binary signal is shown in Appendix H .

The name of binary signal can be set only by RSM100. Maximum 22 characters can be set and can be viewed on both of the LCD and RSM Setting(view) screen. But the waveform data analysis screen of disturbance record displays up to 11 characters of them. Therefore, it is recommended the maximum 11 characters are set.
The LCD display only shows the dates and times of the disturbance records stored. Details can be displayed on a PC. For how to obtain disturbance records on the PC, see the PC software instruction manual.

The pre-fault recording time is fixed at 0.3 s and the post-fault recording time can be set between 0.1 and 3.0 s and the default setting is 1.0 s.

The number of records stored depends on the post-fault recording time and the relay model. The typical number of records stored in 50 Hz and 60 Hz power system is shown in Table 3.4.3.1.

Note: If the recording time setting is changed, the records stored so far are deleted.
Table 3.4.3.1 Post Fault Recording Time and Number of Disturbance Records Stored

| Recording time | $\mathbf{0 . 1 s}$ | $\mathbf{0 . 5 s}$ | 1.0s | 1.5s | 2.0s | 2.5s | 3.0s |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 Hz | 40 | 20 | 15 | 10 | 8 | 7 | 6 |
| 60 Hz | 40 | 20 | 10 | 9 | 7 | 5 | 5 |

## Settings

The elements necessary for initiating a disturbance recording and their setting ranges are shown in the table below.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| Timer | $0.1-3.0 \mathrm{~s}$ | 0.1 s | 1.0 s | Post-fault recording time |
| OCP-S | $0.5-250.0 \mathrm{~A}$ | 0.1 A | 10.0 A | Overcurrent detection (phase fault) |
|  | $(0.1-50.0 \mathrm{~A}$ | 0.1 A | $2.0 \mathrm{~A})\left(^{(*)}\right.$ |  |
| OCP-G | $0.5-250.0 \mathrm{~A}$ | 0.1 A | 5.0 A | Overcurrent detection (earth fault) |
|  | $(0.1-50.0 \mathrm{~A}$ | 0.1 A | $1.0 \mathrm{~A})$ |  |
| UVP-S | $0-132 \mathrm{~V}$ | 1 V | 88 V | Undervoltage detection (phase fault) |
| UVP-G | $0-76 \mathrm{~V}$ | 1 V | 51 V | Undervoltage detection (earth fault) |

$\left(^{*}\right)$ Current values shown in the parentheses are for the case of a 1 A rating. Other current values are for the case of a 5 A rating.

Starting the disturbance recording by a tripping command or the starter elements listed above is enabled or disabled by setting the following scheme switches with identical names with the starter elements except the switch [TRIP].

| Element | Range | Step | Default |
| :--- | :--- | :--- | :--- | Remarks | TRIP | OFF/ON | ON | Start by tripping command |
| :--- | :--- | :--- | :--- |
| OCP-S | OFF/ON | ON | Start by OCP-S operation |
| OCP-G | OFF/ON | ON | Start by OCP-G operation |
| UVP-S | OFF/ON | ON | Start by UVP-S operation |
| UVP-G | OFF/ON | ON | Start by UVP-G operation |

### 3.5 Metering Function

The GRZ100 performs continuous measurement of the analog input quantities. The currents and voltages at remote terminals can be also displayed. The measurement data shown below is updated every second and displayed on the LCD of the relay front panel or on the local or remote PC.

- Magnitude and phase angle of phase voltage $\left(\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}}, \mathrm{V}_{\mathrm{C}}\right)$
- Magnitude and phase angle of phase-to-phase voltage ( $\mathrm{V}_{\mathrm{ab}}, \mathrm{V}_{\mathrm{bc}}, \mathrm{V}_{\mathrm{ca}}$ )
- Magnitude and phase angle of symmetrical component voltage ( $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{0}$ )
- Magnitude and phase angle of phase voltage for autoreclose ( $\mathrm{V}_{\mathrm{s} 1}, \mathrm{~V}_{\mathrm{s} 2}$ )
- Magnitude and phase angle of phase current ( $\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{C}}$ )
- Magnitude and phase angle of phase-to-phase current ( $\mathrm{I}_{\mathrm{ab}}, \mathrm{I}_{\mathrm{bc}}, \mathrm{I}_{\mathrm{ca}}$ )
- Magnitude and phase angle of symmetrical component current ( $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{0}$ )
- Magnitude of parallel line zero sequence current ( I 0 m )
- Percentage of thermal capacity (THM\%) except for model 400 and 500 series
- The ratio of negative to positive sequence current ( $\mathrm{I}_{2} / \mathrm{I}_{1}$ )
- Active power and reactive power (P, Q)
- Frequency

Phase angles above are expressed taking the positive sequence voltage as a reference phase angle, where leading phase angles are expressed as positive, (+).

The above system quantities are displayed in values on the primary side or on the secondary side determined by the setting. To display accurate values, it is necessary to set the CT ratio and VT ratio as well. For the setting method, see "Setting the line parameters" in 4.2.6.7.

The signing of active and reactive power flow direction can be set positive for either power sending or power receiving. The signing of reactive power can be also set positive for either lagging phase or leading phase. For the setting method, see 4.2.6.6.

## 4. User Interface

### 4.1 Outline of User Interface

The user can access the relay from the front panel.
Local communication with the relay is also possible using a personal computer (PC) via an RS232C port. Furthermore, remote communication is also possible using RSM (Relay Setting and Monitoring), IEC103 communication via an RS485, optical fibre or Ethernet LAN etc.
This section describes the front panel configuration and the basic configuration of the menu tree of the local human machine communication ports and HMI (Human Machine Interface).

### 4.1.1 Front Panel

As shown in Figure 4.1.1.1, the front panel is provided with a liquid crystal display (LCD), light emitting diode (LED), operation keys, view and reset keys, monitoring jack and RS232C connector.


Figure 4.1.1.1 Front Panel

## LCD

The LCD screen, provided with a 4-line, 40-character back light, provides the user with detailed information of the relay interior such as records, status and setting. The LCD screen is normally unlit, but pressing the VIEW key will display the digest screen and pressing any key other than VIEW and RESET will display the menu screen.
These screens go OFF by pressing the RESET key or END key. Leaving any display without operation for 5 minutes or more causes the back light to go OFF.

## LED

There are 8 LED displays. The signal labels and LED colors are defined as follows:

| Label | Color | Remarks |
| :--- | :--- | :--- |
| IN SERVICE | Green | Lit when the relay is in service. |
| TRIP | Red | Lit when a trip command is issued. |
| ALARM | Red | Lit when a failure is detected. |
| TESTING | Red | Lit when disabling automatic monitoring function and operating a <br> binary output forcibly, etc.. |
| LED1 | Red | Configurable LED to assign signals with or without latch when <br> relay operates. <br> Configurable LED to assign signals with or without latch when <br> relay operates. <br> Configurable LED to assign signals with or without latch when <br> relay operates. <br> Configurable LED to assign signals with or without latch when <br> relay operates. |
| LED4 | Red | Red |

The TRIP LED lights up once the relay is operating and remains lit even after the trip command goes off.

## Operation keys

The operation keys are used to display records, status, and set values on the LCD, to input or change set values. The function of each operation key is as follows:
(1) 0-9, -: Used to enter a selected number, numerical values and a text string. Keys 2, 4, 6 and 8 marked with $\boldsymbol{\nabla}, \boldsymbol{4}, \boldsymbol{\lambda}$, and $\boldsymbol{\Delta}$ are also used to enter a text string.
(2) $\boldsymbol{\nabla}, \mathbf{\Delta}$ : Used to move lines displayed within a screen
(3) CANCEL: Used to cancel entries and return to the upper screen
(4) END: Used to end entering operation, return to the upper screen or turn off the display
(5) ENTER): Used to store or establish entries

VIEW and RESET keys
Pressing VIEW key displays digest screens such as "Metering", "Latest fault" and "Autosupervision".
Pressing RESET key turns off the display.

## Monitoring jacks

The two monitoring jacks A and B and their respective LEDs can be used when the test mode is selected on the LCD screen. By selecting the signal to be observed from the "Signal List" in Appendix B and setting it on the screen, the signal can be displayed on LED A or LED B, or output to an oscillo-scope via a monitoring jack.

## RS232C connector

The RS232C connector is a 9-way D-type connector (straight type) for serial RS232C connection. This connector is used to connect with a local personal computer.

### 4.1.2 Communication Ports

The following 3 individual interfaces are mounted as the communication ports:

- RS232C port
- Serial communication port (RS485 port, optional Fibre optic or Ethernet LAN etc.)
- IRIG-B port
(1) RS232C port

This connector is a standard 9-way D-type connector for serial port RS232C transmission and mounted on the front panel. By connecting with a personal computer using this connector, setting operation and display functions can be performed on the personal computer.

## (2) Serial communication port

One or two serial communication ports can be provided. In the single-port type, it is connected to the RSM (Relay Setting and Monitoring system) via the protocol converter G1PR2 or IEC60870-5-103 communication via BCU/RTU (Bay Control Unit / Remote Terminal Unit) to connect between relays and to construct a network communication system. (See Figure 4.4.1 in Section 4.4.)

In the case of the two-port type, one port (COM1) can be used for the relay setting and monitoring (RSM) system or IEC60870-5-103 communication, while the other port (COM2) is used for IEC60870-5-103 communication only.

Screw terminal for RS485, ST connector for fibre optic or RJ45 connector for Ethernet LAN (10Base-T) is provided on the back of the relay as shown in Figure 4.1.2.1.

## (3) IRIG-B port

The IRIG-B port is mounted on the transformer module. This port collects serial IRIG-B format data from the external clock to synchronize the relay calendar clock. The IRIG-B port is isolated from the external circuit by using a photocoupler. A BNC connector is used as the input connector.
This port is provided on the back of the relay and Figure 4.1.2.1 shows the location of this connector.


Figure 4.1.2.1 Locations of Communication Port

### 4.2 Operation of the User Interface

The user can access such functions as recording, measurement, relay setting and testing with the LCD display and operation keys.

Note: LCD screens depend on the relay model and the scheme switch setting. Therefore, LCD screens described in this section are samples of typical model.

### 4.2.1 LCD and LED Displays

## Displays during normal operation

When the GRZ100 is operating normally, the green "IN SERVICE" LED is lit and the LCD is off.
Press the VIEW key when the LCD is off to display the LCD will display the "Metering", "Latest fault" and "Auto-supervision" screens in turn. The last two screens are displayed only when there is some data. These are the digest screens and can be displayed without entering the menu screens.


Press the RESET key to turn off the LCD.
For any display, the back-light is automatically turned off after five minutes.

## Displays in tripping

| Latest fault | $08 / \mathrm{Dec} / 1997$ | $22: 56: 38.250$ |
| :---: | :---: | :---: |
| $P \mathrm{hase} \quad \mathrm{A} N$ | Trip A |  |
| Z 1, CRT |  |  |
| 59.3 km ( $38 \%$ ) |  |  |

If a fault occurs and a tripping command is output when the LCD is off, the red "TRIP" LED and other configurable LED if signals assigned to trigger by tripping.

Press the VIEW key to scroll the LCD screen to read the rest of messages.
Press the RESET key to turn off the LEDs and LCD display.

## Notes:

1) When configurable LEDs (LED1 through LED4) are assigned to latch signals by trigger of tripping, press the RESET key more than 3 s until the LCD screens relight. Confirm turning off the configurable LEDs. Refer to Table 4.2.1 Step 1.
2) Then, press the RESET key again on the "Latest fault" screen in short period, confirm turning off the "TRIP" LED. Refer to Table 4.2.1 Step 2.
3) When only the "TRIP" LED is go off by pressing the RESET key in short period, press the RESET key again to reset remained LEDs in the manner 1) on the "Latest fault" screen or other digest screens. LED1 through LED4 will remain lit in case the assigned signals are still active state.

Table 4.2.1 Turning off latch LED operation

| Operation | LED lighting status <br>  <br> Step 1 <br> Press the RESET <br> the "Latest fault" screen more than 3s on |  | "TRIP" LED |
| :--- | :--- | :--- | :--- |
|  |  |  |  |

When any of the menu screens is displayed, the VIEW and RESET keys do not function.
To return from menu screen to the digest "Latest fault" screen, do the following:

- Return to the top screen of the menu by repeatedly pressing the END key.
- Press the END key to turn off the LCD.
- Press the VIEW key to display the digest "Latest fault" screen.


## Displays in automatic supervision operation

| Auto-supervision | $08 /$ Dec/1997 | $22: 56$ |
| :--- | :--- | :--- | :--- |
| DIO err |  |  |

If the automatic supervision function detects a failure while the LCD is off, the "Auto-supervision" screen is displayed automatically, showing the location of the failure and the "ALARM" LED lights.

Press the VIEW key to display other digest screens in turn including the "Metering" and "Latest fault" screens.

Press the RESET key to turn off the LEDs and LCD display. However, if the failure continues, the "ALARM" LED remains lit.
After recovery from a failure, the "ALARM" LED and "Auto-supervision" display turn off automatically.
If a failure is detected while any of the screens is displayed, the current screen remains displayed and the "ALARM" LED lights.

Notes:

1) When configurable LEDs (LED1 through LED4) are assigned to latch signals by issuing an alarm, press the RESET key more than 3s until all LEDs reset except "IN SERVICE" LED.
2) When configurable LED is still lit by pressing RESET key in short period, press RESET key again to reset remained LED in the above manner.
3) LED1 through LED4 will remain lit in case the assigned signals are still active state.

While any of the menu screen is displayed, the VIEW and RESET keys do not function. To return to the digest "Auto-supervision" screen, do the following:

- Return to the top screen of the menu by repeatedly pressing the END key.
- Press the END key to turn off the LCD.
- Press the VIEW key to display the digest screen.
- Press the RESET key to turn off the LCD.


### 4.2.2 Relay Menu

Figure 4.2.2.1 shows the menu hierarchy in the GRZ100. The main menu has five sub-menus, "Record", "Status", "Setting (view)", "Setting (change)", and "Test". For details of the menu hierarchy, see Appendix E.


Figure 4.2.2.1 Relay Menu

## Record

In the "Record" menu, the fault record, event record and disturbance record can be displayed or erased. Furthermore, autoreclose and automatic test functions can be displayed in a counter form or reset.

## Status

The "Status" menu displays the power system quantities, binary input and output status, relay measuring element status, signal source for time synchronization (IRIG-B, RSM or IEC) and adjusts the clock.

## Setting (view)

The "Setting (view)" menu displays the relay version, plant name, and the current settings of relay address, IP address and RS232C baud rate, etc. in communication, record, status, protection, configurable binary inputs, configurable binary outputs and configurable LEDs.

## Setting (change)

The "Setting (change)" menu is used to set or change the settings of password, plant name, relay address, IP address and RS232C baud rate, etc. in communication, record, status, protection, configurable binary inputs, configurable binary outputs and configurable LEDs.
Since this is an important menu and is used to change settings related to relay tripping, it has password security protection.

## Test

The "Test" menu is used to set testing switches, to test the trip circuit, to forcibly operate binary output relays, to measure variable timer time and to observe the binary signals in the logic circuit.
When the LCD is off, press any key other than the VIEW and RESET keys to display the top "MENU" screen and then proceed to the relay menus.

|  | MENU |
| :--- | :--- |
| 1 | $=$ Record |
| 3 | $=$ Setting (view) |
| 5 | $=$ Test |$\quad$| $2=$ Status |  |
| :--- | :--- |
|  | $4=$ Setting (change $)$ |

To display the "MENU" screen when the digest screen is displayed, press the RESET key to turn off the LCD, then press any key other than the VIEW and RESET keys.

Press the END key when the top screen is displayed to turn off the LCD.
An example of the sub-menu screen is shown below. The top line shows the hierarchical layer of the screen, screen title and total number of lines of the screen. The last item is not displayed for all screens. "/6" displayed on the far left, for example, means that the screen is in the sixth hierarchical layer, while $1 / 8$ displayed on the far right means that the screen has eight lines excluding the top line and the cursor is on the first line.
To move the cursor downward or upward for setting or for viewing other lines not displayed on the window, use the $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ keys.


To move to the lower screen or move from the left side screen to the right screen in Appendix E, select the appropriate number on the screen. To return to the higher screen or move from the right side screen to the left side screen, press the END key.
The CANCEL key can also be used to return to the higher screen but it must be used carefully because it may cancel entries made so far.
To move between screens of the same depth, first return to the higher screen and then move to the lower screen.

### 4.2.3 Displaying Records

The sub-menu of "Records" is used to display fault records, event records, disturbance records and autoreclosing output count.

### 4.2.3.1Displaying Fault Records

To display fault records, do the following:

- Open the top "MENU" screen by pressing any keys other than the VIEW and RESET keys.
- Select 1 (= Record) to display the "Record" sub-menu.

$$
\left\lvert\, \begin{array}{ll}
1 \text { Record } & 2=\text { Event record } \\
1=\text { Fault record } & 4=A u t o m a t i c ~ t e s t ~ \\
3=\text { Disturbance record } & 4 \text { =Autoreclose count }
\end{array}\right.
$$

- Select 1 (= Fault record) to display the "Fault record" screen.
$\left\{\begin{array}{l}2 \text { Faultrecord } \\ 1=D i s p l a y \quad 2=C l e a r\end{array}\right.$
- Select 1 (= Display) to display the dates and times of fault records stored in the relay from the top in new-to-old sequence.

| $/ 3$ | Fault record |  | $1 / 8$ |
| :--- | :--- | :--- | :--- | :--- |
| $\# 1$ | $16 / 0 \mathrm{ct} / 1997$ | $18: 13: 57.031$ |  |
| $\# 2$ | $20 /$ Sep/1997 15:29:22.463 |  |  |
| $\# 3$ | $04 /$ Jul/1997 | $11: 54: 53.977$ |  |

- Move the cursor to the fault record line to be displayed using the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys and press the

ENTER key to display the details of the fault record. For displayed items, see Section 3.4.1.


The lines which are not displayed in the window can be displayed by pressing the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys.
To clear fault records, do the following:

- Open the "Record" sub-menu.
- Select 1 (= Fault record) to display the "Fault record" screen.
- Select 2 (= Clear) to display the following confirmation screen.
/ 2 Fault record
Clear all fault records?
ENTER=Yes CANCEL=No
- Press the ENTER (= Yes) key to clear all the fault records stored in non-volatile memory. If all fault records have been cleared, the "Latest fault" screen of the digest screens is not displayed.


### 4.2.3.2Displaying Event Records

To display events records, do the following:

- Open the top "MENU" screen by pressing any keys other than the VIEW and RESET keys.
- Select 1 (= Record) to display the "Record" sub-menu.
- Select 2 (= Event record) to display the "Event record" screen.

| 2 Event record |  |
| :---: | :---: |
| $1=$ Display $\quad 2=$ Clear |  |
|  |  |

- Select 1 (= Display) to display the events with date and time from the top in new-to-old sequence.

| /3 Event record |  | $2 / 96$ |  |
| :--- | :--- | :--- | ---: |
| $16 / 0 c t / 1998$ | $23: 18: 04.294$ | Trip | $0 f f$ |
| $16 / 0 c t / 1998$ | $23: 18: 03.913$ | Trip | $0 n$ |
| $12 /$ Feb/1998 $03: 51: 37.622$ | RIy.setchange |  |  |

The lines which are not displayed in the window can be displayed by pressing the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys.
To clear event records, do the following:

- Open the "Record" sub-menu.
- Select 2 (= Event record) to display the "Event record" screen.
- Select 2 (= Clear) to display the following confirmation screen.

$$
\begin{array}{r}
/ 2 \text { Event record } \\
\text { C I ear al l event records? } \\
\quad \text { ENTER=Yes CANCEL=No }
\end{array}
$$

- Press the ENTER (= Yes) key to clear all the event records stored in non-volatile memory.


### 4.2.3.3Displaying Disturbance Records

Details of the disturbance records can be displayed on the PC screen only(*); the LCD displays only the recorded date and time for all disturbances stored in the relay. They are displayed in the following sequence.
(*) For the display on the PC screen, refer to RSM100 manual.

- Open the top "MENU" screen by pressing any keys other than the VIEW and RESET keys.
- Select 1 (= Record) to display the "Record" sub-menu.
- Select 3 (= Disturbance record) to display the "Disturbance record" screen.

```
/2 Disturbance record
1=D isplay 2 = C | e ar
```

- Select 1 (= Display) to display the date and time of the disturbance records from the top in new-to-old sequence.

| $/ 3$ | Disturbance record |  | $3 / 12$ |
| :--- | :---: | :--- | :--- | :--- |
| $\# 1$ | 16/0ct/1997 | $18: 13: 57.031$ |  |
| $\# 2$ | 20/Sep/1997 15:29:22.463 |  |  |
| $\# 3$ | $04 /$ Jul/1997 11:54:53.977 |  |  |

The lines which are not displayed in the window can be displayed by pressing the $\boldsymbol{A}$ and
keys.
To clear disturbance records, do the following:

- Open the "Record" sub-menu.
- Select 3 (=Disturbance record) to display the "Disturbance record" screen.
- Select 2 (= Clear) to display the following confirmation screen.

```
2 Disturbance record
Clear all disturbance records?
    ENTER=Yes CANCEL=No
```

- Press the ENTER (= Yes) key to clear all the disturbance records stored in non-volatile memory.


### 4.2.3.4Displaying Automatic Test

The "Automatic test" screens show the cumulative number of times the automatic test has been carried out( ${ }^{*}$ ) and the automatic test interval $\left({ }^{* *}\right)$.
(*) The manual tests described in Section 4.2.7.2 are also added to these counts.
(**) For setting the test interval, see Section 4.2.6.5.
The telecommunication channel test is carried out in all the GRZ100 models when BOP command protection is selected.
The test count and test interval can be displayed or the test count can be reset to zero as follows.
To display the count and interval of the telecommunication channel test on the LCD, do the following:

- Select 1 (= Record) on the top "MENU" screen to display the "Record" screen.
- Select 4 (= Automatic test) to display the "Automatic test" screen.

```
/2 Automatic test
1=Te|ecomm channel test
```

- Select 1 (= Telecomm channel test) to display the "Telecomm channel test" screen.

```
/3 Telecomm channel test
1=Display count & interval
2=Reset count
```

- Select 1 (= Display counts \& interval) to display the test count and test interval of the telecommunication channel.

```
/4 Telecomm channel test
Test count: 11
Test interval: 12 hours
```

To reset the telecommunication channel test count, do the following:

- Select 2 (= Reset count) on the "Telecom channel test" screen to display the following confirmation screen.

```
/3 Telecomm channel test
1=Display count & interval
2=Reset count
```

- Press the ENTER key to reset the test count to zero and return to the previous screen.


### 4.2.3.5Displaying Autoreclose Count

The autoreclose output counts can be displayed or can be reset to zero as follows.
To display the autoreclose output counts on the LCD, do the following (for models 200 to 500):

- Select 1 (= Record) on the top "MENU" screen to display the "Record" sub-menu.
- Select 5 (= Autoreclose count) to display the "Autoreclose count" screen.
$\left\{\begin{array}{l}2 \text { Autoreclose count } \\ 1=\text { Display }\end{array}\right.$
- Select 1 (= Display) to display the autoreclose count.

| 13 | Autoreclose count |  |
| :---: | :---: | :---: |
|  |  |  |
| CB1 | SPAR |  |
|  | TPAR |  |

SPAR and TPAR mean single-phase and three-phase autoreclose respectively.
To reset the autoreclose output count, do the following:

- Select 2 (= Reset) on the "Autoreclose count" screen to display the "Reset autoreclose count" screen.

$$
\begin{aligned}
& 3 \text { Reset autoreclose count } \\
& 1=\text { CB1 }
\end{aligned}
$$

- Select 1 (=CB1) to display the following confirmation screen.

- Press the ENTER key to reset the count to zero and return to the previous screen.


### 4.2.4 Displaying Status Information

From the sub-menu of "Status", the following status conditions can be displayed on the LCD:
Metering data of the protected line
Status of binary inputs and outputs
Status of measuring elements output
Status of time synchronization source
Load current direction
This data is updated every second.
This sub-menu is also used to adjust the time of the internal clock.

### 4.2.4.1 Displaying Metering Data

To display metering data on the LCD, do the following.

- Select 2 (= Status) on the top "MENU" screen to display the "Status" screen.

- Select 1 (= Metering) to display the "Metering" screen.


Metering data is expressed as primary values or secondary values depending on the setting. For setting, see Section 4.2.6.6.

## 4．2．4．2Displaying the Status of Binary Inputs and Outputs

To display the binary input and output status，do the following：
－Select 2 （＝Status）on the top＂MENU＂screen to display the＂Status＂screen．
－Select 2 （＝Binary I／O）to display the binary input and output status．

| ／2 Binary input \＆ | utput |  |  |  | $3 /$ | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input（10\＃1） | 「000 | 000 | 000 | 000 |  |  |
| Input（10\＃2） | 「000 |  |  |  |  |  |
| Input（10\＃3） | 「000 | 000 | 000 | 0 |  |  |
| Input（IO\＃4） | 「000 |  |  |  |  |  |
| Output（1 O\＃1－trip） | 「000 | 000 |  |  |  |  |
| Output（ 1 O\＃2） | 「000 | 000 | 000 | 000 | 00 |  |
| Output（1 O\＃3） | ［000 | 000 | 000 | 0 |  |  |
| Output（1）O\＃4） | 「000 | 000 | 000 | 000 | 00 |  |

The display format is shown below．

|  | ［ | － | － | $\square$ | － | $\square$ | $\square$ | $\square$ | $\square$ | － | $\square$ | $\square$ | － | $\square$ | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input（IO\＃1） | BI1 | BI2 | Bl3 | BI4 | BI5 | BI6 | BI7 | BI8 | BI9 | BI10 | Bl11 | BI12 | － | － | － |
| Input（IO\＃2） | Bl16 | B117 | Bl18 | － | － | － | － | － | － | － | － | － | － | － |  |
| Input（IO\＃3） | Bl19 | BI20 | Bl21 | BI22 | Bl23 | BI24 | BI25 | Bl26 | Bl27 | Bl28 | － | － | － | － |  |
| Input（IO\＃4） | Bl34 | Bl35 | Bl36 | － | － | － | － | － | － | － | － | － | － | － |  |
| Output（IO\＃1－trip） | TPA1 | TPB1 | TPC1 | TPA2 | TPB2 | TPC2 | － | － | － | － | － | － | － | － |  |
| Output（IO\＃2） | B01 | BO2 | BO3 | BO4 | BO5 | B06 | B07 | B08 | B09 | BO10 | B011 | BO12 | FAIL | B013 | － |
| Output（IO\＃3） | B01 | BO2 | B03 | B04 | B05 | B06 | B07 | B08 | B09 | BO10 | － | － | － | － |  |
| Output（IO\＃4） | B01 | BO2 | BO3 | B04 | BO5 | B06 | B07 | B08 | B09 | BO10 | B011 | BO12 | BO13 | B014 | － |

Lines 1 to 4 show the binary input status．BI1 to BI36 correspond to each binary input signal．For the binary input signals，see Appendix G．The status is expressed with logical level＂1＂or＂0＂at the photo－coupler output circuit．IO\＃1 to IO\＃4 in the table indicate the name of the module containing the binary input circuits．
Lines 5 to 8 show the binary output status．TPA1 to TPC2 of line 4 correspond to the tripping command outputs．FAIL of line 6 correspond to the relay failure output．Other outputs expressed with BO1 to BO14 are configurable．The status of these outputs is expressed with logical level＂1＂ or＂ 0 ＂at the input circuit of the output relay driver．That is，the output relay is energized when the status is＂ 1 ＂．

IO\＃1 to IO\＃4 in the table indicate the names of the module containing the binary output relays．
To display all the lines，press the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys．

## 4．2．4．3Displaying the Status of Measuring Elements

To display the status of measuring elements on the LCD，do the following：
－Select 2 （＝Status）on the top＂MENU＂screen to display the＂Status＂screen．
－Select 3 （＝Relay element）to display the status of the relay elements．

| /2 Relay element 3/** |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Z G | [000 | 000 | 000 | 000 | O O 0] |
| Z G 2 | [000 | 000 | 000 | 000 | ] |
| Z S | [000 | 000 | 000 | 000 | O 0001 |
| Z S 2 | [000 | 000 | 000 | 000 | ] |
| BL | [000 | 000 | 000 | 000 | ] |
| O C | [000 | 000 | 000 | 000 | O O 0 ] |
| DEF, OV | [000 | 00 |  |  | ] |
| OV1 | [000 | 000 |  |  | ] |
| OV 2 | [000 | 000 |  |  | ] |
| U V 1 | [000 | 000 | 000 | 000 | 0001 |
| UV2 | [000 |  |  |  | ] |
| UV3 | [000 | 000 | 000 |  | ] |
| U V 4 | [000 | 000 | 000 |  | ] |
| CBF, PSB, OST, BCD | [ 0000 | 000 | 000 | 000 | $001]$ |
| PSB, THM | [000 | 000 | 00 |  | ] |
| Autoreclose | [000 | 000 | 000 |  | ] |

The display format is as shown below.

BL


| AB | BC | CA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Z1S |  |  | Z1XS |  |  | Z2S |  |  | Z3S |  |  | Z4S |  |


| AB | BC | CA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ZFS |  |  | ZR1S |  |  | ZR2S |  |  | ZNDS |  |

OC

DEF, OV


OV1

$$
\begin{array}{ccc}
\mathrm{AB} & \mathrm{BC} \quad \mathrm{CA} \\
\cline { 1 - 4 } & \text { OVS1 } & \\
& & \text { OVS2 }
\end{array}
$$

OV2

$$
\begin{array}{ccc}
A & B & C \\
\cline { 1 - 4 } & \text { OVG1 } & \text { A } \quad \text { O } C 2 \\
\text { OV }
\end{array}
$$


UV2 $\quad \begin{gathered}\text { A } \quad \text { B } \quad C \\ \text { UVPWI }\end{gathered}$

UV4

CBF, PSB, OST

BCD
$\qquad$ $\begin{array}{llllll}A B & B C & C A & A B & B C & C A \\ \end{array}$ $\frac{\mathrm{ZM} \mathrm{ZN}}{\text { OST }}$ DOCNF DOCNR BCD PSB, THM

Autoreclose
$\frac{\mathrm{A} \quad \mathrm{B} C}{\text { PSBGOUT }} \frac{\mathrm{A} \quad \mathrm{B} \quad \mathrm{C}}{\text { PSBGIN }} \frac{\mathrm{A} T}{\text { THM }}$

$$
\text { OVB UVB SYN1 OVL1 UVL1 SYN2 OVL2 UVL2 3PLL } \quad-\quad-\quad-\quad-\quad-\quad-
$$

Lines 1 to 4 show the operation status of distance measuring elements for earth faults and phase faults respectively. Line 5 shows the operation status of blinder elements.
Lines 6 to 9 show the status of overcurrent, directional earth fault and overvoltage elements. Lines 10 to 13 show the status of undervoltage elements. Line 14 shows the status of the overcurrent element for breaker failure protection, power swing blocking element, out-of-step protection element and broken conductor detection element. Line 15 shows the status of the power swing blocking element and thermal overload element.
Line 16 shows the status of elements used for autoreclose.
The status of each element is expressed with logical level "1" or " 0 ". Status " 1 " means the element is in operation.
To display all the lines on the LCD, press the $\mathbf{\triangle}$ and $\boldsymbol{\nabla}$ keys.

### 4.2.4.4Displaying the Status of the Time Synchronization Source

The inner clock of the GRZ100 can be synchronized with external clocks such as the IRIG-B time standard signal clock or RSM (relay setting and monitoring system) clock or by an IEC60870-5-103 control system. To display on the LCD whether these clocks are active or inactive and which clock the relay is synchronized with, do the following:

- Select 2 (= Status) on the top "MENU" screen to display the "Status" screen.
- Select 4 (= Time sync source) to display the status of time synchronization sources.

```
/2 Time synchronizat ionn source
* IRIG: Active
    RSM: Inactive
    IEC: In active
```

The asterisk on the far left shows that the inner clock is synchronized with the marked source clock. If the marked source clock is inactive, the inner clock runs locally.
For the setting time synchronization, see Section 4.2.6.6.

### 4.2.4.5 Adjusting the Time

To adjust the clock when the internal clock is running locally, do the following:

- Select 2 (= Status) on the top "MENU" screen to display the "Status" screen.
- Select 5 (= Clock adjustment) to display the setting screen.


Line 1 shows the current date, time and time synchronization source with which the internal clock is synchronized. The time can be adjusted only when [Local] is indicated on the top line, showing that the clock is running locally. When [IRIG] or [RSM] or [IEC] is indicated, the following adjustment is invalid.

- Enter a numerical value within the specified range for each item and press the ENTER key.
- Press the END key to adjust the internal clock to the set hours without fractions and return to the previous screen.

If a date which does not exist in the calendar is set and END key is pressed, "Error: Incorrect date" is displayed on the top line and the adjustment is discarded. Adjust again.

### 4.2.4.6Displaying the Direction of Load Current

To display the direction of load current on the LCD, do the following:

- Select 2 (= Status) on the top "MENU" screen to display the "Status" screen.
- Select 6 (= Direction) to display the status of the relay elements.

```
/2 Direction
Phase A: Forward
Phase B: Forward
Phase C: Forward
```

Note: If the load current is less than 0.04xIn, the direction is expressed as "----".
The BFL element is used to detect the direction of load current and shared with blinder. (See Figure 2.4.1.13.)

### 4.2.5 Viewing the Settings

The sub-menu "Setting (view)" is used to view the settings made using the sub-menu "Setting (change)".

The following items are displayed:
Relay version
Description
Relay address in the RSM (relay setting and monitoring system) or IEC60870-5-103 communication

Recording setting
Status setting
Protection setting
Binary input setting
Binary output setting
LED setting
Enter a number on the LCD to display each item as described in the previous sections.

### 4.2.5.1Relay Version

To view the relay version, do the following.

- Press 3 (= Setting (view)) on the main "MENU" screen to display the "Setting (view)" screen.
- Press 1 (= Version) on the "Setting (view)" screen and the "Relay version" screen appears.



### 4.2.5.2Settings

The "Description", "Comm.", "Record", "Status", "Protection", "Binary input", "Binary output" and "LED" screens display the current settings input using the "Setting (change)" sub-menu.

### 4.2.6 Changing the Settings

The "Setting (change)" sub-menu is used to make or change settings for the following items:
Password
Description
Address in the RSM or IEC60870-5-103 communication
Recording
Status
Protection
Binary input
Binary output
LED
All of the above settings except the password can be seen using the "Setting (view)" sub-menu.

### 4.2.6.1Setting Method

There are three setting methods as follows.

- To enter a selective number
- To enter numerical values
- To enter a text string


## To enter a selected number

If a screen as shown below is displayed, perform the setting as follows.
The number to the left of the cursor shows the current setting or default setting set at shipment. The cursor can be moved to upper or lower lines within the screen by pressing the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys. If setting (change) is not required, skip the line with the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys.

| /3 Metering |  | $3 / 3$ |  |
| :--- | :--- | :--- | :--- |
| Disolay value | $1=$ Primary | $2=$ Secondary | 1 |
| Power (P/Q) | $1=$ Send | $2=$ Receive | 1 |
| Current | $1=$ Lag | $2=$ Lead | 1 |

- Move the cursor to a setting line.
- Enter the selected number. (Numbers other than those displayed cannot be entered.)
- Press the ENTER key to confirm the entry and the cursor will move to the next line below.
(On the lowest line, the entered number blinks in reverse video.)
- After completing the setting on the screen, press the END key to return to the upper menu.

To correct the entered number, do the following:

- If it is before pressing the ENTER key, press the CANCEL key and enter the new number.
- If it is after pressing the ENTER key, move the cursor to the correcting line by pressing the
$\Delta$ and $\nabla$ keys and enter the new number.
Note: If the CANCEL key is pressed after any of the entry is confirmed by pressing the ENTER key, all the entries performed so far on the screen concerned are canceled and screen returns to the upper one.

When the screen shown below is displayed, perform setting as follows.
The number to the right of "Current No. = " shows the current setting.


- Enter a number to the right of "Select No. = ". (Numbers other than those displayed cannot be entered.)
- Press the ENTER key to confirm the entry and the entered number blinks in reverse video.
- After completing the setting on the screen, press the END key to return to the upper screen.

To correct the entered number, do the following:

- If it is before pressing the ENTER key, press the CANCEL key and enter the new number.
- If it is after pressing the ENTER key, enter the new number.


## To enter numerical values

When the screen shown below is displayed, perform the setting as follows:
The number to the left of the cursor shows the current setting or default setting set at shipment. The cursor can be moved to upper or lower lines within the screen by pressing the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys. If setting (change) is not required, skip the line with the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys.


- Move the cursor to a setting line.
- Enter the numerical value.
- Press the ENTER key to confirm the entry and the cursor will move to the next line below. (If a numerical value outside the displayed range is entered, "Error: Out of range" appears on the top line and the cursor remains on the line. Press the CANCEL key to clear the entry.)
- After completing the setting on the screen, press the END key to return to the upper screen.

To correct the entered numerical value, do the following:

- If it is before pressing the ENTER key, press the CANCEL key and enter the new numerical value.
- If it is after pressing the ENTER key, move the cursor to the correcting line by pressing the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys and enter the new numerical value.
Note: If the CANCEL key is pressed after any of the entry is confirmed by pressing the ENTER key, all the entries performed so far on the screen concerned are canceled and screen returns to the upper one.


## To enter a text string

Text strings are entered in the bracket on the "Plant name" or "Description" screen.
To select a character, use keys $2,4,6$ and 8 to move blinking cursor down, left, right and up, " $\rightarrow$ " and " $\leftarrow$ " on each of lines 2 to 4 indicate a space and backspace, respectively. A maximum of 22 characters can be entered within the brackets.

| /3 Plant name [ - |  |  |
| :---: | :---: | :---: |
| ABCDEFGHIJKLMNOPQRSTUVWXYZ | ( ) [] @ _ | $\rightarrow$ |
| abcdefghijklmnopqrstuvwxyz | \{\}*/+-<= | $\rightarrow$ |
| 0123456789 ! " \# \$ \% \& |  | $\leftarrow$ |

- Set the cursor position in the bracket by selecting " $\rightarrow$ " or " $\leftarrow$ " and pressing the ENTER key.
- Move the blinking cursor to a selecting character.
- Press the ENTER key to enter the blinking character at the cursor position in the bracket on the top line.
- Press the END key to confirm the entry and return to the upper screen.

To correct the entered character, do either of the followings:

- Discard the character by selecting " $\leftarrow$ " and pressing the ENTER key, and enter the new character.
- Discard the whole entry by pressing the CANCEL key and restart the entry from the first.


## To complete the setting

Even after making entries on each setting screen by pressing the ENTER key, the new settings are not yet used for operation, though stored in the memory. To validate the new settings, take the following steps.

- Press the END key to return to the upper screen. Repeat this until the confirmation screen shown below is displayed. The confirmation screen is displayed just before returning to the "Setting (change)" sub-menu.

| $2 * * * * * * * * * * * * * * * * *$ |
| :--- | :--- |
| Change settings ? |
| Enter=Yes $\quad$ Cancel $=$ No |

- When the screen is displayed, press the ENTER key to start operation using the new settings,
or press the CANCEL key to correct or cancel the entries. In the latter case, the screen turns back to the setting screen to enable reentries. Press the CANCEL key to cancel entries made so far and to turn to the "Setting (change)" sub-menu.


### 4.2.6.2 Password

For the sake of security of setting changes, password protection can be set as follows;

- Press 4 (= Setting (change)) on the main "MENU" screen to display the "Setting (change)" screen.

- Press 1 (= Password) to display the "Password" screen.

- Enter a 4-digit number within the brackets of "Input new password" and press the ENTER key.
- For confirmation, enter the same 4-digit number in the brackets of "Retype new password" and press the ENTER key.
- Press the END key to display the confirmation screen. If the retyped number is different from that first entered, the following message is displayed on the bottom of the "Password" screen before returning to the upper screen.
"Mismatch-password unchanged"
Reentry is then requested.


## Password trap

After the password has been set, the password must be entered in order to enter the setting change screens.
If 4 (= Setting (change)) is entered on the top "MENU" screen, the password trap screen "Password" is displayed. If the password is not entered correctly, it is not possible to move to the "Setting (change)" sub-menu screens.

```
Password
```

Input password [_ $]$

## Canceling or changing the password

To cancel the password protection, enter "0000" in the two brackets on the "Password" screen. The "Setting (change)" screen is then displayed without having to enter a password.

The password can be changed by entering a new 4-digit number on the "Password" screen in the same way as the first password setting.

## If you forget the password

Press CANCEL and RESET keys together for one second on the top "MENU" screen. The screen goes off, and the password protection of the GRZ100 is canceled. Set the password again.

### 4.2.6.3Description

To enter the plant name and other data, do the following. These data are attached to records.

- Press 4 (= Setting (change)) on the main "MENU" screen to display the "Setting (change)" screen.
- Press 2 (= Description) to display the "Description" screen.
12 Description
$1=P$ lant name $\quad 2=D e s c r i p t i o n ~$
- To enter the plant name, select 1 (= Plant name) on the "Description" screen.


To enter special items, select 2 ( $=$ Description) on the "Description" screen.

| /3 Description [ |  | ] |
| :---: | :---: | :---: |
| ABCDEFGHIJKLMNOPQRSTUVWXYZ | ( ) [ 1 @ | $\rightarrow$ |
| abcdefghi ikImnoparstuvwxvz | $\} * /+-<=>$ | $\leftarrow \rightarrow$ |
| 0123456789 ! "\# \$ \% , |  | $\leftarrow$ |

- Enter the text string.

The plant name and special items entered are viewed with the "Setting (view)" sub-menu and attached to disturbance records when they are displayed on a local or a remote PC.

### 4.2.6.4Communication

If the relay is linked with RSM (relay setting and monitoring system) or IEC60870-5-103, the relay address must be set. Do this as follows:

- Press 4 (= Setting (change)) on the main "MENU" screen to display the "Setting (change)" screen.
- Press 3 (= Comm.) on the "Setting (change)" screen to display the "Communication" screen.

$$
\begin{aligned}
& / 2 \text { Communication } \\
& 1=\text { Address/Parameter } \\
& 2=\text { Switch }
\end{aligned}
$$

- Press 1 (= Address/Parameter) to enter the relay address number.

- Enter the address number on "HDLC" column for RSM and/or "IEC" column for IEC60870-5-103 and the compensation value on "SYADJ" column for adjustment of time synchronization of protocol used. (-: lags the time, + : leads the time) And enter IP address for IP1-1 to IP1-4, Subnet mask for SM1-1 to SM1-4, and Default gateway for GW1-1 to GW1-4.

IP address:
$\underbrace{* * *}, \underbrace{* * *}, \underbrace{* * *}, \underbrace{* * *}$
IP1-1 IP1-2 IP1-3 IP1-4
Subnet mask SM1-1 to SM1-4 and Default gateway GW1-1 to GW1-4: same as above.

- Press the ENTER key.

CAUTION: Do not overlap the number in a network.

- Press 2 (= Switch) on the "Communication" screen to select the protocol and transmission speed (baud rate), etc., of the RSM or IEC60870-5-103.

- Select the number corresponding to the system and press the ENTER key.


## <PRTCL1>

PRTCL1 is used to select the protocol for channel 1 (COM1 or OP1) of the serial communication port RS485 or FO (fibre optic).

- When the remote RSM system applied, select 1 (=HDLC). When the IEC60870-5-103 applied, select 2 (=IEC103).


## <232C>

This line is to select the RS-232C baud rate when the RSM system applied.
Note: The default setting of the 232C is 9.6 kbps . The 57.6 kbps setting, if possible, is recommended to serve user for comfortable operation. The setting of RSM100 is also set to the same baud rate.

## <IECBR>

This line is to select the baud rate when the IEC60870-5-103 system applied.

## <IECBLK>

Select 2 (=Blocked) to block the monitor direction in the IEC60870-5-103 communication.

### 4.2.6.5Setting the Recording

To set the recording function as described in Section 4.2.3, do the following:

- Press 4 (= Setting (change)) on the main "MENU" screen to display the "Setting (change)" screen.
- Press 4 (= Record) to display the "Record" screen.

$$
\begin{aligned}
& 2 \text { Record } \\
& 1=\text { Fault record } 2=E v e n t r e c o r d \\
& 3=\text { Disturbance record } \\
& 4 \text { =Automatic test interval }
\end{aligned}
$$

## Setting the fault recording

- Press 1 (= Fault record) to display the "Fault record" screen.

| F Fault record |  | $1 / 1$ |  |
| :--- | :--- | :--- | :--- |
| Fault Iocator | $0=0 \mathrm{ff}$ | $1=0 \mathrm{n}$ | $1-2$ |
|  |  |  |  |

- Enter $1(=\mathrm{On})$ to record the fault location.

Enter 0 (= Off) not to record the fault location.

- Press the ENTER key.


## Setting the event recording

- Press 2 (= Event record) to display the "Event record" screen.

| /3 Event record |  |  |  |  |  | 1/129 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BITRN <br> EV1 <br> EV2 |  | 0 - | 128): | 128 | - |  |
|  | ( | 0 - | 3071): | 0 |  |  |
|  | ( | 0 - | 3071): | 1 |  |  |
| EV 3 | ( | - - | 3071): | 1 |  |  |
| EV4 | ( | 0 - | 3071): | 1 |  |  |
| EV5 | ( | 0 - | 3071): | 3071 |  |  |
| EV6 | ( | 0 - | 3071): | 3071 |  |  |
| EV7 | ( | 0 - | 3071): | 3071 |  |  |
| EV8 | ( | 0 - | 3071): | 3071 |  |  |
| EV9 | ( | 0 - | 3071): | 3071 |  |  |
| EV10 | ( | 0 - | 3071): | 3071 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| EV128 | ( | 0 - | $3071):$ | 3071 |  |  |

## <BITRN>

- Enter the number of event to record the status change both to "On" and "Off". If enter 20, both status change is recorded for EV1 to EV20 events and only the status change to "On" is recorded for EV21 to EV128 events.


## <EV*>

- Enter the signal number to record as the event in Appendix B. It is recommended that this setting can be performed by RSM100 because the signal name cannot be entered by LCD screen. (Refer to Section 3.4.2.)


## Setting the disturbance recording

- Press 3 (= Disturbance record) to display the "Disturbance record" screen.
/ 3 Disturbance record
$1=$ Record time \& starter
$2=$ Scheme switch
3 = Binary signal
- Press 1 (= Record time \& starter) to display the "Record time \& starter" screen.

| / 4 Record time \& starter |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Time ( | 0.1- | 3.0) | 2. 0 | - | A |
| OCP-S ( | 0. 5 - | $250.0)$ | 10.0 |  | A |
| OCP-G ( | $0.5-$ | $250.0)$ | 10.0 |  | A |
| U V P - S | 0 - | 132 ) | 100 |  | V |
| UVP-G( | $0-$ | $76)$ | 57 |  | V |

- Enter the recording time and starter element settings.

To set each starter to use or not to use, do the following:

- Press 2 (= Scheme switch) on the "Disturbance record" screen to display the "Scheme switch" screen.

| /4 Scheme switch |  |  | 1/5 |
| :---: | :---: | :---: | :---: |
| TR I P | $0=0 \mathrm{ff}$ | $1=0 n$ |  |
| OCP - S | $0=0 \mathrm{ff}$ | $1=0 n$ | 1 |
| 0 C P - G | $0=0 \mathrm{ff}$ | $1=0 n$ | 1 |
| UVP-S | $0=0 \mathrm{ff}$ | $1=0 \mathrm{n}$ | 1 |
| U V P - G | $0=0 \mathrm{ff}$ | $1=0 n$ | 1 |

- Enter 1 to use as a starter.
- Press 3 (= Binary signal) on the "Disturbance record" screen to display the "Binary signal" screen.

| /4 Binary signal |  |  |  | $1 / 32$ |
| :---: | :---: | :---: | :---: | :---: |
| SIG1 ( | 0 - | 3071 ): | 1 _ |  |
| S IG 2 ( | 0 - | 3071 ) | 2 |  |
| S I G 3 ( | 0 - | 3071 ) | 3 |  |
| S I G 4 | 0 - | 3071 ) | 4 |  |
| SIG32 ( | $0-$ | 3071 ) | 0 |  |

- Enter the signal number to record binary signals in Appendix B. It is recommended that this setting can be performed by RSM100 because the signal name cannot be entered by LCD screen. (Refer to Section 3.4.3.)


## Setting the automatic testing

- Press 4 (= Automatic test interval) to display the "Automatic test interval" screen.

| /3 Automatic test interval |  |  |  |  | $1 / 1$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Chann ( | 1 - | 24) | 12 | - | hrs |

- Enter the test intervals of the signal channel.


### 4.2.6.6 Status

To set the status display described in Section 4.2.4, do the following.

- Press 5 (= Status) on the "Setting (change)" sub-menu to display the "Status" screen.

$$
\begin{aligned}
& / 2 \text { Status } \\
& 1=\text { Metering } \\
& 2=\text { Time synchronization } \\
& 3=T \text { ime zone }
\end{aligned}
$$

## Setting the metering

- Press 1 (= Metering) to display the "Metering" screen.

| / 3 Metering |  |  | $1 / 3$ |
| :---: | :---: | :---: | :---: |
| Display value | $1=$ Primary | 2 = Secondary |  |
| Power (P/Q) | $1=$ Send | $2=R e c e i v e ~$ |  |
| Current | $1=\mathrm{Lag}$ | $2=\mathrm{Le}$ ad | 1 |

- Enter the selected number and press the ENTER key. Repeat this for all items.

Note: Power and Current setting


## Setting the time synchronization

The calendar clock can run locally or be synchronized with external IRIG-B time standard signal, RSM clock or IEC60870-5-103. This is selected by setting as follows:

- Press 2 (= Time synchronization) to display the "Time synchronization" screen.
- Enter the selected number and press the ENTER key.

Note: When to select IRIG-B, RSM, or IEC, check that they are active on the "Time synchronization source" screen in "Status" sub-menu. If it is set to an inactive IRIG-B, RSM, or IEC, the calendar clock runs locally. IEC is available only for relay model with IEC60870-5-103 communication.

## Setting the time zone

When the calendar clock is synchronized with the IRIG-B time standard, it is possible to transform GMT to the local time.

- Press 3 (= Time zone) to display the "Time zone" screen.

- Enter the difference between GMT and local time and press the ENTER key.


### 4.2.6.7 Protection

The GRZ100 can have 8 setting groups for protection in order to accommodate changes in the operation of the power system. One setting group is assigned active. To set the protection, proceed as follows:

- Press 6 (= Protection) on the "Setting (change)" screen to display the "Protection" screen.

$$
\begin{aligned}
& / 2 \text { Protection } \\
& 1=\text { Change active group } \\
& 2=\text { Change setting } \\
& 3=\text { Copy group }
\end{aligned}
$$

## Changing the active group

- Press 1 (= Change active group) to display the "Change active group" screen.

| /3 Change | active group (Active group= *) |  |  |
| :---: | :---: | :---: | :---: |
| Group | $2=\mathrm{Group} 2$ | p 3 | 4 = Group 4 |
| $5=\mathrm{Gr}$ | $6=\mathrm{Group} 6$ | 7 = Group 7 | $8=\mathrm{Group} 8$ |
| Current | No. $=*$ | S e | t No |

- Enter the selected number and press the ENTER key.


## Changing the settings

Almost all the setting items have default values that are set when the product was shipped. For the default values, see Appendix D and H.
To change the settings, do the following:

- Press 2 (= Change setting) to display the "Change setting" screen.

| / 3 Change | setting | (Active | group = *) |
| :---: | :---: | :---: | :---: |
| 1 = Group 1 | $2=\mathrm{Group} 2$ | $3=\mathrm{Group} 3$ | $4=\mathrm{Group} 4$ |
| 5 = Group 5 | 6 = Group 6 | 7 = Group 7 | 8 = Group 8 |

- Press the group number to change the settings and display the "Protection" screen. (In model 100 series, $3=$ Autoreclose is not displayed.)

| /4Protect ion | (Group *) |
| :---: | :---: |
| $1=\mathrm{L}$ ine parameter |  |
| $2=T r i p$ |  |
| $3=A u t o r e c l o s e$ |  |

## Setting the line parameters

Enter the line name, VT\&CT ratio and settings for the fault locator as follows:

- Press 1 (= Line parameter) on the "Protection" screen to display the "Line parameter" screen.

| 5 Line parameter | (Group *) |  |
| :--- | :--- | :--- |
| $1=$ Line name |  |  |
| $2=$ VT \& CT ratio |  |  |
| $3=$ Fault Iocator |  |  |

- Press 1 (= Line name) to display the "Line name" screen.
- Enter the line name as a text string.
- Press the END key to return the display to the "Line parameter" screen.
- Press 2 (= VT\&CT ratio) to display the "VT\&CT ratio" screen.

| /6 V T | \& $C T$ | ratio |  | 1/ 4 |
| :---: | :---: | :---: | :---: | :---: |
| $\checkmark$ T | ( | 1-20000): | 2200 - |  |
| $V \mathrm{~T}$ s 1 | ( | 1-20000): | 2200 |  |
| V T s 1 | ( | 1-20000): | 2200 |  |
| C T | ( | 1-20000): | 400 |  |

- Enter the VT ratio for protection function and press the ENTER key.
- Enter the VTs1 ratio and/or VTs2 ratio for autoreclose function and press the ENTER key. VTs1 is used for the VT ratio setting for voltage and synchronism check of autoreclose function. VTs2 is used for the VT ratio setting for the other voltage and synchronism check at the time of two-breaker autoreclose.
- Enter the CT ratio for protection function and press the ENTER key.
- Press the END key to return the display to the "Line parameter" screen.
- Press 3 (= Fault locator) to display the "Fault locator" screen.

| /6 Fault locator |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\times 1$ | ( | 0 | 00 | - | 199.99) |  |  | . 00 |  | $\Omega$ |
| $\times 0$ | ( | 0 | 00 | - | 199.99) |  | 34 | . 00 |  | $\Omega$ |
| X 0 m | ( | 0 | 00 | - | 199.99) |  | 2 | . 00 |  | $\Omega$ |
| R 1 | ( | 0 | 00 | - | $199.99)$ |  |  | . 20 |  | $\Omega$ |
| R 0 | ( | 0 | 00 | - | $199.99)$ |  |  | . 20 |  | $\Omega$ |
| Z 0 B-L | ( | 0 | 00 | - | 199.99) |  | 10 | . 00 |  | $\Omega$ |
| Z 0 B - R | ( | 0 | 00 | - | 199.99) |  | 10 | . 00 |  | $\Omega$ |
| $\mathrm{K} a \mathrm{~b}$ | ( |  | 80 | - | 120) |  |  | 100 |  | \% |
| K b c | ( |  | 80 | - | 120 ) |  |  | 100 |  | \% |
| K c a | ( |  | 80 | - | 120) |  |  | 100 |  | \% |
| $\mathrm{K} a$ | ( |  | 80 | - | 120 ) |  |  | 100 |  | \% |
| K b | $($ |  | 80 | - | 120 ) |  |  | 100 |  | \% |
| K c | ( |  | 80 | - | 120) |  |  | 100 |  | \% |
| Line | ( | 0 | 0 | - | $399.9)$ |  | 80 | . 0 |  | k m |

- Enter the setting and press the ENTER key for each item.
- Press the END key after completing the settings to return the display to the "Line parameters" screen.


## Setting the protection function

To set the protection schemes, scheme switches and protection elements, do the following. Protection elements are the measuring elements and timers.

Note: Depending on the selected protection scheme and scheme switch setting, some of the scheme switches and protection elements are not used and so need not be set. The protection function setting menu of the GRZ100 does not display unnecessary setting items. Therefore, start by setting the protection scheme, then set the scheme switch, then the protection elements.
As a result of the above, note that some of the setting items described below may not appear in the actual setting.

- Press 2 (= Trip) on the "Protection" screen to display the "Trip" screen.

| 5 Trip | (Groub *) |
| :--- | :--- | :--- |
| $1=$ Protection scheme |  |
| $2=$ Scheme switch |  |
| $3=$ Protection element |  |

## Protection scheme setting

- Press 1 (= Protection scheme) on the "Trip" screen to display the "Protection scheme" screen.
- Select the protection scheme to be used by entering the number corresponding to the protection scheme and press the ENTER key.
- Press the END key to return to the "Trip" screen.


## Setting the scheme switches

- Press 2 (= Scheme switch) on the "Trip" screen to display the "Scheme switch" screen.

- Enter the number corresponding to the switch status to be set and press the ENTER key for each switch.
- After setting all switches, press the END key to return to the "Trip" screen.


## Setting the protection elements

- Press 3 (= Protection element) to display the "Protection element" screen.



## <Distance>

- Press 1 (= Distance) to display the "Distance" screen. The measuring elements and timers used in the distance protection are set using this screen.

- Enter the numerical value and press the ENTER key for each element.
- After setting all elements, press the END key to return to the "Protection element" menu.


## <PSB\&OST>

- Press 2 (= PSB\&OST) to display the "PSB \& OST" screen. The measuring elements and timers used in the power swing blocking and out-of-step tripping are set using this screen.

| /7 PSB\&OS T |  |  |  |  | $1 /$ | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PSBSZ ( | 0. 50- | 15.00): | 0. 50 | - | $\Omega$ |  |
| PSBGZ ( | 0. 50- | 15.00): | 0. 50 | - | $\Omega$ |  |
| TPSB ( | $20-$ | 60 ) : | 40 |  | m s |  |
| OSTR1 | $3.0-$ | 30.0 ): | 1. 0 |  | $\Omega$ |  |
| OSTR2 | 1. $0-$ | 10.0) : | 1. 0 |  | $\Omega$ |  |
| OSTXF ( | 1. $0-$ | 50.0) : | 1. 0 |  | $\Omega$ |  |
| OSTXB ( | 0. $2-$ | 10.0): | 0. 2 |  | $\Omega$ |  |
| TOST1 | 0. $01-$ | 1. O O) : | 0. 01 |  | $s$ |  |
| TOST2 | 0. 01 - | 1. 00) : | 0. 01 |  | s |  |

- Enter the numerical value and press the ENTER key for each element.
- After setting all elements, press the END key to return to the "Protection element" menu.


## <OC, DEF\&UV>

- Press 3 (= OC, DEF\&UV) to display the "OC, DEF\&UV" screen. The overcurrent, undervoltage and directional earth fault elements and timers are set using this screen.

- Enter the numerical value and press the ENTER key for each element.
- After setting all elements, press the END key to return to the "Protection element" menu.


## <Command trip>

- Press 4 (= Command trip) to display the "Command trip" screen. The timers used in the command protection are set using this screen(*).

| /7 Command trip |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T D EFF | ( 0 | 0.00- | 0 | $30)$ |  | . 00 |  |  | s |
| TDEFR | ( 0 | 0.00- | 0 | $30)$ |  | 00 |  |  | s |
| TCHD | ( | 0 - |  | 50 ) |  | 12 |  | m | S |
| T CHDE |  | 0 - |  | 50 ) |  | 20 |  | m |  |
| TREBK | ( 0 | 0. $00-$ | 0 | 00 ) |  | 10 |  |  | S |
| TECCB | ( 0 | 0. $00-$ | 00 | 00 ) |  | . 10 |  |  | S |
| T S B C T | ( 0 | 0. $00-$ | 1 | 00 ) |  | 10 |  |  | s |

- Enter the numerical value and press the ENTER key for each timer.
- After setting all timers, press the END key to return to the "Protection element setting" menu.
$\left(^{*}\right)$ As described in the "Notes on setting", if the protection scheme is set to 3ZONE, Z1-EXT, PUP, POP or UOP, no setting items are displayed in the "Command trip" screen. Press the END key to return to the upper screen.


## Setting the autoreclose function

To set the autoreclose mode, scheme switches and autoreclose elements, do the following:
Note: Depending on the autoreclose mode and scheme switch setting, some of the scheme switches and autoreclose elements are not used and so do not need to be set. The autoreclose function setting menu of the GRZ100 does not display unnecessary setting items. Therefore, start by setting the autoreclose mode, and proceed to set the scheme switch, then the autoreclose elements.
As a result of the above, note that some of the setting items described below may not appear in the actual setting.

- Press 3 (= Autoreclose) on the "Protection" screen to display the "Autoreclose" screen.

| 5 Autoreclose | (Group *) |
| :--- | :--- |
| $1=$ Autoreclose mode |  |
| 2 =Scheme switch |  |
| 3 =Autoreclose element |  |

## Setting the Autoreclose mode

- Press 1 (= Autoreclose mode) to display the "Autoreclose mode" screen.

$$
\begin{array}{|llll}
\hline 6 \text { Autoreclose mode } & & \\
1=\text { D isable } & 2=\text { SPAR } & 3=\text { TPAR } & 4=\text { SPAR\&TPAR } \\
5=\text { EXT1P } & 3=\text { EXT3P } & & \\
\quad \text { Current } & \text { No. }=4 & \text { Select } & \\
\hline
\end{array}
$$

- Select the autoreclose mode to be used by entering the number corresponding to the autoreclose mode and press the ENTER key.
- Press the END key to return to the "Autoreclose" screen.


## Setting the scheme switches

- Press 2 (= Scheme switch) to display the "Scheme switch" screen.

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| /6 Scheme switch ARC-EXT $0=0 \mathrm{ff} \quad 1=0 \mathrm{n}$ |  |  |  |  |  |
| ARC-DEF 0 $=0 \mathrm{ff} \quad 1=0 \mathrm{n}$ |  |  |  |  | 0 |
| $A R C-B U \quad 0=0 \mathrm{ff} \quad 1=0 \mathrm{n}$ |  |  |  |  | 0 |
| $\begin{array}{lllll}\mathrm{VCHK} & 0=0 \mathrm{ff} & 1=\mathrm{LB} & 2=\mathrm{DB} & 3=S Y\end{array}$ |  |  |  |  | 1 |
| ARC-SM 0=0ff $1=\mathrm{S} 2 \quad 2=\mathrm{S} 3 \quad 3=\mathrm{S} 4$ |  |  |  |  | 0 |
| ARC-SUC $0=0 \mathrm{ff} \quad 1=0 \mathrm{n}$ |  |  |  |  | 0 |
| VTPHSEL 1=A $2=\mathrm{B} \quad 3=\mathrm{C}$ |  |  |  |  | 1 |
| VT-RATE 1 $=$ PH/G $2=P H / P H$ |  |  |  |  | 1 |
| $3 \mathrm{PH}-\mathrm{VT} \quad 1=\mathrm{Bus} 2=\mathrm{Line}$ |  |  |  |  | 1 |
|  | $1=\mathrm{P} 1$ | $2=\mathrm{P} 2$ | $3=\mathrm{P} 3$ |  | 1 |

- Enter the number corresponding to the switch status to be set and press the ENTER key for each switch.
- After setting all switches, press the END key to return to the "Autoreclose" screen.


## Setting the autoreclose elements

- Press 3 (= Autoreclose element) to display the "Autoreclose element" screen.

$$
\begin{aligned}
& 6 \text { Autoreclose element } \\
& 1=\text { Autoreclose timer } \\
& 2=\text { Synchrocheck }
\end{aligned} \quad \text { (Group *) }
$$

## <Autoreclose timer>

- Press 1 (= Autoreclose timer) to display the "Autoreclose timer" screen.

| /7 Autoreclose timer |  |  |  | $1 / 13$ |
| :---: | :---: | :---: | :---: | :---: |
| T E V L V | 0.01- | 10.0) | 1. 00 | S |
| TR D Y 1 ( | $5-$ | 300 ) | 60 | S |
| T S PR1 ( | 0.01- | 10.0) | 0.80 | s |
| T T P R 1 ( | 0.01- | 00.00) | 0.60 | S |
| TR R ( | 0.01- | 00.00) | 2. 00 | S |
| T W 1 ( | 0. 1- | 10.0) | 0.3 | S |
| T S 2 ( | $5.0-$ | $300.0)$ | 20.0 | S |
| T S 2 R ( | $5.0-$ | $300.0)$ | 30.0 | S |
| T S 3 ( | $5.0-$ | 300.0 ) | 20.0 | S |
| T S 3 R ( | $5.0-$ | $300.0)$ | 30.0 | s |
| T S 4 ( | $5.0-$ | $300.0)$ | 20.0 | s |
| T S 4 R ( | $5.0-$ | $300.0)$ | 30.0 | S |
| T S U C ( | 0. 1 - | 10.0) | 3.0 | S |

- Enter the numerical value and press the ENTER key for each timer.
- After setting all timers, press the END key to return to the "Autoreclose element" menu.


## <Synchrocheck>

- Press 2 (= Synchrocheck) to display the "Synchrocheck" screen for voltage check and synchronism check elements.

- Enter the numerical value and press the ENTER key for each element.
- After setting all elements, press the END key to return to the "Autoreclose element" menu.


## Setting group copy

To copy the settings of one group and overwrite them to another group, do the following:

- Press 3 (= Copy group) on the "Protection" screen to display the "Copy group A to B" screen.

$|$| 3 | Copy | groupA | to | B | $(A c t i v e ~ g r o u p=*)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A$ | $($ | $1-$ | $8):$ | - |  |
| $B$ | $($ | $1-$ | $8):$ |  |  |

- Enter the group number to be copied in line A and press the ENTER key.
- Enter the group number to be overwritten by the copy in line B and press the ENTER key.


### 4.2.6.8Binary Input

The logic level of binary input signals can be inverted by setting before entering the scheme logic. Inversion is used when the input contact cannot meet the requisite described in the Table 3.2.2.

- Press 7 (= Binary input) on the "Setting (change)" sub-menu to display the "Binary input" screen.

| /2 Binary input |  |  | 1/** |
| :---: | :---: | :---: | :---: |
| BISW 1 | 1 =Norm | $2=1 \mathrm{nv}$ | 1 |
| B। SW 2 | 1 =Norm | $2=1 \mathrm{nv}$ | 1 |
| B I S W 3 | 1 = Norm | $2=1 \mathrm{nv}$ | 1 |
| BIS W 4 | 1 = Norm | $2=1 n v$ | 1 |
| $B \mid S W 5$ | 1 = $\operatorname{orm}$ | $2=1 \mathrm{nv}$ | 1 |
| B I S W 16 | $1=\mathrm{Norm}$ | $2=1 \mathrm{nv}$ | 1 |
| B ISW17 | $1=\mathrm{Norm}$ | $2=1 \mathrm{nv}$ | 1 |
| B I S W 18 | $1=\mathrm{Norm}$ | $2=1 \mathrm{nv}$ | 1 |
| B I S W 26 | $1=\mathrm{Norm}$ | $2=1 \mathrm{nv}$ | 1 |
| B ISW 27 | $1=\mathrm{Norm}$ | $2=1 \mathrm{nv}$ | 1 |
| B ISW 28 | $1=\mathrm{Norm}$ | $2=1 \mathrm{nv}$ | 1 |
| BISW34 | $1=\mathrm{Norm}$ | $2=1 \mathrm{nv}$ | 1 |
| B। SW3 5 | $1=\mathrm{Norm}$ | $2=1 \mathrm{nv}$ | 1 |
| BISW36 | $1=\mathrm{Norm}$ | $2=1 \mathrm{nv}$ | 1 |

- Enter 1 (= Normal) or 2 (= Inverted) and press the ENTER key for each binary input.


### 4.2.6.9Binary Output

All the binary outputs of the GRZ100 except the tripping command, signal for command protection and relay failure signal are user-configurable. It is possible to assign one signal or up to 6 ANDing or ORing signals to one output relay. Available signals are listed in Appendix B.
It is also possible to attach a delayed drop-off delay time of 0.2 seconds to these signals. The delay drop-off time is disabled by the scheme switch [BOTD].
Appendix D shows the factory default settings.
To configure the binary output signals, do the following:

## Selection of output module

- Press 8 (= Binary output) on the "Setting (change)" screen to display the "Binary output" screen. The available output module(s) will be shown. (The screen differs depending on the relay model.)

$$
\left\lvert\, \begin{array}{lll}
/ 2 & \text { Binary } & \text { output } \\
1=10 \# 2 & 2=10 \# 3
\end{array}\right.
$$

- Press the number corresponding to the selected output module to display the "Binary output" screen.

| /3 B inary output |  | $(* * * * *)$ |
| :--- | :--- | :--- | :--- |
| Select Bo | $(1-\quad * *)$ |  |
|  |  |  |
|  | Select No. $=$ |  |

Note: This setting is required for all of the binary outputs. If any of the binary output is not used, enter 0 to the logic gates \#1-\#6 in assigning signals.

## Selecting the output relay

- Enter the output relay number and press the ENTER key to display the "Setting" screen.

```
/4 Setting (B01 of lO#2)
1=Logic gate type & delay timer
2=Input to logic gate
```


## Setting the logic gate type and timer

- Press 1 to display the "Logic gate type and delay timer" screen.

| $\left[\begin{array}{llrlll}5 & \text { Logic gate } & \text { type \& delay timer } & 1 / 2 \\ \text { Logic } & 1=0 R & 2=A N D & & & 1\end{array}\right.$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| B 0 T D | $0=0 \mathrm{ff}$ | $1=0 \mathrm{n}$ |  | 1 |

- Enter 1 or 2 to use an OR gate or AND gate and press the ENTER key.
- Enter 0 or 1 to add 0.2 s delayed drop-off time to the output relay if required and press the ENTER key.
- Press the END key to return to the "Setting" screen.


## Assigning signals

- Press 2 on the "Setting" screen to display the "Input to logic gate" screen.

| / 5 | Inp |  | ic ga |  |  | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \#1 ( | 0 - | $3071)$ | 21 | - |  |
|  | \# 2 ( | 0 - | $3071)$ | 4 |  |  |
| 1 n | \# 3 ( | 0 - | 3071) | 67 |  |  |
|  | \# 4 ( | 0 - | $3071)$ | 0 |  |  |
|  | \# 5 ( | 0 - | 3071 ) | 0 |  |  |
|  | \# 6 ( | 0 - | 3071 ) | 0 |  |  |

- Assign signals to gates (In \#1- \#6) by entering the number corresponding to each signal referring to Appendix B.

Note: If signals are not assigned to all the gates \#1-\#6, enter 0 to the unassigned gate(s).
Repeat this process for the outputs to be configured.

### 4.2.6.10 LED

Four LEDs of the GRZ100 are user-configurable. Each is driven via a logic gate which can be programmed for OR gate or AND gate operation. Further, each LED has a programmable reset characteristic, settable for instantaneous drop-off, or for latching operation. The signals listed in Appendix B can be assigned to each LED as follows.

## Selection of LED

- Press 9 (= LED) on the "Setting (change)" screen to display the "LED" screen.

| 2 LED |  |
| :--- | :--- |
| Select LED | $(1-4)$ |

Select No. =

- Enter the LED number and press the ENTER key to display the "Setting" screen.

```
3 Setting
    (LED 1)
1=Logic gate type & reset
2=|nput to logic gate
```


## Setting the logic gate type and reset

- Press 1 to display the "Logic gate type and reset" screen.

| 4 Logicagate type \& reset | $1 / 2$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Logic | $1=0 R$ | $2=A N D$ | 1 | - |
| Reset | $0=1$ nst | $1=$ Latch | 1 |  |

- Enter 1 or 2 to use an OR gate or AND gate and press the ENTER key.
- Enter 0 or 1 to select "Instantaneous reset" or "Latch reset" and press the ENTER key.
- Press the END key to return to the "Setting" screen.

Note: To release the latch state, refer to Section 4.2.1.

## Assigning signals

- Press 2 on the "Setting" screen to display the "Input to logic gate" screen.

- Assign signals to gates (In \#1- \#4) by entering the number corresponding to each signal referring to Appendix B.

Note: If signals are not assigned to all the gates \#1-\#4, enter 0 to the unassigned gate(s).
Repeat this process for other LEDs to be configured.

### 4.2.7 Testing

The sub-menu "Test" provides such functions as setting of test switches, manual starting of automatic tests, forced operation of binary outputs, time measurement of the variable setting timer and logic signal observation.

### 4.2.7.1 Setting the Switches

The automatic monitor function (A.M.F.) can be disabled by setting the switch [A.M.F] to "Off."
Disabling the A.M.F. inhibits trip blocking even in the event of a failure in the items being monitored by this function. It also prevents failures from being displayed on the "ALARM" LED and LCD described in Section 4.2.1. No events related to the A.M.F. are recorded, either.

Disabling A.M.F. is useful for blocking the output of unnecessary alarms during testing.
Note: Set the switch [A.M.F] to "Off" before applying the test inputs, when the A.M.F is disabled.
When a three-phase voltage source is not available, the distance measuring element operation can be tested using a single-phase voltage source by setting the switch [Z1S-1PH] to "On". This is not fit for the high-accuracy test, though.

The switch [ZB-CTRL] is used to test the Z1 characteristic with offset or not. When the switch [ZB-CTRL] is set to " 1 ", the Z1 is an offset characteristic. When the switch [ZB-CTRL] is set to "2", the Z1 is a characteristic without offset.


Figure 4.2.7.1 Z1 Characteristics by [ZB-CTRL] Setting

The gradient characteristic of Zone 1 and Zone 1X reactance elements is obtained only when the load current is transmitted from local to remote terminal. So, the switch [XANGLE] is used to fix
the gradient characteristic for testing. When testing, the switch [XANGLE] is set to "1".


Figure 4.2.7.2 Gradient Characteristic of Zone 1 and Zone 1X
DOCN element can operate during a power swing condition. So, to test the DOCN characteristic, the switch [DOCN-C] is used. When testing, the switch [DOCN-C] is set to "1".

The switches [Z1S-1PH], [ZB-CTRL], [XANGLE] and [DOCN-C] are implemented only for the function test.

While the switch [A.M.F] is set to " 0 ", [Z1S-1PH] is set to " 1 ", [ZB-CTRL] is set to " 1 " or " 2 ", [XANGLE] is set to "1", [DOCN-C] is set to "1", the red "TESTING" LED is lit for alarming.

Caution: Be sure to restore these switches after the tests are completed.

## Disabling automatic monitoring

- Press 5 (= Test) on the top "MENU" screen to display the "Test" screen.

| 1 Test |  |  |
| :--- | :--- | :--- |
| $1=$ Switch | $2=$ Manual test |  |
| $3=$ Binary o tput | $4=$ Timer |  |
| $5=$ Logic circuit |  |  |

- Press 1 (= Switch) to display the Switch screen.
- Enter 0 for A.M.F to disable the automatic monitoring function and enter 1 for Z1S-1PH to enable the test to use a single-phase voltage source.

| /2 Switch |  |  |  | $1 /$ |
| :---: | :---: | :---: | :---: | :---: |
| A. M. F | $0=0 \mathrm{ff}$ | $1=0 n$ |  | 1 |
| Z 1 S-1PH | $0=0 \mathrm{ff}$ | $1=0 \mathrm{n}$ |  | 0 |
| Z B - C T R L | $0=\mathrm{Norm}$ | $1=0 \mathrm{FST}$ | $2=N o n-0 F S T$ | 0 |
| XANGLE | $0=0 \mathrm{ff}$ | $1=0 \mathrm{n}$ |  | 0 |
| D O C N-C | $0=0 \mathrm{ff}$ | $1=0 n$ |  | 0 |
| I E C T S T | $0=0 \mathrm{ff}$ | $1=0 n$ |  | 0 |
| THMRST | $0=0 \mathrm{ff}$ | $1=0 \mathrm{n}$ |  | 0 |
| UV TES T | $0=0 \mathrm{ff}$ | $1=0 n$ |  | 0 |

## Testing the offset characteristic of Z1

- Enter 0 for A.M.F to disable the automatic monitoring function and enter 1 for ZB-CTRL to modify the offset characteristic forcibly.
- Press the END key to return to the "Test" screen.


## Testing the gradient characteristic of Zone 1 and Zone 1X

- Enter 0 for A.M.F to disable the automatic monitoring function and enter 1 for XANGLE to modify the gradient characteristic forcibly.
- Press the END key to return to the "Test" screen.


## Testing the characteristic of DOCN

- Enter 0 for A.M.F to disable the automatic monitoring function and enter 1 for DOCN-C to enable the DOCN element to operate.
- Press the END key to return to the "Test" screen.


## IECTST

- Enter 1(=On) for IECTST to transmit 'test mode' to the control system by IEC60870-5-103 communication when testing the local relay, and press the ENTER key.
- Press the END key to return to the "Test" screen.


## THMRST

The switch [THMRST] is used to set the reset delay time to instantaneous reset or not and to test the hot curve characteristic of THM. The function is active when the [THMRST] is ON. The [THMRST] is displayed only for model 100, 200 and 300 series.

- Enter $1(=$ On) for testing the thermal overload element, and press the ENTER key.
- Press the END key to return to the "Test" screen.


## UVTEST

- Enter $0(=O f f)$ or $1(=O n)$ to set disable/enable the UV blocking (UVBLK) and press the ENTER key.
- Press the END key to return to the "Test" screen.


### 4.2.7.2Manual Testing

The automatic test of the telecommunication circuit can be performed manually by key operations. The manual test performed here is also counted as the count displayed in Section 4.2.3.4.

- Press 2 (= Manual test) on the "Test" screen to display the "Manual test" screen.

```
/2 Manual test
1=Te|ecomm channel test
Press number to start test.
```


## Performing the signal channel test

- Press 1 on the "Manual test" screen to start the test. The display shown below appears.

```
/2 Manual test
Telecomm channel testing...
```

If the test is completed normally, the display shown below appears on the LCD for 5 seconds and then changes to the "Manual test" screen.

$$
\begin{aligned}
\hline 2 \text { Manual test } \\
\text { Telecomm channel testing... } \\
\quad \text { Completed. }
\end{aligned}
$$

If an abnormality is found during testing, the LCD displays the following indication for 5 seconds and returns to the "Manual test" screen. The "ALARM" LED remains lit.


Note: Under any of the following conditions, the test will not start. Neither "Completed" nor the "Failed" screen is displayed.

- BOP is not selected as the protection scheme.
- Telecommunication equipment is out of service.
- Scheme switch [CHMON] is set to "OFF."
- Circuit breaker is open.


### 4.2.7.3Binary Output Relay

It is possible to forcibly operate all binary output relays for checking connections with the external devices. Forced operation can be performed on one or more binary outputs at a time for each module.

- Press 2 (= Binary output) on the "Test" screen to display the "Binary output" screen.

| $/ 2$ B inarv output |  |  |
| :--- | :--- | :--- |
| $1=10 \# 1$ | $2=10 \# 2$ | $3=10 \# 3$ |

The LCD displays the output modules installed depending on the model.

- Enter the selected number corresponding to each module to be operated. Then the LCD displays the name of the module, the name of the output relay, the name of the terminal block and the terminal number to which the relay contact is connected.

| /3 B 0 |  | ( $0=D i s a b l e \quad 1=E n a b \mid e) ~$ | 1/14 |
| :---: | :---: | :---: | :---: |
| 10\#2 | B 01 |  | 1 - |
| 10\# 2 | B 02 |  | 1 |
| 10\#2 | B 03 |  | 1 |
| 10\#2 | B 04 |  | 0 |
| 10\#2 | B 05 |  | 0 |
| 10\#2 | B 06 |  | 0 |
| 10\#2 | B 07 |  | 0 |
| 10\#2 | B 08 |  | 0 |
| 10\#2 | B 09 |  | 0 |
| 10\#2 | B 010 |  | 0 |
| 10\#2 | B 011 |  | 0 |
| 10\#2 | B 012 |  | 0 |
| 10\#2 | FAIL |  | 0 |
| 10\#2 | B 013 |  | 0 |

- Enter 1 and press the ENTER key to operate the output relays forcibly.
- After completing the entries, press the END key. Then the LCD displays the screen shown below.
$/ 3$ B0
Keep pressing 1 to operate.
Press CANCEL to cancel.
- Keep pressing the 1 key to operate the assigned output relays.
- Release pressing the 1 key to reset the operation.
- Press the CANCEL key to return to the upper screen.


### 4.2.7.4Timer

The pick-up or drop-off delay time of the variable timer used in the scheme logic can be measured with monitoring jacks A and B. Monitoring jacks A and B are used to observe the input signal and output signal to the timer respectively.

- Press 4 (= Timer) on the "Test" screen to display the "Timer" screen.

- Enter the number corresponding to the timer to be observed and press the ENTER key. The timers and related numbers are listed in Appendix C.
- Press the END key to display the following screen.
2 Timer
Press ENTER to operate.
Press CANCEL to cancel.
- Press the ENTER key to operate the timer. The "TESTING" LED turns on, and the timer is initiated and the following display appears. The input and output signals of the timer can be observed at monitoring jacks A and B respectively. The LEDs above monitoring jacks A or B are also lit if the input or output signal exists.

```
/2 T imer
Operating...
Press END to reset.
Press CANCEL to cancel.
```

- Press the CANCEL key to test other timers.
- Press the END key to reset the input signal to the timer. The "TESTING" LED turns off.

To measure the drop-off delayed time, press the END key after the LED above jack B lights.

### 4.2.7.5Logic Circuit

It is possible to observe the binary signal level on the signals listed in Appendix B with monitoring
jacks A and B.

- Press 5 (= Logic circuit) on the "Test" screen to display the "Logic circuit" screen.

| /2 Logic circuit |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TermA ( | 0 - | 3071 ) | 1 |  |  |
| TermB | 0 - | 3071 ) | 48 |  |  |

- Enter a signal number to be observed at monitoring jack A and press the ENTER key.
- Enter the other signal number to be observed at monitoring jack B and press the ENTER key.

After completing the setting, the signals can be observed by the binary logic level at monitoring jacks A and B or by the LEDs above the jacks.
On screens other than the above screen, observation with the monitoring jacks is disabled.

### 4.3 Personal Computer Interface

The relay can be operated from a personal computer using an RS232C port on the front panel. On the personal computer, the following analysis and display of the fault voltage and current are available in addition to the items available on the LCD screen.

- Display of voltage and current waveform: Oscillograph, vector display
- Symmetrical component analysis: On arbitrary time span
- Harmonic analysis:

On arbitrary time span

- Frequency analysis:

On arbitrary time span

### 4.4 Relay Setting and Monitoring System

The Relay Setting and Monitoring (RSM) system is a system that retrieves and analyses the data on power system quantities, fault and event records and views or changes settings in individual relays via a telecommunication network using a remote PC.
For the details, see the separate instruction manual "PC INTERFACE RSM100".
Figure 4.4.1 shows the typical configuration of the RSM system via a protocol converter G1PR2. The relays are connected through twisted pair cables, and the maximum 256 relays can be connected since the G1PR2 can provide up to 8 ports. The total length of twisted pair wires should not exceed 1200 m . Relays are mutually connected using an RS485 port on the relay rear panel and connected to a PC RS232C port via G1PR2. Terminal resistor ( 150 ohms ) is connected the last relay. The transmission rate used is $64 \mathrm{kbits} / \mathrm{s}$.
Figure 4.4.2 shows the configuration of the RSM system with Ethernet LAN (option). The relays are connected to HUB through UTP cable using RJ-45 connector at the rear of the relay. The relay recognizes the transmission speed automatically.
In case of the optional fiber optic interface (option), the relays are connected through graded-index multi-mode $50 / 125 \mu \mathrm{~m}$ or $62.5 / 125 \mu \mathrm{~m}$ type optical fiber using ST connector at the rear of the relay.


Figure 4.4.1 Relay Setting and Monitoring System (1)


Figure 4.4.2 Relay Setting and Monitoring System (2)

### 4.5 IEC 60870-5-103 Interface

The GRZ100 can support the IEC60870-5-103 communication protocol. This protocol is mainly used when the relay communicates with a control system and is used to transfer the following measurand, status data and general command from the relay to the control system.

- Measurand data: current, voltage, active power, reactive power, frequency
- Status data: events, fault indications, etc.

The IEC60870-5-103 function in the relay can be customized with the original software "IEC103 configurator". It runs on a personal computer (PC) connected to the relay, and can help setting of Time-tagged messages, General command, Metering, etc. For details of the setting method, refer to "IEC103 configurator" manual. For the default setting of IEC60870-5-103, see Appendix N.

The protocol can be used through the RS485 port on the relay rear panel and can be also used through the optional fibre optical interface. The relay connection is similar to Figure 4.4.1.

The relay supports two baud-rates 9.6 kbps and 19.2 kbps .
The data transfer from the relay can be blocked by the setting.
For the settings, see the Section 4.2.6.4.

### 4.6 Clock Function

The clock function (Calendar clock) is used for time-tagging for the following purposes:

- Event records
- Disturbance records
- Fault records
- Metering
- Automatic supervision
- Display of the system quantities on the digest screen
- Display of the fault records on the digest screen
- Display of the automatic monitoring results on the digest screen

The calendar clock can run locally or be synchronized with the external IRIG-B time standard signal, RSM or IEC clock. This can be selected by setting.

If it is necessary to synchronise with the IRIG-B time standard signal, it is possible to transform GMT to the local time by setting.

When the relays are connected to the RSM system as shown in Figure 4.4.1, the calendar clock of each relay is synchronized with the RSM clock. If the RSM clock is synchronized with the external time standard (GPS clock etc.), then all the relay clocks are synchronized with the external time standard.

## 5. Installation

### 5.1 Receipt of Relays

When relays are received, carry out the acceptance inspection immediately. In particular, check for damage during transportation, and if any is found, contact the vendor.

Check that the following accessories are attached.

- 3 pins for the monitoring jack, packed in a plastic bag.
- An attachment kit required in rack-mounting, if ordered. (See Appendix F.)

1 large bracket with 5 round head screws, spring washers and washers ( $\mathrm{M} 4 \times 10$ )
1 small bracket with 3 countersunk head screws (M4×6)
2 bars with 4 countersunk head screws (M3 $\times 8$ )
Always store the relays in a clean, dry environment.

### 5.2 Relay Mounting

Either a rack or flush mounting relay is delivered as designated by the customer. The GRZ100 models are classified into two types by their case size, type A and type B. Appendix F shows the case outlines.

If the customer requires a rack-mounting relay, support metal fittings necessary to mount it in the 19 -inch rack are also supplied with the relay.

When to mount the relay in the rack, detach the original brackets fixed on both sides of the relay and seals on the top and bottom of the relay. Attach the larger bracket and smaller bracket on the left and right side of the relay respectively and the two bars on the top and bottom of the relay.

How to mount the attachment kit, see Appendix F.
Dimensions of the attachment kits EP-101 and EP-102 is also shown in Appendix F.

### 5.3 Electrostatic Discharge

## ACAUTION

Do not take out any modules outside the relay case since electronic components on the modules are very sensitive to electrostatic discharge. If it is absolutely essential to take the modules out of the case, do not touch the electronic components and terminals with your bare hands. Additionally, always put the module in a conductive anti-static bag when storing it.

### 5.4 Handling Precautions

A person's normal movements can easily generate electrostatic potential of several thousand volts. Discharge of these voltages into semiconductor devices when handling electronic circuits can cause serious damage, which often may not be immediately apparent but the reliability of the circuit will have been reduced.

The electronic circuits are completely safe from electrostatic discharge when housed in the case. Do not expose them to risk of damage by withdrawing modules unnecessarily.

Each module incorporates the highest practicable protection for its semiconductor devices. However, if it becomes necessary to withdraw a module, precautions should be taken to preserve
the high reliability and long life for which the equipment has been designed and manufactured.

## ACAUTION

- Before removing a module, ensure that you are at the same electrostatic potential as the equipment by touching the case.
- Handle the module by its front plate, frame or edges of the printed circuit board. Avoid touching the electronic components, printed circuit board or connectors.
- Do not pass the module to another person without first ensuring you are both at the same electrostatic potential. Shaking hands achieves equipotential.
- Place the module on an anti-static surface, or on a conducting surface which is at the same potential as yourself.
- Do not place modules in polystyrene trays.

It is strongly recommended that detailed investigations on electronic circuitry should be carried out in a Special Handling Area such as described in the IEC 60747.

### 5.5 External Connections

External connections are shown in Appendix G.

## 6. Commissioning and Maintenance

### 6.1 Outline of Commissioning Tests

The GRZ100 is fully numerical and the hardware is continuously monitored.
Commissioning tests can be kept to a minimum and need only include hardware tests and conjunctive tests. The function tests are at the user's discretion.

In these tests, user interfaces on the front panel of the relay or local PC can be fully applied.
Test personnel must be familiar with general relay testing practices and safety precautions to avoid personal injuries or equipment damage.

## Hardware tests

These tests are performed for the following hardware to ensure that there is no hardware defect. Defects of hardware circuits other than the following can be detected by monitoring which circuits functions when the DC power is supplied.

## User interfaces

Binary input circuits and output circuits
AC input circuits

## Function tests

These tests are performed for the following functions that are fully software-based. Tests of the protection schemes and fault locator require a dynamic test set.

Measuring elements
Timers
Protection schemes
Autoreclose
Metering and recording
Fault locator

## Conjunctive tests

The tests are performed after the relay is connected with the primary equipment, telecommunication equipment and other external equipment.

The following tests are included in these tests:

> On load test: phase sequence check and polarity check
> Signaling circuit test
> Tripping and reclosing circuit test

### 6.2 Cautions

### 6.2.1 Safety Precautions

## ACAUTION

- The relay rack is provided with a grounding terminal.

Before starting the work, always make sure the relay rack is grounded.

- When connecting the cable to the back of the relay, firmly fix it to the terminal block and attach the cover provided on top of it.
- Before checking the interior of the relay, be sure to turn off the power.

Failure to observe any of the precautions above may cause electric shock or malfunction.

### 6.2.2 Cautions on Tests

## ACAUTION

- While the power is on, do not connect/disconnect the flat cable on the front of the printed circuit board (PCB).
- While the power is on, do not mount/dismount the PCB.
- Before turning on the power, check the following:
- Make sure the polarity and voltage of the power supply are correct.
- Make sure the CT circuit is not open.
- Make sure the VT circuit is not short-circuited.
- Be careful that the transformer module is not damaged due to an overcurrent or overvoltage.
- If settings are changed for testing, remember to reset them to the original settings.

Failure to observe any of the precautions above may cause damage or malfunction of the relay.
Before mounting/dismounting the PCB, take antistatic measures such as wearing an earthed wristband.

### 6.3 Preparations

## Test equipment

The following test equipment is required for the commissioning tests.
1 Three-phase voltage source
1 Single-phase current source
1 Dynamic three-phase test set (for protection scheme test)
1 DC power supply
3 AC voltmeters
3 Phase angle meter
1 AC ammeter
1 DC voltmeter
1 Time counter, precision timer
1 PC (not essential)

## Relay settings

Before starting the tests, it must be specified whether the tests will use the user's settings or the default settings.

For the default settings, see the following appendixes:
$\begin{array}{ll}\text { Appendix D } & \text { Binary Output Default Setting List } \\ \text { Appendix H } & \text { Relay Setting Sheet }\end{array}$

## Visual inspection

After unpacking the product, check for any damage to the relay case. If there is any damage, the internal module might also have been affected. Contact the vendor.

## Relay ratings

Check that the items described on the nameplate on the front of the relay conform to the user's specification. The items are: relay type and model, AC voltage, current and frequency ratings, and auxiliary DC supply voltage rating.

## Local PC

When using a local PC, connect it with the relay via the RS232C port on the front of the relay. RSM100 software is required to run the PC.

For the details, see the separate volume "PC INTERFACE RSM100".

### 6.4 Hardware Tests

The tests can be performed without external wiring, but a DC power supply and an AC voltage and current source are required.

### 6.4.1 User Interfaces

This test ensures that the LCD, LEDs and keys function correctly.

## LCD display

- Apply the rated DC voltage and check that the LCD is off.

Note: If there is a failure, the LCD displays the "Auto-supervision" screen when the DC voltage is applied.

- Press the RESET key for 1 second when the LCD is off, and check that black dots appear on the whole screen.


## LED display

- Apply the rated DC voltage and check that the "IN SERVICE" LED is lit in green.
- Press the RESET key for 1 second when the LCD is off, and check that seven LEDs under the "IN SERVICE" LED and two LEDs for monitoring jacks A and B are lit in red.


## VIEW and RESET keys

- Press the VIEW key when the LCD is off and check that the "Metering" screen is displayed on the LCD.
- Press the RESET key and check that the LCD turns off.


## Keypad

- Press any key on the keypad when the LCD is off and check that the LCD displays the "MENU" screen. Press the END key to turn off the LCD.
- Repeat this for all keys.


## 6．4．2 Binary Input Circuit

The testing circuit is shown in Figure 6．4．2．1．


Terminal block（TB）and Terminal numbers are depending on the relay model．Refer to Appendix G．

Figure 6．4．2．1 Testing Binary Input Circuit
－Display the＂Binary input \＆output status＂screen from the＂Status＂sub－menu．

| ／2 Binary input | utput |  |  |  | $3 /$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input（10\＃1） | 「000 | 000 | 000 | 000 |  |  |
| Input（10\＃2） | 「000 |  |  |  |  |  |
| Input（10\＃3） | 「000 | 000 | 000 | 0 |  |  |
| Input（10\＃4） | 「000 |  |  |  |  |  |
| Output（10\＃1－trip） | 「000 | 000 |  |  |  |  |
| Output（10\＃2） | ［000 | 000 | 000 | 000 | 00 |  |
| Output（10\＃3） | 「000 | 000 | 000 | 0 |  |  |
| Output（10\＃4） | 「000 | 000 | 000 | 000 | 00 |  |

－Apply rated DC voltage to terminals of each binary input circuit．
Note：Terminal number depends on the relay model．So see Appendix G for details．
Check that the status display corresponding to the input signal changes from 0 to 1 ．（For the binary input status display，see Section 4．2．4．2．）

The user will be able to perform this test for one terminal to another or for all terminals at once．

### 6.4.3 Binary Output Circuit

This test can be performed by using the "Test" sub-menu and forcibly operating the relay drivers and output relays. Operation of the output contacts is monitored at the output terminal. The output contact and corresponding terminal number are shown in Appendix G.

- Press 3 (= Binary output) on the "Test" screen to display the "Binary output" screen. The LCD displays the output modules installed depending on the model.
- Enter the selected number corresponding to each module to be operated. The LCD will display the name of the module, the name of the output relay, the name of the terminal block and the terminal number to which the relay contact is connected.
- Enter 1 and press the ENTER key.
- After completing the entries, press the END key. The LCD will display the screen shown below. If 1 is entered for all of the output relays, the following forcible operation can be performed collectively.
K B 0
K eep pressing 1 to operate.
Press CANCEL to cancel.
- Keep pressing the 1 key to operate the output relays forcibly.
- Check that the output contacts operate at the terminal.
- Release the 1 key to reset the operation.


### 6.4.4 AC Input Circuits

This test can be performed by applying known values of voltage and current to the AC input circuits and verifying that the values applied coincide with the values displayed on the LCD screen.
The testing circuit is shown in Figure 6.4.4.1. A three-phase voltage source and a single-phase current source are required.


Figure 6.4.4.1 Testing AC Input Circuit

- Check that the metering data is set to be expressed as secondary values ( Display value $=2$ ) on the "Metering" screen.
"Setting (view)" sub-menu $\rightarrow$ "Status" screen $\rightarrow$ "Metering" screen
If the setting is Primary (Display value $=1$ ), change the setting in the "Setting (change)" sub-menu. Remember to reset it to the initial setting after the test is finished.
- Open the "Metering" screen in the "Status" sub-menu.
"Status" sub-menu $\rightarrow$ "Metering" screen
- Apply AC rated voltages and currents and check that the displayed values are within $\pm 5 \%$ of the input values.


### 6.5 Function Test

## CAUTION

The function test may cause the output relays to operate including the tripping output relays. Therefore, the test must be performed with tripping circuits disconnected.

### 6.5.1 Measuring Element

Measuring element characteristics are realized by software, so it is possible to verify the overall characteristics by checking representative points.

Operation of the element under test is observed by the binary output signal at monitoring jacks A or B or by the LED indications above the jacks. In any case, the signal number corresponding to each element output must be set on the "Logic circuit" screen of the "Test" sub-menu.

| /2 Logic circuit |  |  |  |  | $1 / 2$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TermA ( | 0 - | 3071 ) | 0 |  |  |
| TermB ( | 0 - | 3071 ) | 0 |  |  |

When a signal number is entered for the TermA line, the signal is observed at monitoring jack A and when entered for the TermB line, observed at monitoring jack B.

Note: The voltage level at the monitoring jacks is $+15 \mathrm{~V} \pm 3 \mathrm{~V}$ for logic level " 1 " when measured by an instrument with $10 \mathrm{k} \Omega$ input impedance, and less than 0.1 V for logic level " 0 ".

## CAUTION

- Use test equipment with more than $1 \mathrm{k} \Omega$ of internal impedance when observing the output signal at the monitoring jacks.
- Do not apply an external voltage to the monitoring jacks.

In case of a three-phase element, it is enough to test a representative phase. A-phase and AB-phase elements are selected for the earth fault element and phase fault element respectively hereafter.

### 6.5.1.1 Distance Measuring Element Z1, Z1X, Z2, Z3, Z4, ZF, ZR1, ZR2 and PSBS

## Phase fault element reach test

The test voltage and current input test circuit is shown in Figure 6.5.1.1.


Figure 6.5.1.1 Testing Phase-Fault Element
Phase fault elements and their output signal numbers are listed below.

| Measuring element | Signal number |
| :--- | :--- |
| Z1S-AB | 34 |
| Z1XS-AB | 37 |
| Z2S-AB | 40 |
| Z3S-AB | 43 |
| Z4S-AB | 46 |
| ZFS-AB | 577 |
| ZR1S-AB | 553 |
| ZR2S-AB | 557 |
| ZNDS-AB | 581 |
| PSBSIN-AB | 323 |
| PSBSOUT-AB | 49 |

- Press 5 (= Logic circuit) on the "Test" screen to display the "Logic circuit" screen.
- Enter a signal number to be observed at monitoring jack A and press the ENTER key.
- Apply three-phase rated voltage.
- Choose a test current IT by referring to the table below, the table shows the relationship between the reach setting, test current and measuring error.

| Reach setting | IT | Error |
| :--- | :--- | :--- |
| $0.01-0.05 \Omega$ | 25 A | $\pm 10 \%$ |
| $(0.1-0.2 \Omega$ | $5 \mathrm{~A})$ * $\left.^{*}\right)$ |  |
| $0.06-0.09 \Omega$ | 20 A | $\pm 7 \%$ |
| $(0.3-0.4 \Omega$ | $4 \mathrm{~A})$ |  |
| $0.10-1.00 \Omega$ | 10 A | $\pm 5 \%$ |
| $(0.5-5.0 \Omega$ | $2 \mathrm{~A})$ |  |
| $1.01-10.00 \Omega$ | 5 A | $\pm 5 \%$ |
| $(5.1-50.0 \Omega$ | $1 \mathrm{~A})$ |  |
| $10.01-20.00 \Omega$ | 2.5 A | $\pm 5 \%$ |
| $(50.1-100.0 \Omega$ | $0.5 \mathrm{~A})$ |  |
| $20.01-50.00 \Omega$ | 1 A | $\pm 7 \%$ |
| $(100.1-250.0 \Omega$ | $0.2 \mathrm{~A})$ |  |

$\left.{ }^{*}\right)$ Values shown in parentheses are in the case of 1 A rating. Other values are in the case of 5A rating.

- Set the voltage and current phase relationship as shown below. That is, $\mathrm{V}_{\mathrm{a}}$ lags Vc by $90^{\circ}, \mathrm{Vb}$ $=-\mathrm{V}_{\mathrm{a}}$ and IT lags $\mathrm{V}_{\mathrm{a}}$ by $\theta$ or $\theta+180^{\circ} . \theta$ is the characteristic angle $\left(90^{\circ}\right)$ when testing.


Z1S, Z1XS, Z2S, ZFS, ZNDS, Z3S and PSB


ZR1S,ZR2S and Z4S

- Adjust the magnitude of $\mathrm{V}_{\mathrm{a}}$ and $\mathrm{V}_{\mathrm{b}}$ while retaining the conditions above and measure the voltage $\mathrm{V}_{\mathrm{a}}$ at which the element operates.
- The theoretical operating voltage is obtained by 2IT $\times \mathrm{ZS}$ when the setting reach is ZS. Check that the measured voltage is within the above-mentioned error of the theoretical voltage value when it is expressed with $2 \mathrm{~V}_{\mathrm{a}}\left(=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right)$.
Element reach setting (ZS) IT $\quad 2 I T \times Z S \quad$ Measured voltage $\left(2 \mathrm{Va}_{\mathrm{a}}\right)$

ZFS
ZR1S
ZR2S
ZNDS
PSBSIN
PSBSOUT

## [Testing of Zone 1 bending characteristic]

The test circuit and test method is same as above.
The operating voltage of Zone 1 bending characteristic can be calculated as follows:

$V=X_{p} I \cdot \frac{1}{\sin \theta}=\frac{X_{1}\left(1+\frac{\tan \theta_{1}}{\tan \theta_{2}}\right)}{\left(1+\frac{\tan \theta_{1}}{\tan \theta}\right)} \cdot I \cdot \frac{1}{\sin \theta}$
where,
$X_{1}$ is the Z1S setting reach.
$\theta$ is the angle difference between voltage and current.

Note: Toshiba recommend that a minimum of three values for $\theta$ be tested to check that the correct relay settings have been applied.
Care must be taken in choosing values of $\theta$ to ensure that the testing points come within the operating boundary defined by the Z1S $\theta 2$ setting and either the load blinder or mho settings, as appropriate

## Earth fault element reach test

The test circuit is shown in Figure 6.5.1.2.


Figure 6.5.1.2 Testing Earth-Fault Element

Earth fault elements and their output signal number are listed below.

| Measuring element | Signal number |
| :--- | :--- |
| Z1G-A | 19 |
| Z1XG-A | 22 |
| Z2G-A | 25 |
| Z3G-A | 28 |
| Z4G-A | 31 |
| ZFG-A | 593 |
| ZR1G-A | 569 |
| ZR2G-A | 573 |
| ZNDG-A | 597 |
| PSBGIN-A | 561 |
| PSBGOUT-A | 565 |

- Press 5 (= Logic circuit) on the Test screen to display the Logic circuit screen.
- Enter a signal number to be observed at monitoring jack A and press the ENTER key.
- Apply three-phase rated voltage.
- Choose a test current IT by referring to the table below, the table shows the relationship between the reach setting, test current and measuring error.

| Reach setting | IT | Error |
| :--- | :--- | :--- |
| $0.01-0.05 \Omega$ | 25 A | $\pm 10 \%$ |
| $(0.1-0.2 \Omega$ | $5 \mathrm{~A})$ (*) $^{2}$ |  |
| $0.06-0.09 \Omega$ | 20 A | $\pm 7 \%$ |
| $(0.3-0.4 \Omega$ | $4 \mathrm{~A})$ |  |
| $0.1-1.0 \Omega$ | 10 A | $\pm 5 \%$ |
| $(0.5-5.0 \Omega$ | $2 \mathrm{~A})$ |  |
| $1.01-10.0 \Omega$ | 5 A | $\pm 5 \%$ |
| $(5.1-50.0 \Omega$ | $1 \mathrm{~A})$ |  |
| $10.01-20.0 \Omega$ | 2.5 A | $\pm 5 \%$ |
| $(50.1-100 \Omega$ | $0.5 \mathrm{~A})$ |  |
| $20.01-50.0 \Omega$ | 1 A | $\pm 7 \%$ |
| $(100.1-250 \Omega$ | $0.2 \mathrm{~A})$ |  |
| $50.01-100 \Omega$ | 0.6 A | $\pm 10 \%$ |
| $(250.1-500 \Omega$ | $0.12 \mathrm{~A})$ |  |

$\left(^{*}\right)$ Values shown in parentheses are in the case of 1A rating. Other values are in the case of 5A rating.

- Set the test voltage and test current phase relation as shown below. That is, $\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}}$, and $\mathrm{V}_{\mathrm{C}}$ are balanced, and IT lags $\mathrm{V}_{\mathrm{a}}$ by $\theta$ or $\theta+180^{\circ} . \theta$ is the characteristic angle $\left(90^{\circ}\right)$ when testing.


Z1G, Z1XG, ZFG, ZNDG, Z2G, and Z3G


ZR1G, ZR2G andZ4G

- Adjust the magnitude of Va while retaining the conditions above and measure the voltage at which the element operates.
- The theoretical operating voltage Vop is obtained by the following equations when the setting reach is ZG . Check that the measured voltage is within the above-mentioned error of the theoretical voltage. (Refer to Section 2.4.1.3.)
$Z 1 G, Z 1 X G, Z 2 G: V o p=Z G \times\left(I T+\frac{\frac{K_{X s}}{100}-1}{3} \times I T+\frac{\frac{K_{\mathrm{Xm}}}{100}}{3} \times I T\right)$
ZR1G: Vop $=\mathrm{ZG} \times\left(\mathrm{IT}+\frac{\frac{\mathrm{K}_{\mathrm{Xs}}}{100}-1}{3} \times \mathrm{IT}\right)$
Z3G, ZFG, Z4G: Vop $=\mathrm{IT} \times$ ZG

| Element | ZG | IT | Vop | Measured voltage |
| :---: | :---: | :---: | :---: | :---: |
| Z1G |  |  |  |  |
| Z1XG |  |  |  |  |
| Z2G |  |  |  |  |
| Z3G |  |  |  |  |

```
    ZFG
    ZR1G
    ZR2G
    ZNDG
    PSBGIN
    PSBGOU
    T
```


## [Testing of Zone 1 bending characteristic]

The test circuit and test method is same as above.
The operating voltage of Zone 1 bending characteristic can be calculated as follows:

$V=X_{p} I^{\prime}{ }_{x} \cdot \frac{1}{\sin \theta}=\frac{X_{1}\left(1+\frac{\tan \theta_{1}}{\tan \theta_{2}}\right)}{\left(1+\frac{\tan \theta_{1}}{\tan \theta} \cdot \frac{I_{x}^{\prime}}{I_{r}^{\prime}}\right)} \cdot I^{\prime}{ }_{x} \cdot \frac{1}{\sin \theta}$
where,
$I^{\prime}{ }_{x}=I+\frac{k_{x s}-100}{100} I_{0}+\frac{k_{x m}}{100} I_{0 m}, I_{r}^{\prime}=I+\frac{k_{r s}-100}{100} I_{0}+\frac{k_{r m}}{100} I_{0 m}$
$X_{1}$ is the Z1G setting reach.
$\theta$ is the angle difference between voltage and current.

Note: Toshiba recommend that a minimum of three values for $\theta$ be tested to check that the correct relay settings have been applied.
Care must be taken in choosing values of $\theta$ to ensure that the testing points come within the operating boundary defined by the Z1G $\theta 2$ setting and either the load blinder or mho settings, as appropriate

### 6.5.1.2Out-of-step Element OST

The testing circuit is shown in Figure 6.5.1.1.
The output signal numbers of the OST-ZM and OST-ZN elements are as follows:

| Measuring element | Signal number |
| :--- | :--- |
| OST-ZM | 84 |
| OST-ZN | 85 |

The followings are the cases for OST-ZM. (The test procedure for OSTR1 and OSTR2 must be
changed in case of OST-ZN.)

- Press 5 (= Logic circuit) on the "Test" screen to display the "Logic circuit" screen.
- Enter 84 as a signal number to be observed at monitoring jack A and press the ENTER key.
- Apply a three-phase rated voltage.
- Choose a test current IT by referring to the table below, which shows the relation of setting reach and test current.

| Reach setting | IT |
| :--- | :--- |
| $0.2-3.0 \Omega$ | 10 A |
| $(1-15 \Omega$ | $2.0 \mathrm{~A})(*)$ |
| $3.1-10.0 \Omega$ | 5 A |
| $(16-50 \Omega$ | $1.0 \mathrm{~A})$ |
| $10.1-20.0 \Omega$ | 2.5 A |
| $(51-100 \Omega$ | $0.5 \mathrm{~A})$ |
| $20.1-30.0 \Omega$ | 1.5 A |
| $(101-150 \Omega$ | $0.3 \mathrm{~A})$ |
| $30.1-50.0 \Omega$ | 1 A |
| $(151-250 \Omega$ | $0.2 \mathrm{~A})$ |

$\left(^{*}\right)$ Values shown in parentheses are in the case of 1 A rating.
Other values are in the case of 5A rating.

## OSTXF

- Set the voltage and current phase relation as shown below. That is, $\mathrm{V}_{\mathrm{a}}$ lags $\mathrm{V}_{\mathrm{C}}$ by $90^{\circ}, \mathrm{V}_{\mathrm{b}}=-$ $\mathrm{V}_{\mathrm{a}}$ and IT lags $\mathrm{V}_{\mathrm{a}}$ by $90^{\circ}$.

- Adjust the magnitude of $\mathrm{V}_{\mathrm{a}}$ and $\mathrm{V}_{\mathrm{b}}$ while retaining the conditions above and measure the voltage $\mathrm{V}_{\mathrm{a}}$ at which the element operates.
- The theoretical operating voltage is obtained by 2IT $\times$ ZOST when the setting reach is ZOST. Check that the measured voltage is within $\pm 5 \%$ of the theoretical voltage value when it is expressed with $2 \mathrm{~V}_{\mathrm{a}}\left(=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right)$.

| Element | ZOST | IT | $2 I T \times$ ZOST | Measured voltage $\left(2 V_{\mathrm{a}}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| OSTXF |  |  |  |  |

## OSTXB

- Set the voltage and current phase relation as shown below. That is, $\mathrm{V}_{\mathrm{a}}$ lags $\mathrm{V}_{\mathrm{C}}$ by $90^{\circ}, \mathrm{V}_{\mathrm{b}}=$ $-\mathrm{V}_{\mathrm{a}}$ and IT leads $\mathrm{V}_{\mathrm{a}}$ by $90^{\circ}$.

- Adjust the magnitude of $\mathrm{V}_{\mathrm{a}}$ and $\mathrm{V}_{\mathrm{b}}$ while retaining the conditions above and measure the voltage $\mathrm{V}_{\mathrm{a}}$ at which the element operates.
- The theoretical operating voltage is obtained by $2 I T \times$ ZOST when the setting reach is ZOST. Check that the measured voltage is within $\pm 5 \%$ of the theoretical voltage value when it is expressed with $2 \mathrm{~V}_{\mathrm{a}}\left(=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right)$.

| Element | ZOST | IT | $21 \mathrm{~T} \times$ Z OST | Measured voltage $\left(2 \mathrm{~V}_{\mathrm{a}}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| OSTXB |  |  |  |  |

## OSTR1

- Set the voltage and current phase relation as shown below. That is, Va lags Vc by $90^{\circ}, \mathrm{Vb}=-$ Va and IT is in phase with Va.

- Adjust the magnitude of $\mathrm{V}_{\mathrm{a}}$ and $\mathrm{V}_{\mathrm{b}}$ while retaining the conditions above and measure the voltage $\mathrm{V}_{\mathrm{a}}$ at which the element operates.
- The theoretical operating voltage is obtained by $2 \mathrm{IT} \times \mathrm{Z}_{\text {OST }}$ when the setting reach is ZOST. Check that the measured voltage is within $\pm 5 \%$ of the theoretical voltage value when it is expressed with $2 \mathrm{~V}_{\mathrm{a}}\left(=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right)$.

| Element | ZOST | IT | $21 T \times Z_{\text {OST }}$ | Measured voltage $\left(2 \mathrm{~V}_{\mathrm{a}}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| OSTR1 |  |  |  |  |

## OSTR2

- Set the voltage and current phase relation as shown below. That is, $\mathrm{V}_{\mathrm{a}}$ lags $\mathrm{V}_{\mathrm{C}}$ by $90^{\circ}, \mathrm{V}_{\mathrm{b}}=$ $-\mathrm{V}_{\mathrm{a}}$ and IT is in counter-phase with $\mathrm{V}_{\mathrm{b}}$.

- Adjust the magnitude of $\mathrm{V}_{\mathrm{a}}$ and $\mathrm{V}_{\mathrm{b}}$ while retaining the conditions above and measure the voltage $\mathrm{V}_{\mathrm{a}}$ at which the element operates.
- The theoretical operating voltage is obtained by $2 \mathrm{IT} \times \mathrm{Z}_{\text {OST }}$ when the setting reach is $\mathrm{Z}_{\text {OST }}$. Check that the measured voltage is within $\pm 5 \%$ of the theoretical voltage value when it is expressed with $2 \mathrm{~V}_{\mathrm{a}}\left(=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right)$.

| Element | ZOST | IT | $2 I T \times Z_{\text {OST }}$ | Measured voltage $\left(2 \mathrm{~V}_{\mathrm{a}}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| OSTR2 |  |  |  |  |

### 6.5.1.3Phase Selection Element UVC

The testing circuit is shown in Figure 6.5.1.2.
UVC elements and their output signal numbers are listed below.

| Measuring element | Signal number |
| :--- | :--- |
| UVC-A | 66 |
| UVC-B | 67 |
| UVC-C | 68 |

The following shows the case when testing UVC-A.

- Press 5 (= Logic circuit) on the Test screen to display the Logic circuit screen.
- Enter 66 as a signal number to be observed at monitoring jack A and press the ENTER key.
- Apply a three-phase rated voltage.
- Set the test current IT to zero ampere and adjust the voltage. Measure the voltage at which the element operates. Check that the voltage is within $\pm 5 \%$ of the setting UVCV. (The default setting of the UVCV is 48 V .)
- Choose a test current IT by referring to the table below, which shows the relation of setting reach UVCZ, test current IT and measuring error.

| UVCZ | IT | Error |
| :--- | :--- | :--- |
| $0.0-2.0 \Omega$ | 10 A | $\pm 5 \%$ |
| $(0-10 \Omega$ | $5 \mathrm{~A})\left(^{*}\right)$ |  |
| $2.1-10.0 \Omega$ | 5 A | $\pm 5 \%$ |
| $(11-50 \Omega$ | $1 \mathrm{~A})$ |  |
| $10.1-20.0 \Omega$ | 2.5 A | $\pm 5 \%$ |
| $(51-100 \Omega$ | $0.5 \mathrm{~A})$ |  |
| $20.1-50.0 \Omega$ | 1 A | $\pm 7 \%$ |
| $(101-250 \Omega$ | $0.2 \mathrm{~A})$ |  |

(*) Values shown in parentheses are in the case of 1A rating. Other values are in the case of 5A rating.

- Set the test voltage and test current phase relation as shown below. That is, $\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}}$, and $\mathrm{V}_{\mathrm{C}}$ are balanced, and IT lags $V_{a}$ by UVC characteristic angle UVC $\theta$.
(The default setting of UVC $\theta$ is $85^{\circ}$.)

- Adjust the magnitude of $\mathrm{V}_{\mathrm{a}}$ while retaining the conditions above and measure the voltage $\mathrm{V}_{\mathrm{a}}$ at which the element operates.
- The theoretical operating voltage is obtained by (IT $\times \mathrm{UVCZ}+\mathrm{UVCV}$ ) when the setting reach is UVCZ. Check that the measured voltage is within the above-mentioned error of the theoretical voltage value. (The default setting of the UVCZ is 2.0 ohm for 5A rating and 10 ohm for 1A rating.)

| Element | UVCV | UVCZ | IT | IT×UVCZ + UVCV | Measured voltage |
| :--- | :--- | :--- | :--- | :--- | :--- |
| UVCZ |  |  |  |  |  |

### 6.5.1.4Directional Earth Fault Element DEF

The testing circuit is shown in Figure 6.5.1.2.
DEF elements and their output signal number are listed below.

| Measuring element | Signal number |
| :--- | :--- |
| DEFF | 59 |
| DEFR | 58 |

The following shows the case when testing DEFF.

- Press 5 (= Logic circuit) on the Test screen to display the Logic circuit screen.
- Enter 59 as a signal number to be observed at monitoring jack A and press the ENTER key.

Residual current level detection is verified as follows:

- Apply three-phase rated voltage and single-phase test current IT (= 3Io).

Set IT to lag $\mathrm{V}_{\mathrm{a}}$ by DEFF characteristic angle DEF $\theta$. (The default setting of DEF $\theta$ is $85^{\circ}$.)

- Lower $\mathrm{V}_{\mathrm{a}}$ to 10 V to generate a residual voltage. Changing the magnitude of IT while retaining the phase angle with the voltages, and measure the current at which the element operates. Check that the measured current magnitude is within $\pm 5 \%$ of the current setting.


Residual voltage level detection is verified as follows:

- Set IT to rated current and the three-phase voltage to rated voltage. Lower the magnitude of $\mathrm{V}_{\mathrm{a}}$ while retaining the phase angle with the current and measure the voltage $\mathrm{V}_{\mathrm{a}}$ at which the element operates. Operating residual voltage is expressed by $\left(V R-V_{a}\right)$, where VR is the rated voltage. Check that the $\left(\mathrm{VR}-\mathrm{V}_{\mathrm{a}}\right)$ is within $5 \%$ of the residual voltage setting.


### 6.5.1.5Negative Sequence Directional Element DOCN

The testing circuit is shown in Figure 6.5.1.3.
DOCN elements and their output signal number are listed below.

| Measuring element | Signal number |
| :--- | :--- |
| DOCNF | 360 |
| DOCNR | 361 |

The following shows the case when testing DOCNF.

- Press 1 (= Switch) on the Test screen to display the switch screen and enter 1 for DOCN-C to test the DOCN elements.
- Press 5 (= Logic circuit) on the Test screen to display the Logic circuit screen.
- Enter 360 as a signal number to be observed at monitoring jack A and press the ENTER key.
- Apply single-phase rated current $\mathrm{I}_{\mathrm{a}}$ and single-phase test voltage V.

Set V to lag $\mathrm{I}_{\mathrm{a}}$ by $90^{\circ}$.

- Changing the magnitude of test voltage while retaining the phase angle with the current, and measure the voltage at which the element operates. Check that the measured voltage magnitude is within $\pm 5 \%$ of 15.5 V .
The test of the DOCNR is same as that of DOCNF except for the voltage leading the current $\mathrm{I}_{\mathrm{a}}$ by $90^{\circ}$.


Figure 6.5.1.3 Testing DOCN Element

### 6.5.1.6Inverse Definite Minimum Time Overcurrent Element (IDMT) OCI, EFI

The testing circuit is shown in Figure 6.5.1.4.


Figure 6.5.1.4 Testing IDMT
One of the four inverse time characteristics can be set, and the output signal numbers of the IDMT are as follows:

| Element | Signal number |
| :--- | :--- |
| OCI-A | 97 |
| OCI-B | 98 |
| OCI-C | 99 |
| EFI | 61 |

Fix the time characteristic to test by setting the scheme switch MEFI or MOCI on the "Scheme switche" screen.
"Setting (change)" sub-menu $\rightarrow$ "Protection" screen $\rightarrow$ "Trip" screen $\rightarrow$ "Scheme switch" screen
The test procedure is as follows:

- Press 5 (= Logic circuit) on the "Test" screen to display the "Logic circuit" screen.
- Enter a signal number to observe the OCI or EFI output at monitoring jack A and press the ENTER key.
- Apply a test current and measure the operating time. The magnitude of the test current should be between $1.2 \times \mathrm{I}_{\mathrm{S}}$ to $20 \times \mathrm{I}_{\mathrm{S}}$, where $\mathrm{I}_{\mathrm{S}}$ is the current setting.
- Calculate the theoretical operating time using the characteristic equations shown in Section 2.5.4. Check that the measured operating time is within IEC 60255-3 class 5 for standard, very and long-time inverse or IEC 60255-3 class 7.5 for extremely inverse.


### 6.5.1.7Thermal overload element THM-A and THM-T

The testing circuit is same as the circuit shown in Figure 6.5.1.4.
The output signal of testing element is assigned to the monitoring jack A.

The output signal numbers of the elements are as follows:

| Element | Signal No. |
| :--- | :---: |
| THM-A | 560 |
| THM-T | 556 |

To test easily the thermal overload element, the scheme switch [THMRST] in the "Switch" screen on the "Test" menu is used.

- Set the scheme switch [THMRST] to "ON".
- Enter the signal number to observe the operation at the monitoring jack A as shown in Section 6.5.1.
- Apply a test current and measure the operating time. The magnitude of the test current should be between $1.2 \times \mathrm{I}_{\mathrm{S}}$ to $10 \times \mathrm{I}_{\mathrm{S}}$, where $\mathrm{I}_{\mathrm{S}}$ is the current setting.


## CAUTION

After the setting of a test current, apply the test current after checking that the THM\% has become 0 on the "Metering" screen.

- Calculate the theoretical operating time using the characteristic equations shown in Section 2.4.6. Check that the measured operating time is within $5 \%$.


### 6.5.1.8Broken conductor detection element $B C D$

The testing circuit is shown in Figure 6.5.1.5.


Figure 6.5.1.5 Testing BCD element

The output signal of testing element is assigned to the monitoring jack A.
The output signal numbers of the elements are as follows:

| Element | Signal No. |
| :--- | :---: |
| BCD | 766 |

- Enter the signal number to observe the operation at the monitoring jack A as shown in Section 6.5.1.
- Apply the three-phase balance current at $10 \%$ of the rated current and interrupt a phase current.

Then, check the BCD element operates.

### 6.5.1.9Overvoltage / undervoltage elements OVS1, OVS2, OVG1, OVG2, UVS1, UVS2, UVG1, UVG2

The testing circuit is shown in Figure 6.5.1.6.


Figure 6.5.1.6 Operating Value Test Circuit
The output signal of testing element is assigned to the monitoring jack A.
Overvoltage and undervoltage elements and their output signal number are listed below.

| Element | Signal No. |
| :--- | :---: |
| OVS1-AB | 436 |
| OVS2-AB | 439 |
| OVG1-A | 442 |
| OVG2-A | 445 |
| UVS1-AB | 454 |
| UVS2-AB | 457 |
| UVG1-A | 460 |
| UVG2-A | 463 |

- Enter the signal number to observe the operation at the monitoring jack A as shown in Section 6.5.1.


## Operating value test of OVS1, OVS2, OVG1, OVG2

- Apply a rated voltage as shown in Figure 6.5.1.6.
- Increase the voltage and measure the value at which the element operates. Check that the measured value is within $\pm 5 \%$ of the setting.


## Operating value test of UVS1, UVS2, UVG1, UVG2

- Apply a rated voltage and frequency as shown Figure 6.5.1.6.
- Decrease the voltage and measure the value at which the element operates. Check that the measured value is within $\pm 5 \%$ of the setting.


## Operating time check of OVS1, OVG1, UVS1, UVG1 IDMT curves

- Apply a rated voltage at the IDMT time multiplier setting 10.0 of the relay.
- Change the voltage from the rated voltage to the test voltage quickly and measure the operating time. Test voltage: $1.5 \times$ (setting voltage) or $0.5 \times$ (setting voltage)
- Calculate the theoretical operating time using the characteristic equations shown in Section 2.4.9.1 and 2.4.9.2. Check the measured operating time within $\pm 5 \%$.


### 6.5.1.10 Voltage and Synchronism Check Elements

The testing circuit is shown in Figure 6.5.1.7. If scheme switch [3PH-VT] is set to "Bus", the three-phase voltage simulates the busbar voltage, and the single-phase voltage simulates the line voltage. If the switch is set to "Line", the opposite is true.


Figure 6.5.1.7 Testing Synchronism Check Elements

When testing OVL2, UVL2 and SYN2, the single-phase voltage must be applied to terminal 17 and 18, instead of 15 and 16 and 3PH-VT is set to "Line".

Voltage and synchronism check elements and their output signal number are listed below. OVL2, UVL2 and SYN2 are used for two-breaker autoreclose and provided in Model 300s and 501.

| Measuring element | Signal number |
| :--- | :--- |
| OVB | 86 |
| UVB | 87 |
| OVL1 | 89 |
| UVL1 | 90 |
| OVL2 | 91 |
| UVL2 | 92 |
| SYN1 | 88 |
| SYN2 | 93 |

Connect a phase angle meter to the three-phase voltages taking the scheme switch [VT-RATE] and [VTPHSEL] setting into consideration. The phase angle meter connection shown in Figure 6.5.1.7 is the case for the default settings, that is, [VT-RATE] and [VTPHSEL] are set to "PH/G" and "A" respectively.

| [VT-RATE] setting | [VTPH-SEL] setting | Meter connection phase |
| :--- | :--- | :--- |
| PH/G | A | A-N |
|  | B | B-N |
|  | C | C-N |
| PH/PH | A | A-B |
|  | B | B-C |
|  | C | C-A |

## Voltage check element OVB, UVB, OVL1, UVL1, OVL2, and UVL2

- Press 5 (= Logic circuit) on the "Test" screen to display the Logic circuit screen.
- Enter a signal number for TermA line to observe at monitoring jack A and press the ENTER key.
- Apply three-phase rated voltage and single-phase rated voltage as shown in Figure 6.5.1.7.

OVB and UVB :

- Change the magnitude of the three-phase voltage if the scheme switch [3PH-VT] is set to "Bus" or adjust the magnitude of the single-phase voltage if it is set to "Line". Measure the value at which the element operates and check that it is within $\pm 5 \%$ of the setting.


## OVL1 and UVL1 :

- Adjust the magnitude of the single-phase voltage if the scheme switch [3PH-VT] is set to "Bus"; adjust the magnitude of the three-phase voltage if the scheme switch [3PH-VT] is set to "Line". Measure the value at which the element operates and check that it is within $\pm 5 \%$ of the setting.


## OVL2 and UVL2 :

- Adjust the magnitude of voltage applied to terminal 17 and 18 and measure the value at which the element operates. Check that the measured value is within $\pm 5 \%$ of the setting.


## Synchronism check element SYN1

- Press 5 (= Logic circuit) on the Test screen to display the Logic circuit screen.
- Enter a signal number for TermA line to observe at monitoring jack A and press the ENTER key.
- Apply a three-phase rated voltage and a single-phase rated voltage as shown Figure 6.5.1.7.

Voltage check:

- Set the three-phase voltage to any value over the SY1OV setting. (The default setting of SY1OV is 51 V .)
Whilst keeping $\mathrm{V}_{\mathrm{S} 1}$ in-phase with $\mathrm{V}_{\mathrm{a}}$, increase the single-phase voltage $\mathrm{V}_{\mathrm{s} 1}$ from zero volt. Measure the voltage at which the element operates. Check that the measured voltage is within $\pm 5 \%$ of the SY1UV setting.
- Further increase $\mathrm{V}_{\mathrm{s}}$ 1 and measure the voltage at that the element resets. Check that the measured voltage is within $\pm 5 \%$ of the SY1OV setting.

Phase angle check:

- Set $V_{a}$ and $V_{s 1}$ to any value between the SY1OV and SY1UV settings keeping $V_{a}$ in-phase with $\mathrm{V}_{\mathrm{S} 1}$. Then the SYN1 element operates.
- Shift the angle of $V_{s 1}$ from that of $V_{a}$, and measure the angle at which the element resets.
- Check that the measured angle is within $\pm 5^{\circ}$ of the SY1 $\theta$ setting. (The default setting of SY1 $\theta$ is $30^{\circ}$.)
- Change $\mathrm{V}_{\mathrm{a}}$ and $\mathrm{V}_{\mathrm{s} 1}$, and repeat the above.


## Synchronism check element SYN2

- Apply a single-phase rated voltage to terminal 17 and 18 as shown with broken lines in Figure 6.5.1.7 and set the scheme switch [3PH-VT] to "Line". The test can be performed taking the same step as testing SYN1.


### 6.5.1.11 Current Change Detection Elements OCD and OCDP

The test circuit is shown in Figure 6.5.1.8.


Figure 6.5.1.8 Testing Current Change Detection Element
The output signal number of the OCD and OCDP is as follows:

| Measuring element | Signal number |
| :--- | :--- |
| OCD-A | 63 |
| OCD-B | 64 |
| OCD-C | 65 |
| OCDP-A | 357 |
| OCDP-B | 358 |
| OCDP-C | 359 |

Operation must be verified by abruptly changing the test current from 0 A to $1.2 \times$ Setting value or vice versa.

OCD has a fixed setting of 0.5 A and 0.1 A for 5 A rating and 1 A rating respectively.

### 6.5.1.12 Level Detectors OCH, OC, EF, EFL, OVG, UVLS and UVLG, UVFS and UVFG, OCBF

Voltage or current level detectors are tested by applying voltage or current individually. A
single-phase test source is adequate for these tests.
Change the magnitude of the voltage or current applied and measure the value at which the element operates. Check that the measured value is within $5 \%$ of the setting.
Level detectors and their output signal numbers are listed below.

| Measuring element | Signal number | Remarks |
| :--- | :--- | :--- |
| OCH-A | 55 | A-phase current |
| OC-A | 94 | A-phase current |
| EF | 60 | Residual current |
| EFL | 568 | Residual current |
| OVG | 62 | Residual voltage |
| UVFS-AB | 69 | A-to-B-phase voltage |
| UVFG-A | 75 | A-phase voltage |
| UVLS-AB | 72 | A-to-B-phase voltage |
| UVLG-A | 78 | A-phase voltage |
| OCBF-A | 81 | A-phase current |

### 6.5.2 Timer Test

The delayed pick-up time of the variable timer can be measured by connecting the monitoring jacks A and B to a time counter as shown in Figure 6.5.2.1. Jacks A and B are used to observe the input signal and output signal of the timer respectively.


Figure 6.5.2.1 Testing Variable Timer

- Press 4 (= Timer) on the "Test" screen to display the "Timer" screen.
- Enter the number corresponding to the timer to be observed. The timers and assigned numbers are listed in Appendix C.
- Enter the number corresponding to the timer output signal. The timer output signal numbers are listed in Appendix B.
- After completing both settings, press the END key to display the following screen.
/2 Timer
Press ENTER to operate.
Press CANCEL to cancel.
- Press the ENTER key to operate the timer. The "TESTING" LED turns on, and the timer is initiated and the following display appears. The input and output signals of the timer can be observed at monitoring jacks A and B respectively. The LEDs above monitoring jacks A or B are also lit if the input or output signal exists.
Check that the measured time is within 10 ms of the setting time.
/2 Timer
0 perating......
Press END to reset.
Press CANCEL to cancel.
- Press the END key to reset the input signal to the timer. The "TESTING" LED turns off.

Press CANCEL key to test other timers. Repeat the above testing.
To measure the drop-off delay time, press the END key after the LED above jack B lights. The off-delay time is the time from a signal at the monitoring jack A resets till a signal at the monitoring jack $B$ resets.

### 6.5.3 Protection Scheme

In the following protection scheme tests, a dynamic test set with a three-phase voltage source and current source is required to simulate power system pre-fault, fault and post-fault conditions.

In the following command tripping test, the remote end is not simulated and the receiving signal is simulated by energizing a binary input circuit locally. If an end-to-end synchronized test is possible, then it should be conducted.
The autoreclose function can be tested together with these tests. A permanent fault should be applied to test a reclose-onto-fault.

## Zone 1 tripping

This performs instantaneous or time-delayed, and single-phase or three-phase tripping depending on the fault types, setting of trip mode control switch [Z1CNT] and autoreclose mode switch [ARC-M].

Zone 1 tripping should be checked for the fault at $50 \%$ of the zone 1 reach setting.
Operating time is measured on operation of the trip output relay. It will typically be 1 cycle in case of instantaneous tripping.
Check that the indications and recordings are correct.

## Zone 2 tripping

Check that three-phase time-delayed final tripping is performed for all kinds of faults. Faults should be set midway between zone 1 and zone 2 .
Check that the operating time is 1-1.5 cycle plus zone 2 timer setting.
Check that the indications and recordings are correct.

## Zone F tripping

Check that three-phase time-delayed final tripping is performed for all kinds of faults. Faults should be set midway between zone 2 and zone $F$.

Check that the operating time is 1-1.5 cycle plus zone F timer setting.
Check that the indications and recordings are correct.

## Zone 3 tripping

Check that three-phase time-delayed final tripping is performed for all kinds of faults. Faults should be set midway between zone 2 and zone 3 .
Check that the operating time is 1-1.5 cycle plus zone 3 timer setting.
Check that the indications and recordings are correct.

## Zone R1 tripping

Set the scheme switches [ZR1BT] and [ZR2BT] to "On". (The [ZR1BT] and [ZR2BT] default setting is "Off".)
Check that three-phase time-delayed final tripping is performed for all kinds of faults. Faults should be set in the center of zone R1.
Check that the operating time is 1-1.5 cycle plus zone R1 timer setting.
Check that the indications and recordings are correct.

## Zone R2 tripping

Set the scheme switch [ZR2BT] to "On". (The [ZR2BT] default setting is "Off".)
Check that three-phase time-delayed final tripping is performed for all kinds of faults. Faults should be set midway zone R1 and zone R2.
Check that the operating time is 1-1.5 cycle plus zone R2 timer setting.
Check that the indications and recordings are correct.

## Zone ND tripping

Set the scheme switch [ZNDBT] to "On". (The [ZNDBT] default setting is "Off".)
Check that three-phase time-delayed final tripping is performed for all kinds of faults. Faults should be set midway zone 3 and zone ND.

Check that the operating time is $1-1.5$ cycle plus zone ND timer setting.
Check that the indications and recordings are correct.

## Zone 1X tripping

Set the scheme switch [SCHEME] to "Z1EXT", and [ARC-M] to "TPAR" or "SPAR\&TPAR" or "SPAR". CB ready condition (binary input signal BI10) and 52A, 52B and 52C must be established.

Faults should be set midway between zone 1 and zone 1X.
Check that it performs instantaneous single-phase or three-phase tripping depending on the fault types and setting of autoreclose mode selection switch [ARC-M].

Check that the operating time is 1-1.5 cycle or less.
Check that the indications and recordings are correct.

## Command Protection

The followings are described as default setting for binary inputs and binary outputs.

## PUP tripping

Set the scheme switch [SCHEME] to "PUP".
Energize the binary input BI4 ("Trip signal") to simulate a trip permission signal reception and apply a zone 2 fault.

Check that instantaneous single-phase or three-phase tripping is performed depending on the fault types and setting of autoreclose mode selection switch [ARC-M].

De-energize the binary input BI4 and apply a zone 2 fault. Check that PUP tripping does not occur. Apply a zone 1 fault, and check that binary output relay BO13 ("Send signal") operates.
Check that the indications and recordings are correct.

## POP tripping

Set the scheme switch [SCHEME] to "POP", [WKIT] and [ECHO] to "off".
Energize the binary input BI4 to simulate a trip permission signal reception and apply a zone 2 fault.

Check that instantaneous single-phase or three-phase tripping is performed depending on the fault types and setting of autoreclose mode selection switch [ARC-M].

Set [WKIT] and [ECHO] to "On" and apply a weak-infeed fault. Check that instantaneous tripping is performed.

De-energize the binary input BI4 and apply a zone 2 fault. Check that POP tripping does not occur.
Apply a zone 2 fault, and check that binary output relay BO13 operates.
Set the scheme switch [ECHO] to "On".
De-energize the binary inputs BI1, BI2 and BI3 to simulate the breaker being open.
Check that binary output relay BO13 operates when the binary input BI4 is energized.
Apply a zone 4 fault (reverse fault) while the binary inputs BI1, BI2 and BI3 are energized, and check that the binary output relay BO13 does not operate when the binary input BI4 is energized.
Check that the indications and recordings are correct.

## UOP tripping

Set the scheme switch [SCHEME] to "UOP", [WKIT] and [ECHO] to "Off".
De-energize the binary input BI4 to simulate interruption of a trip block signal reception and apply a zone 2 fault.

Check that instantaneous single-phase or three-phase tripping is performed depending on the fault types and setting of autoreclose mode selection switch [ARC-M].
Set [WKIT] and [ECHO] to "On" and apply a weak-infeed fault. Check that instantaneous tripping is performed.
Energize the binary input BI14 to simulate trip block signal reception and apply a zone 2 fault. Check that UOP tripping does not occur.
Check that binary output relay BO13 operates in the normal condition.
Apply a zone 2 fault, and check that the BO13 resets.
Set the scheme switch [ECHO] to "On".
De-energize the binary inputs BI1, BI2 and BI3 to simulate the breaker being open.
Check that binary output relay BO13 resets when the binary input BI4 is de-energized.
Apply a zone 4 fault (reverse fault) while the binary inputs BI1, BI2 and BI3 are energized, and check that the binary output relay BO13 remains operated when the binary input BI4 is de-energized.

Check that the indications and recordings are correct.

## BOP tripping

Set the scheme switch [SCHEME] to "BOP".
Check that the binary input BI4 is de-energized and apply a zone 2 fault.
Check that instantaneous single-phase or three-phase tripping is performed depending on the fault types and setting of autoreclose mode selection switch [ARC-M].
Energize the binary input BI4 to simulate trip block signal reception and apply a zone 2 fault. Check that BOP tripping does not occur.

Apply a zone 2 fault, and check that binary output relay BO13 does not operate. Apply a zone 4 fault (reverse fault), and check that BO13 operates.

Check that the indications and recordings are correct.

## SOTF tripping

SOTF tripping is carried out by distance measuring element Z 1 to Z 4 operation or overcurrent
element OCH operation. Z 1 to Z 4 can perform the SOTF tripping by setting.
The SOTF function is activated when the breaker has been open for timer TSOTF ( $0-300$ s) setting and active for an additional 500 ms after the breaker is closed.
The SOTF function is checked as follows:

- Set the scheme switch [SOTF-OC] to "On" and [SOTF-Z] to "Off".

De-energize the binary input signals B11 to BI3 (terminal number A4, B4 and A5 of terminal block TB4) for more than TSOTF ( $0-300 \mathrm{~s}$ ) setting.

- Energize the binary input signals and apply a zone 1 fault at the same time.

Check that the operating time is within 1-1.5 cycle.

- Set the scheme switch [SOTF-OC] to "Off" and [SOTF-Z] to "On" and repeat the above.


## Breaker failure tripping

Set the scheme switch [BF1] to "T" or "TOC" and BF2 to "On".

- Press 5 (= Logic circuit) on the "Test" screen to display the "Logic circuit" screen.
- Enter a signal number 199 for the TermA line to observe the retrip signal at monitoring jack A and 200 for the TermB line to observe the adjacent circuit breaker trip signal at monitoring jack B and press the ENTER key.
- Apply a zone 1 fault and maintain it. Check that the retrip signal is generated after the time setting of TBF1 and the adjacent circuit breaker trip signal is generated after the time setting of the TBF2.


## Out-of-step tripping

Set the scheme switch [OST] to "On".
To simulate out-of-step, the impedance seen by the OST element must be moved slowly from the first quadrant to the second quadrant or vice versa.
The following shows the case of the former.

- Press 5 (= Logic circuit) on the "Test" screen to display the "Logic circuit" screen.
- Enter signal number 203 for the TermA line to observe the out-of-step tripping signal at monitoring jack A and press the ENTER key.
- Apply a three-phase rated voltage and current.
- Gradually lower the voltage to zero, keeping the voltage and current sources in-phase. Then gradually raise the voltage from zero to the rated value, while keeping the phase angle of voltage and current in anti-phase.
During this process, keep the current at the rated value.
- Check that out-of-step tripping takes places at monitoring jack A.
- Check that out-of-step tripping does not take place if the voltage was lowered or raised steeply or was gradually raised while retaining the phase angle of voltage and current in-phase, not anti-phase.


## Voltage transformer failure supervision

A voltage transformer (VT) failure is detected when an undervoltage element or residual overvoltage element operates but a current change detection element or residual overcurrent element does not operate accordingly.

VT failure detection is checked as follows:

- Set the circuit breaker closed condition by applying a "1" signal to binary inputs BI1, BI2 and BI3.
- Press 5 (= Logic circuit) on the "Test" screen to display the "Logic circuit" screen.
- Enter signal number 172 for the TermA line to observe the VT failure alarm signal, and 173 for the TermB line to observe the VT failure detection signal at monitoring jack A and B. Press the ENTER key.
- Apply a three-phase rated voltage. Then, remove single-, two- or three-phase voltage. Check that the signals are instantly observed at jack B and observed at jack A after a 10s delay.

Blocking of the voltage-dependent protection is checked as follows:

- Apply a three-phase rated voltage. Then, remove single-, two- or three-phase voltage and at the same time apply a zone 1 fault. During this process, do not change the current.

Check that neither zone 1 tripping nor command tripping takes place.

- In the similar manner, apply a zone 1 extension, zone 2 or zone 3 fault and check that tripping does not take place.

Check that VT failure is recorded on the event record.

## Power swing blocking

A power swing is detected when the condition that the PSBSOUT element operates and PSBSIN element and residual overcurrent element EFL do not operate, for a period of TPSB setting or more.

Power swing detection is checked as follows:

- Press 5 (= Logic circuit) on the "Test" screen to display the "Logic circuit" screen.
- Enter signal number 176 for the TermA line to observe the power swing blocking signal at monitoring jack A and press the ENTER key.
- Apply a phase fault which is set to midway between PSBSIN and PSBSOUT. Check that the signal is generated with a delay of TPSB setting after the PSBSOUT operates. The PSBSOUT operating time will be 1-2 cycles.
- Reset the fault and check that the monitoring signal resets with a 500 ms delay after PSBSOUT resets.
- Apply an earth fault which is set to midway between PSBSIN and PSBSOUT. Check that the signal is not generated.

Power swing blocking is checked as follows:

- Apply a zone 1 phase fault after generating the power swing blocking signal. The blocking signal is generated in the way as mentioned above. Check that zone 1 tripping takes place if scheme switch [PSB-Z1] is set to "Off" and does not take place if set to "On".
- In the similar manner, apply zone 1 x , zone 2 , zone 3 , zone $F$, zone R1 and zone R2 faults, and check that tripping takes place or does not take place depending on the "On" or "Off" setting of scheme switch [PSB-Z1X], [-Z2], [-Z3], [-ZF], [-ZR1] and [-ZR2].
Check that power swing blocking is recorded on the event record.


### 6.5.4 Metering and Recording

The metering function can be checked while testing the AC input circuit. See Section 6.4.4.
Fault recording can be checked while testing the protection schemes. Open the "Fault records" screen and check that the descriptions are correct for the applied fault.

The default setting of events is shown in Appendix H. Event recording on the external events such as CB1 ready, Ind.reset, etc., can be checked by changing the status of binary input signals. Change the status in the same way as the binary input circuit test (see Section 6.4.2) and check that the description displayed on the "Event Records" screen is correct.

Note: The choice of whether to record or not can be set for each event. Change the status of the binary input signal after confirming that the related event is set to record. (The default setting enables all the events to be recorded.)

Some of the internal events such as Trip, VTF, etc., can be checked in the protection scheme tests. Disturbance recording can be checked while testing the protection schemes. The LCD display only shows the date and time when a disturbance is recorded. Open the "Disturbance records" screen and check that the descriptions are correct.

Details can be displayed on the PC. Check that the descriptions on the PC are correct. For details on how to obtain disturbance records on the PC, see the RSM100 Manual.

### 6.5.5 Fault Locator

In the fault locator tests, a dynamic test set with a three-phase voltage source and current source is required to simulate power system pre-fault, fault and post-fault conditions.
The fault locator starts measurement with one of the following tripping signals: command trip, zone 1, zone 2 and zone 3 trip, zone 1 extension trip and external main protection trip. Therefore, it is preferable to test it while testing the protection schemes by applying a fault.
The line parameter settings must be changed to meet those of the test set.
The measurement result is expressed as a percentage of the line length and the distance and displayed on the "Fault Record" screen of the LCD.

Note: If abnormal settings far from actual transmission line impedance, e.g. resistance value so larger than reactance value, etc., are done, the location error will be larger.

### 6.6 Conjunctive Tests

### 6.6.1 On Load Test

With the relay connected to the line which is carrying a load current, it is possible to check the polarity of the voltage transformer and current transformer and the phase rotation with the metering displays on the LCD screen.

- Open the following "Metering" screen from the "Status" sub-menu.


Note: The magnitude of voltage, current and power can be set in values on the primary side or on the secondary side by the setting. (The default setting is the primary side.)
Phase angles are expressed taking that of positive sequence voltage as the reference angle.
The sign of the phase angle can be set positive for either lagging phase or leading phase. (In the default setting, it is set positive when the phase is leading to the reference angle.)
The sign of the power flow direction can be set positive for either power sending or power receiving. (The default setting is power sending.)

- And/or open the following "Direction" screen from the "Status" sub-menu to check the direction of load current. (See Section 4.2.4.6.)

| /2 Direction |
| :--- |
| Phase A: Forward |
| Phase B: Forward |
| Phase C: Forward |

- Check that the phase rotation is correct.
- Verify the phase relationship between the voltage and current with the known load current direction.


### 6.6.2 Signaling Circuit Test

This test is performed when a command protection using a signaling channel is applied. The test is carried out after the signal receive and send contacts are connected to the telecommunication circuit.

The signal send circuit from the relay to the telecommunication equipment is checked by forcibly operating the signal send relay and monitoring the signal at the telecommunication equipment.

Signal sending is performed on the LCD using the "Test" sub-menu as follows.

- Press 3 (= Binary output) on the "Test" screen to display the "Binary output" screen. The LCD displays the output modules installed depending on the model.
- Enter 2 to select the IO\#2 module, the LCD will display the screen shown below, indicating the name of the module, the name of the output relay, the name of the terminal block and the
terminal number to which the relay contact is connected．

| ／3 B O |  | （ $0=$ Disable $1=E n a b \mid e)$ | $1 / 14$ |
| :---: | :---: | :---: | :---: |
| 10 \＃ 2 | B 01 |  |  |
| 10 \＃ 2 | B 02 |  | 0 |
| 10 \＃ 2 | B 03 |  | 0 |
|  | B 013 |  | 1 |

－Move the cursor to the bottom line to select the BO13 output relay by pressing the $\boldsymbol{\nabla}$ key， then enter 1 and press the ENTER key．
－After completing the entries，press the END key．The LCD will display the screen shown below．
$/ 3$ B0
Keep pressing 1 to operate．
Press CANCEL to cancel．
－Keep pressing the 1 key to operate the BO13 output relay forcibly．Then the BO13 output contact will close．Monitor this at the telecommunication equipment．

The signal receive circuit from the telecommunication equipment to the relay is checked with the ＂Binary input \＆output＂screen on the LCD as follows：

Note：The receive signal is assigned to any of the binary inputs by the user setting．The following description is the case of BI4 and BI5 assigned．
－Display the＂Binary I／O＂screen from the＂Status＂sub－menu．Position BI4 indicates a receive signal status．Position BI5 indicates the status of the guard signal in case of frequency shift signaling．

| $/ 2$ Binary input \＆output |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input（10\＃1） | 「000 | 000 | 000 | 000 |  |  |
| Input（10\＃2） | ［000 |  |  |  |  |  |
| Input（10\＃3） | 「000 | 000 | 000 | 0 |  |  |
| lnput（ $10 \# 4$ ） | 「000 |  |  |  |  |  |
| Output（IO\＃1－trip） | ［000 |  |  |  |  |  |
| Output（1 O\＃2） | ［000 | 000 | 000 | 000 | 00 |  |
| Output（1 O\＃3） | 「000 | 000 | 000 | 0 |  |  |
| Output（1 O\＃4） | ［000 | 000 | 000 | 000 | 00 |  |

－Send a signal or interrupt sending a signal at the telecommunication equipment and monitor on the screen that the status of BI4 or BI5 changes accordingly．

If the signaling circuit connection is completed from the local relay to the remote relay，the test above can be extended to an end－to－end test．
－Send the signal by operating the BO13 output relay at one end with the＂Test＂sub－menu as described above and monitor the signal reception at the other end on the＂Binary input $\&$ output＂screen．

In the BOP scheme，the end－to－end test can be carried out more simply on the＂Manual test＂screen of the＂Test＂sub－menu．For the details，see Section 4．2．7．2．

Note: In these tests it is recommended to block the tripping circuit to prevent false tripping.

### 6.6.3 Tripping and Reclosing Circuit Test

The tripping and reclosing circuit including the circuit breaker is checked by forcibly operating the output relay and monitoring the circuit breaker to confirm that it is tripped or reclosed. Forcible operation of the output relay is performed on the "Binary output" screen of the "Test" sub-menu as described in Section 6.4.3.

## Tripping circuit

- Set the breaker to be closed.
- Press 3 (= Binary output) on the "Test" sub-menu screen to display the "Binary output" screen. The LCD displays the output modules mounted.
- Enter 1 to select the IO\#1 module, then the LCD displays the screen shown below.

| 3 B 0 |  | $(0=D i s a b \mid e$ | $1=$ Enable $)$ | $1 / 3$ |
| :--- | :--- | :--- | :--- | :--- |
| $10 \# 1$ | TP-A1 |  | 0 | - |
| $10 \# 1$ | TP-B1 |  | 0 |  |
| $10 \# 1$ | TP-C1 |  | 0 |  |

TP-A1, B1 and C1 are output relays with one normally open contact, and trip the A-phase, B-phase and C-phase circuit breakers.

- Enter 1 for TP-A1 and press the ENTER key.
- Press the END key. Then the LCD displays the screen shown below.

```
/ 3 B 0
Keep pressing 1 to operate.
Press CANCEL to cancel.
```

- Keep pressing the 1 key to operate the output relay TP-A1 and check that the A-phase breaker is tripped.
- Release the 1 key to reset the operation.
- Repeat the above for all the phases.


## Reclosing circuit

The test is applied to the autoreclose function if used.

- Ensure that the circuit breaker is open.
- Press 3 (= Binary output) on the "Test" sub-menu screen to display the "Binary output" screen. The LCD displays the output modules mounted.
- Enter the selected number corresponding to each module to be operated. The LCD will display the name of the module, the name of the output relay, the name of the terminal block and the terminal number to which the relay contact is connected.
Note: The autoreclose command is assigned to any of the output relays by the user setting. The following description is the case for the default setting of model 201. In the default setting, the autoreclose command is set to BO10 of the IO\#2 module.
- Enter 2 to select the IO\#2 module, then the LCD displays the screen shown below.

| 13 B 0 |  | $(0=$ Disable | $1=$ Enable $)$ |
| :--- | :--- | :--- | :--- |
| $10 \# 2$ | B01 |  | $1 / 14$ |
| $10 \# 2$ | B02 |  | 0 |
| $10 \# 2$ | B03 |  | 0 |
| $\cdots$ |  |  | 0 |
| $10 \# 2$ | B010 |  | 1 |
| $10 \# 2$ | B011 |  | 0 |
| $10 \# 2$ | B012 |  | 0 |
| $10 \# 2$ | FAIL |  | 0 |
| $10 \# 2$ | SBX |  | 0 |

Note: Terminal block number depends on the relay model. So see Appendix G for details.
Move the cursor by pressing the $\boldsymbol{\nabla}$ key and select BO 10 . BO 10 is an autoreclose command output relay with one normally open contact.

- Enter 1 and press the ENTER key.
- Press the END key. Then the LCD displays the screen shown below.
K B 0
Keep pressing 1 to operate.
Press CANCEL to cancel.
- Keep pressing the 1 key to forcibly operate the output relay BO10 and check that the circuit breaker is closed.
- Release the 1 key to reset the operation.
- In case of two-breaker autoreclose, repeat the forcible operation for BO11.


### 6.7 Maintenance

### 6.7.1 Regular Testing

The relay is almost completely self-supervised. The circuits which can not be supervised are binary input and output circuits and human interfaces.

Therefore regular testing can be minimized to checking the unsupervised circuits. The test procedures are the same as described in Sections 6.4.1, 6.4.2 and 6.4.3.

### 6.7.2 Failure Tracing and Repair

Failures will be detected by automatic supervision or regular testing.
When a failure is detected by supervision, a remote alarm is issued with the binary output signal of FAIL ( ${ }^{*}$ ) and the failure is indicated on the front panel with LED indicators or LCD display. It is also recorded in the event record.
(*) Failure signals on the external circuits, that is signaling channel, VT circuit and isolator circuit, can be allotted to any of the binary output relays by the user. Failure signals of the signaling channel and VT circuit are set to BO12 of the IO module as the default setting.

Failures detected by supervision are traced by checking the "Auto-supervision" screen on the LCD.
If any messages are shown on the LCD, the failed module or failed external circuits can be located by referring to the Table 6.7.2.1.

This table shows the relationship between message displayed on the LCD and estimated failure location. The location marked with (1) has a higher probability than the location marked with (2).
As shown in the table, some of the messages cannot identify the fault location definitely but suggest plural possible failure locations. In these cases, the failure location is identified by replacing the suggested failed modules with spare modules one by one or investigating and restoring the monitored external circuits (that is signaling channel, VT circuit and isolator circuit) until the "Alarm" LED is turned off.
The replacement or investigation should be performed first for the module or circuit with higher probability in the table.
If there is a failure and the LCD is not working such as a screen is frozen or not displayed, the failure location is any one of SPM and HMI module.

Table 6.7.2.1 LCD Message and Failure Location

| Message | Failure location |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | VCT | SPM | $\begin{aligned} & \text { IO1 or } \\ & \text { IO8 } \end{aligned}$ | 102 | 103 | 104 | 105 | 106 | FD | HMI | Channel | Disconnector | AC cable | VT |
| Checksum err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| ROM data err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| ROM-RAM err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| SRAM err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| BU-RAM err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| DPRAM err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| EEPROM err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| A/D err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| V0 err | $\times(2)$ | $\times(1)$ |  |  |  |  |  |  |  |  |  |  | $\times(2)$ |  |
| V2 err | $\times(2)$ | $\times(1)$ |  |  |  |  |  |  |  |  |  |  | $\times(2)$ |  |
| 10 err | $\times(2)$ | $\times(1)$ |  |  |  |  |  |  |  |  |  |  | $\times(2)$ |  |
| CT err | $\times(2)$ | $\times(2)$ |  |  |  |  |  |  |  |  |  |  | $\times(1)$ |  |
| DIO err |  | $\times(2)$ | $\times(1)$ | $\times(1)$ | $\times(1)$ | $\times(1)$ | $\times(1)$ | $\times(1)$ |  |  |  |  |  |  |
| RSM err |  | $\times(1)$ | $\times$ (2) |  |  |  |  |  |  |  |  |  |  |  |
| FD:checksum err |  | $\times(2)$ | $\times(1)$ |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD: ROM-RAM err |  | $\times(2)$ | $\times$ (1) |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD: SRAM err |  | $\times(2)$ | $\times$ (1) |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD:Sampling err |  | $\times(2)$ | $\times$ (1) |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD:DO err |  | $\times(2)$ | $\times(1)$ |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD:ROM data err |  | $\times(2)$ | $\times$ (1) |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD:Unbalanced err |  | $\times(2)$ | $\times$ (1) |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD: A/D err |  | $\times(2)$ | $\times$ (1) |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD stopped |  | $\times(2)$ |  |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| DS fail |  | $\times(2)$ | $\times$ (2) |  |  |  |  |  |  |  |  | $\times(1)$ |  |  |
| Ch. fail |  | $\times(2)$ | $\times$ (2) | $\times(2)$ |  |  |  |  |  |  | $\times(1)$ |  |  |  |
| VT fail |  |  |  |  |  |  |  |  |  |  |  |  | $\times$ (2) | $\times(1)$ |
| No-working of LCD |  | $\times$ (2) |  |  |  |  |  |  |  | $\times(1)$ |  |  |  |  |

The location marked with (1) has a higher probability than the location marked with (2).

If no message is shown on the LCD, this means that the failure location is either in the DC power supply circuit or in the microprocessors mounted on the SPM module. Then check the "ALARM" LED. If it is off, the failure is in the DC power supply circuit. It is lit, open the relay front panel and check the LEDs mounted on the SPM module. If the LED is off, the failure is in the DC power supply circuit. If the LED is lit, the failure is in the microprocessors.

In the former case, check if the correct DC voltage is applied to the relay.
If so, replace the IO1 or IO8 module mounting the DC/DC converter and confirm that the "Alarm" LED is turned off.

In the latter case, replace the SPM module mounting the processors and confirm that the "Alarm" LED is turned off.

When a failure is detected during regular testing, it will not be difficult to identify the failed module to be replaced.

Note: When a failure or an abnormality is detected during the regular test, confirm the following first:

- Test circuit connections are correct.
- Modules are securely inserted in position.
- Correct DC power voltage is applied.
- Correct AC inputs are applied.
- Test procedures comply with those stated in the manual.


### 6.7.3 Replacing Failed Modules

If the failure is identified to be in the relay module and the user has spare modules, the user can recover the protection by replacing the failed modules.
Repair at the site should be limited to module replacement. Maintenance at the component level is not recommended.

Check that the replacement module has an identical module name (VCT, SPM, IO2, etc.) and hardware type-form as the removed module. Furthermore, the SPM and FD modules should have the same software name.

The module name is indicated on the bottom front of the relay case. The hardware type-form is indicated on the module in the following format:

| Module name | Hardware type-form |
| :--- | :--- |
| VCT | G1PC1-**** |
| SPM | G1SP*-**** |
| IO1 | G1IO1-**** |
| IO2 | G1IO2-**** |
| IO3 | G1IO3-**** |
| IO4 | G1IO2-**** |
| IO4\#1 | G1IO2-**** |
| IO4\#2 | G1IO2-**** |
| IO5 | G1IO3-**** |
| IO6 | G1IO3-**** |
| IO8 | G1IO8-**** |
| FD | G1FD1-**** |
| HMI | -------- |

The software name is indicated on the memory device on the module with letters such as GS1ZM1-***, GS1ZF1-***, etc.
$\begin{array}{ll}\text { A CAUTION } & \begin{array}{l}\text { When handling a module, take anti-static measures such as wearing an earthed } \\ \text { wrist band and placing modules on an earthed conductive mat. Otherwise, many } \\ \text { of the electronic components could suffer damage. }\end{array} \\ \text { CAUTION } & \begin{array}{l}\text { After replacing the SPM module, check all of the settings including the PLC } \\ \text { and IEC103 setting data are restored the original settings. }\end{array}\end{array}$

The initial replacement procedure is as follows:

- Switch off the DC power supply.
- Disconnect the trip outputs.
- Short circuit all AC current inputs and disconnect all AC voltage inputs.

AWARNING Hazardous voltage can be present in the DC circuit just after switching off the DC power supply. It takes approximately 30 seconds for the voltage to discharge.

- Unscrew the relay front cover.


## Replacing the Human Machine Interface Module (front panel)

- Open the front panel of the relay by unscrewing the binding screw located on the left side of the front panel.
- Unplug the ribbon cable on the front panel by pushing the catch outside.
- Remove the two retaining screws and one earthing screw on the relay case side, then detach the front panel from the relay case.
- Attach the replacement module in the reverse procedure.


## Replacing the Transformer Module

- Open the right-side front panel (HMI module) by unscrewing the two binding screws located on the left side of the panel.
- Open the left-side front panel (blind panel) (*) by unscrewing the two binding screws located on the right side of the panel.
(*) This blind panel is attached only to models assembled in the type B case.
- Detach the module holding bar by unscrewing the binding screw located on the left side of the bar.
- Unplug the ribbon cable on the SPM by nipping the catch.
- Remove the metal cover by unscrewing the binding screw located at the top and bottom of the cover.
- Pull out the module by grasping the handles.
- Insert the replacement module in the reverse procedure.


## Replacing other modules

- Open the right-side front panel (HMI module) by unscrewing the two binding screws located on the left side of the panel.
- Open the left-side front panel (blind panel) (*) by unscrewing the two binding screws located on the right side of the panel.
(*) This panel is attached only to models assembled in the type B case.
- Detach the module holding bar by unscrewing the binding screw located on the left side of the bar.
- Unplug the ribbon cable running among the modules by nipping the catch (in case of black connector) and by pushing the catch outside (in case of gray connector) on the connector.
- Pull out the module by pulling up or down at the top and bottom levers.
- Insert the replacement module in the reverse procedure.
- After replacing the SPM module, input the user setting values again.


### 6.7.4 Resumption of Service

After replacing the failed module or repairing failed external circuits, take the following procedures to restore the relay to service.

- Switch on the DC power supply and confirm that the "IN SERVICE" green LED is lit and the "ALARM" red LED is not lit.

Note: Supply DC power after checking that all the modules are in their original positions and the ribbon cables are plugged in.

- If the telecommunication circuit was repaired, perform a "Manual test" and check that the circuit is normal. For the "Manual test", refer to Section 4.2.7.2.
- Supply the AC inputs and reconnect the trip outputs.


### 6.7.5 Storage

The spare relay or module should be stored in a dry and clean room. Based on IEC Standard 60255-6 the storage temperature should be $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, but the temperature of $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ is recommended for long-term storage.

## 7. Putting Relay into Service

The following procedure must be adhered to when putting the relay into service after finishing commissioning or maintenance tests.

- Check that all external connections are correct.
- Check the setting of all measuring elements, timers, scheme switches, recordings and clock are correct.
In particular, when settings are changed temporarily for testing, be sure to restore them.
- Clear any unnecessary records on faults, events and disturbances which are recorded during the tests.
- Reset the counter figures of automatic test and autoreclose, if necessary. For resetting the count, see Section 4.2.3.4 and 4.2.3.5.
- Press the VIEW key and check that no failure message is displayed on the "Auto-supervision" screen.
- Check that the green "IN SERVICE" LED is lit and no other LEDs are lit on the front panel.


## Appendix A <br> Block Diagram



Model 101, 102


Model 201, 202, 203


Model 204, 205, 206


Model 301, 302, 303


Model 401


Model 501

## Appendix B

Signal List

| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 0 | CONSTANT 0 | constant 0 |
| 1 | CONSTANT 1 | constant 1 |
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |
| 5 |  |  |
| 6 |  |  |
| 7 |  |  |
| 8 |  |  |
| 9 | CRT USE | CARRIER IN SERVICE |
| 10 |  |  |
| 11 |  |  |
| 12 |  |  |
| 13 |  |  |
| 14 |  |  |
| 15 |  |  |
| 16 |  |  |
| 17 |  |  |
| 18 |  |  |
| 19 | Z1G-A | EARTH FAULT RELAY Z1G |
| 20 | Z1G-B | ditto |
| 21 | Z1G-C | ditto |
| 22 | Z1XG-A | EARTH FAULT RELAY Z1XG |
| 23 | Z1XG-B | ditto |
| 24 | Z1XG-C | ditto |
| 25 | Z2G-A | EARTH FAULT RELAY Z2G |
| 26 | Z2G-B | ditto |
| 27 | Z2G-C | ditto |
| 28 | Z3G-A | EARTH FAULT RELAY Z3G |
| 29 | Z3G-B | ditto |
| 30 | Z3G-C | ditto |
| 31 | Z4G-A | EARTH FAULT RELAY Z4G |
| 32 | Z4G-B | ditto |
| 33 | Z4G-C | ditto |
| 34 | Z1S-AB | PHASE FAULT RELAY Z1S |
| 35 | Z1S-BC | ditto |
| 36 | Z1S-CA | ditto |
| 37 | Z1XS-AB | PHASE FAULT RELAY Z1XS |
| 38 | Z1XS-BC | ditto |
| 39 | Z1XS-CA | ditto |
| 40 | Z2S-AB | PHASE FAULT RELAY Z2S |
| 41 | Z2S-BC | ditto |
| 42 | Z2S-CA | ditto |
| 43 | Z3S-AB | PHASE FAULT RELAY Z3S |
| 44 | Z3S-BC | ditto |
| 45 | Z3S-CA | ditto |
| 46 | Z4S-AB | PHASE FAULT RELAY Z4S |
| 47 | Z4S-BC | ditto |
| 48 | Z4S-CA | ditto |
| 49 | PSBSOUT-AB | POWER SWING BLOCK for ZS OUTER ELEMENT |
| 50 | PSBSOUT-BC | ditto |
| 51 | PSBSOUT-CA | ditto |
| 52 | OCCR-A | OC RELAY FOR LINE VT |
| 53 | OCCR-B | ditto |
| 54 | OCCR-C | ditto |
| 55 | OCH-A | HIGH SET OC RELAY |
| 56 | OCH-B | ditto |
| 57 | OCH-C | ditto |
| 58 | DEFR | DIRECT. EF RLY (EXTERNAL) |
| 59 | DEFF | DIRECT. EF RLY (INTERNAL) |
| 60 | EF | EARTH FAULT RELAY |
| 61 | EFI | EARTH FAULT IDMT RELAY |
| 62 | OVG | EARTH OV RELAY |
| 63 | OCD-A | CURRENT CHANGE DETEC. RELAY |
| 64 | OCD-B | ditto |
| 65 | OCD-C | ditto |
| 66 | UVC-A | UV RELAY (PHASE SELECTOR) |
| 67 | UVC-B | ditto |
| 68 | UVC-C | ditto |
| 69 | UVFS-AB | UV RELAY (High set) |
| 70 | UVFS-BC | ditto |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 71 | UVFS-CA | ditto |
| 72 | UVLS-AB | UV RELAY (Low set) |
| 73 | UVLS-BC | ditto |
| 74 | UVLS-CA | ditto |
| 75 | UVFG-A | UV RELAY (Hiogh set) |
| 76 | UVFG-B | ditto |
| 77 | UVFG-C | ditto |
| 78 | UVLG-A | UV RELAY (Low set) |
| 79 | UVLG-B | ditto |
| 80 | UVLG-C | ditto |
| 81 | OCBF-A | OC RELAY FOR CBF DETECTION |
| 82 | OCBF-B | ditto |
| 83 | OCBF-C | ditto |
| 84 | OST-ZM | OST-ZM |
| 85 | OST-ZN | OST-ZN |
| 86 | OVB | OVB |
| 87 | UVB | UVB |
| 88 | SYN1 | SYN1 |
| 89 | OVL1 | OVL1 |
| 90 | UVL1 | UVL1 |
| 91 | OVL2 | OVL2 |
| 92 | UVL2 | UVL2 |
| 93 | SYN2 | SYN2 |
| 94 | OC-A | OC-A |
| 95 | OC-B | OC-B |
| 96 | OC-C | OC-C |
| 97 | OCI-A | OCl-A |
| 98 | OCI-B | OCI-B |
| 99 | OCI-C | OCI-C |
| 100 | CHECKING | CHECKING |
| 101 | CB-AND | CB CONTACT (3PHASE AND) |
| 102 | CB-OR | CB CONTACT (3PHASE OR) |
| 103 | Z1G-AX | Z1G-AX |
| 104 | Z1G-BX | Z1G-BX |
| 105 | Z1G-CX | Z1G-CX |
| 106 | Z1XG-AX | Z1XG-AX |
| 107 | Z1XG-BX | Z1XG-BX |
| 108 | Z1XG-CX | Z1XG-CX |
| 109 | Z2G-AX | Z2G-AX |
| 110 | Z2G-BX | Z2G-BX |
| 111 | Z2G-CX | Z2G-CX |
| 112 | Z3G-AX | Z3G-AX |
| 113 | Z3G-BX | Z3G-BX |
| 114 | Z3G-CX | Z3G-CX |
| 115 | Z4G-AX | Z4G-AX |
| 116 | Z4G-BX | Z4G-BX |
| 117 | Z4G-CX | Z4G-CX |
| 118 | Z1S-ABX | Z1S-ABX |
| 119 | Z1S-BCX | Z1S-BCX |
| 120 | Z1S-CAX | Z1S-CAX |
| 121 | Z1XS-ABX | Z1XS-ABX |
| 122 | Z1XS-BCX | Z1XS-BCX |
| 123 | Z1XS-CAX | Z1XS-CAX |
| 124 | Z2S-ABX | Z2S-ABX |
| 125 | Z2S-BCX | Z2S-BCX |
| 126 | Z2S-CAX | Z2S-CAX |
| 127 | Z3S-ABX | Z3S-ABX |
| 128 | Z3S-BCX | Z3S-BCX |
| 129 | Z3S-CAX | Z3S-CAX |
| 130 | Z4S-ABX | Z4S-ABX |
| 131 | Z4S-BCX | Z4S-BCX |
| 132 | Z4S-CAX | Z4S-CAX |
| 133 | PSBSOUT-ABX | PSBSOUT-ABX |
| 134 | PSBSOUT-BCX | PSBSOUT-BCX |
| 135 | PSBSOUT-CAX | PSBSOUT-CAX |
| 136 | OCCROR | OCCROR |
| 137 | OCHOR | OCHOR |
| 138 | OCDOR | OCDOR |
| 139 | UVCOR | UVCOR |
| 140 | UVFSOR | UVFSOR |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 141 | UVLSOR | UVLSOR |
| 142 | UVFGOR | UVFGOR |
| 143 | UVLGOR | UVLGOR |
| 144 | 2PH | 2PH |
| 145 | TZ1GA | TZ1GA |
| 146 | TZ1GB | TZ1GB |
| 147 | TZ1GC | TZ1GC |
| 148 | Z1G TRIP | Z1G TRIP |
| 149 | Z1G-A TRIP | Z1G TRIP A ph. |
| 150 | Z1G-B TRIP | Z1G TRIP B ph. |
| 151 | Z1G-C TRIP | Z1G TRIP C ph. |
| 152 |  |  |
| 153 | Z2G TRIP | Z2G TRIP |
| 154 | Z2GOR | Z2G RELAY OR LOGIC |
| 155 |  |  |
| 156 | Z3G TRIP | Z3G TRIP |
| 157 | Z3GOR | Z3G RELAY OR LOGIC |
| 158 | Z1PTT | ZONE1 RELAY O/P FOR PTTSCHEME |
| 159 | TZ1S | Z1S TRIP TIMER |
| 160 | Z1S TRIP | Z1S TRIP |
| 161 |  |  |
| 162 | Z2S TRIP | Z2S TRIP |
| 163 | Z2SOR | Z2S RELAY OR LOGIC |
| 164 |  |  |
| 165 | Z3S TRIP | Z3S TRIP |
| 166 | Z3SOR | Z3S RELAY OR LOGIC |
| 167 | Z1XG TRIP | Z1XG TRIP |
| 168 | Z1X-A TRIP | Z1XG TRIP A ph. |
| 169 | Z1X-B TRIP | Z1XG TRIP B ph. |
| 170 | Z1X-C TRIP | Z1XG TRIP C ph. |
| 171 | Z1XS TRIP | Z1XS TRIP |
| 172 | VTF ALARM | VTF ALARM |
| 173 | VTF | VTF BLOCK SIGNAL |
| 174 | VTF1 ALARM | 3PH VTF DETECT. |
| 175 | VTF2 ALARM | 1 OR 2PH VTF DETECT |
| 176 | PSB DET | PSB DETECTION |
| 177 | PSB-Z1 | PSB FOR ZONE1 RELAY |
| 178 | PSB-Z1X | PSB FOR ZONE1X RELAY |
| 179 | PSB-Z2 | PSB FOR ZONE2 RELAY |
| 180 | PSB-Z3 | PSB FOR ZONE3 RELAY |
| 181 | PSB-CR | PSB FOR CARRIER TRIP |
| 182 | STUB TRIP | STUB TRIP |
| 183 | SOTF TRIP | SOTF TRIP |
| 184 | EFI TRIP | EF IDMT TRIP |
| 185 | EF ALARM | EF BACK-UP TRIP ALARM |
| 186 | DEF ALARM | DEF BACK-UP TRIP ALARM |
| 187 | EF BU-TRIP | EF or DEF BACK-UP TRIP |
| 188 | TZ4S | Z4S BACK-UP TRIP TIMER |
| 189 | ZR1S TRIP | ZR1S TRIP |
| 190 | ZR1SOR | ZR1S RELAY OR LOGIC |
| 191 | TZ4G | Z4G BACK-UP TRIP TIMER |
| 192 | ZR1G TRIP | Z4G BACK-UP TRIP |
| 193 | ZR1GOR | ZR1G RELAY OR LOGIC |
| 194 | BU TRIP | BACK-UP TRIP |
| 195 | BURECLK | BU RECLOSE BLOCK |
| 196 | CBF RETRIP-A | RE-TRIP A ph. FOR CBF |
| 197 | CBF RETRIP-B | RE-TRIP B ph. FOR CBF |
| 198 | CBF RETRIP-C | RE-TRIP C ph. FOR CBF |
| 199 | CBF DET | CBF DETECTION |
| 200 | CBF TRIP | RELATED CB TRIP FOR CBF |
| 201 | TOST1 | OS DETECTION TIMER 1 |
| 202 | TOST2 | OS DETECTION TIMER 2 |
| 203 | OST TRIP | OS TRIP |
| 204 | EXT CAR-R1 | CARRIER RECEIVE FROM REMOTE TERM. 1 |
| 205 | C/R PUP | CARRIER SEND FOR PUTT |
| 206 | CRG-PUP | PUTT LOCAL TRIP |
| 207 | CRS-PUP | ditto |
| 208 | ZGCX | CARRIER CONTROL RELAY(Z2G/Z3G) |
| 209 | ZSCX | CARRIER CONTROL RELAY(Z2S/Z3S) |
| 210 | C/R POUP | CARRIER SEND FOR POTT/UNBLK |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 211 | CRG-POP/UOP | POTT/UNBLK LOCAL TRIP |
| 212 | CRS-POP/UOP | ditto |
| 213 | WI TRIP | WEAK INFEED TRIP |
| 214 | REV BLK | CARRIER SEND FOR BLOCK |
| 215 | DEFFCR | DG CARRIER TRIP DELAY TIMER |
| 216 | DEFRCR | CARR. COORDINATION DGO TIMER |
| 217 | C/R DEF | DG CARR. SEND (PUTT,POTT,UNBLK) |
| 218 | DEFCAR TRIP | DG CARR. TRIP (ditto) |
| 219 | C/R DEFBOP | DG CARR. SEND (BLK) |
| 220 | DEFBOP TRIP | DG CARR. TRIP (BLK) |
| 221 | C/R BOP | CARRIER SEND FOR BLOCKING |
| 222 | CRG-BOP | BLOCKING LOCAL TRIP |
| 223 | CRS-BOP | ditto |
| 224 | LK-BOP | CARRIER SEND FOR BLOCKING |
| 225 | EXT CAR-S | EXTERNAL CARRIER SEND COMMAND |
| 226 | CAR-G TRIP | CARRIER TRIP(G) |
| 227 | CAR-S TRIP | CARRIER TRIP(S) |
| 228 | CAR-A TRIP | DISTANCE or DG CARRIER TRIP (A ph.) |
| 229 | CAR-B TRIP | DISTANCE or DG CARRIER TRIP (B ph.) |
| 230 | CAR-C TRIP | DISTANCE or DG CARRIER TRIP (C ph.) |
| 231 | CAR TRIP | DISTANCE or DG CARRIER TRIP |
| 232 | DEFCR TRIP | DG CARRIER TRIP |
| 233 | WICAR TRIP | WEAK CARRIER TRIP |
| 234 | TPMD3PH | TRIP MODE 3ph. |
| 235 | TRIP-A | TRIP A ph. |
| 236 | TRIP-B | TRIP B ph. |
| 237 | TRIP-C | TRIP C ph. |
| 238 | TRIP-OR | TRIP O/P OR |
| 239 | TRIP | TRIP SINGLE SHOT |
| 240 | TRIP-A1 | TRIP O/P FOR BUS CB |
| 241 | TRIP-B1 | ditto |
| 242 | TRIP-C1 | ditto |
| 243 | TRIP-A2 | TRIP O/P FOR CENTER CB |
| 244 | TRIP-B2 | ditto |
| 245 | TRIP-C2 | ditto |
| 246 | FDX1 | FD OUTPUT 1 (OPTION) |
| 247 | FDX2 | FD OUTPUT 2 (OPTION) |
| 248 | M-OR | MAIN TRIP "OR" |
| 249 | M-AND | MAIN TRIP "AND" |
| 250 | FD | FD TRIP "OR" |
| 251 | FD-AND | FD TRIP "AND" |
| 252 | SBT | CARRIER SEND FOR TEST/MONITOR |
| 253 | CHF | CARRIER CHANNEL FAILURE |
| 254 | RLYFAIL | RELAY FAILURE |
| 255 | RLY O/P BLK | RELAY OUTPUT BLOCK |
| 256 | SV-LOCK | SV BLOCK |
| 257 | LSSV | LS FAILURE |
| 258 | TEVLV | EVOLVING FAULT WAITING TIMER |
| 259 | TSPR1 | LEAD SPAR DEAD LINE TIMER |
| 260 | TTPR1 | LEAD TPAR DEAD LINE TIMER |
| 261 | TRR1 | LEAD RESET TIMER |
| 262 | TPARL-SET | LEAD TPAR O/P CONFIRMED |
| 263 | TSPR2 | FLW SPAR DEAD LINE TIMER |
| 264 | TTPR2 | FLW TPAR TIMING |
| 265 | TRR2 | FLW RESET TIMER |
| 266 | TPAR.F | FLW TPAR O/P CONFIRMED |
| 267 | LB.DL-1 | LEAD LIVE BUS \& DEAD LINE |
| 268 | DB.LL-1 | LEAD DEAD BUS \& LIVE LINE |
| 269 | LB.LL.SYN-1 | LEAD LIVE BUS \& LIVE LINE +SYN. |
| 270 | LB.DL-2 | FLW LIVE BUS \& DEAD LINE |
| 271 | DB.LL-2 | FLW DEAD BUS \& LIVE LINE |
| 272 | LB.LL.SYN-2 | FLW LIVE BUS \& LIVE LINE SYN. |
| 273 | SYN-OP | SYN. CONDITION FOR TPAR |
| 274 | SYN-SEL | SYN. ELEMENT SELECT SIGNAL |
| 275 | TDBL1 | VOLTAGE CHECK TIMER |
| 276 | TLBD1 | ditto |
| 277 | TSYN1 | LEAD SYN CHECK TIMER |
| 278 | TDBL2 | VOLTAGE CHECK TIMER |
| 279 | TLBD2 | ditto |
| 280 | TSYN2 | FLW SYN CHECK TIMER |


| Signal list |  | Contents |
| :---: | :---: | :---: |
| No. | Signal Name |  |
| 281 | REC.READY1 | LEAD REC. READY SIGNAL |
| 282 | REC.READY2 | FLW REC. READY SIGNAL |
| 283 | BRIDGE1 | LEAD BRIDGE CONDITION |
| 284 | BRIDGE2 | FLW BRIDGE CONDITION |
| 285 | IN-PROG1 | LEAD REC. IN PROGRESS |
| 286 | IN-PROG2 | FLW REC. IN PROGRESS |
| 287 | SPAR1 | LEAD SPAR O/P |
| 288 | SPAR2 | FLW SPAR O/P |
| 289 | TPAR1 | LEAD TPAR O/P |
| 290 | TPAR2 | FLW TPAR O/P |
| 291 | ARC1 | REC OUTPUT FOR BUS CB |
| 292 | ARC2 | REC OUTPUT FOR CENTER CB |
| 293 | 94TT1 | LEAD REMAINING PHASE TRIP |
| 294 | 94TT2 | FLW REMAINING PHASE TRIP |
| 295 | FT1 | LEAD FINAL TRIP SIGNAL |
| 296 | FT2 | FLW FINAL TRIP SIGNAL |
| 297 | TS2 | MULTI.SHOT-2 DEAD TIMER |
| 298 | TS3 | MULTI.SHOT-3 DEAD TIMER |
| 299 | TS4 | MULTI.SHOT-4 DEAD TIMER |
| 300 | TS2R | MULTI.SHOT-2 RESET TIMER |
| 301 | TS3R | MULTI.SHOT-3 RESET TIMER |
| 302 | TS4R | MULTI.SHOT-4 RESET TIMER |
| 303 | MULTI.ARC | MULTI. SHOT REC. OUTPUT |
| 304 | MAR-OKO | 1 SHOT REC. SUCCESS |
| 305 | MAR-OK1 | 2 SHOT REC. SUCCESS |
| 306 | MAR-OK2 | 3 SHOT REC. SUCCESS |
| 307 | MAR-OK3 | 4 SHOT REC. SUCCESS |
| 308 | MAR-FT | MULTI. REC. FINAL TRIP |
| 309 | TRIP-H | TRIP SIGNAL HOLD |
| 310 | SBT-INV | CARRIER SEND FOR TEST/MONITOR |
| 311 | BFS-AB | BLINDER FOR ZS (FORWARD) |
| 312 | BFS-BC | ditto |
| 313 | BFS-CA | ditto |
| 314 | BRS-AB | BLINDER FOR ZS (REVERSE) |
| 315 | BRS-BC | ditto |
| 316 | BRS-CA | ditto |
| 317 | BFG-A | BLINDER FOR ZG (FORWARD) |
| 318 | BFG-B | ditto |
| 319 | BFG-C | ditto |
| 320 | BRG-A | BLINDER FOR ZG (REVERSE) |
| 321 | BRG-B | ditto |
| 322 | BRG-C | ditto |
| 323 | PSBSIN-AB | POWER SWING BLOCK FOR ZS INNER ELEMENT |
| 324 | PSBSIN-BC | ditto |
| 325 | PSBSIN-CA | ditto |
| 326 | OC_TRIP | OC BACK-UP TRIP |
| 327 | OCI_TRIP | IDMT OC BACK-UP TRIP |
| 328 | OC_BU-TRIP | OC or OCIBACK-UP TRIP |
| 329 | TSPR3 | FLW DEAD LINE TIMER |
| 330 | TTPR3 | FLWDEAD LINE TIMER |
| 331 | Z1GTORT | Z1G TRIP |
| 332 | Z1STT | Z1S TRIP |
| 333 |  |  |
| 334 |  |  |
| 335 |  |  |
| 336 |  |  |
| 337 | OST_BO | OST BINARY OUTPUT |
| 338 | EXT_DEFCAR-S | EXTERNAL DG CARRIER SEND COMMAND |
| 339 | S-DĒFBOP2 | DG CARRIER SEND2(BLOCKING) |
| 340 |  |  |
| 341 | Z1+Z1X+CRT | MAIN TRIP |
| 342 | Z1_TRIP | ZONE1 TRIP |
| 343 | Z1Х _TRIP | ZONE1 EXTENTION TRIP |
| 344 | Z2_TRIP | ZONE2 TRIP |
| 345 | Z3_TRIP | ZONE3 TRIP |
| 346 | ZR1_TRIP | ZONE-R1 TRIP |
| 347 | Z2+Z̄3+ZR1 | ZONE2-R1 TRIP |
| 348 | Z3+ZR1 | ZONE3 AND ZONE-R1 TRIP |
| 349 | EF/DEF_ALARM | EF/DEF/EFI ALARM |
| 350 | SOTF+STUB | SOTFISTUB TRIP |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 351 | PUP TRIP | PUP TRIP |
| 352 | PSBSIN-ABX | PSBSIN-ABX |
| 353 | PSBSIN-BCX | PSBSIN-BCX |
| 354 | PSBSIN-CAX | PSBSIN-CAX |
| 355 | TP-2PH | Multi phase trip signal |
| 356 | TP-MPH | Multi phase trip signal |
| 357 | OCDP-A | CURRENT CHANGE DET. DURING PS |
| 358 | OCDP-B | ditto |
| 359 | OCDP-C | ditto |
| 360 | DOCN-F | NEGATIVE DIR.RELAY (FORWARD) |
| 361 | DOCN-R | NEGATIVE DIR.RELAY (REVERSE) |
| 362 | UVPWI-A | UV RELAY |
| 363 | UVPWI-B | UV RELAY |
| 364 | UVPWI-C | UV RELAY |
| 365 | TP-1PH | single phase trip |
| 366 |  |  |
| 367 |  |  |
| 368 | ARC COM.ON | Autorecloser active (for IEC103) |
| 369 | TELE.COM.ON | Teleprotection active (for IEC103) |
| 370 | PROT.COM.ON | Protection active (for IEC103) |
| 371 |  |  |
| 372 |  |  |
| 373 |  |  |
| 374 |  |  |
| 375 |  |  |
| 376 |  |  |
| 377 |  |  |
| 378 |  |  |
| 379 |  |  |
| 380 |  |  |
| 381 |  |  |
| 382 |  |  |
| 383 |  |  |
| 384 |  |  |
| 385 |  |  |
| 386 |  |  |
| 387 |  |  |
| 388 |  |  |
| 389 |  |  |
| 390 |  |  |
| 391 |  |  |
| 392 |  |  |
| 393 | OVL-ABC | OVL element output (for 3phase line voltage) |
| 394 | OVL-A | OVL-A element output (for 3phase line voltage) |
| 395 | OVL-B | OVL-B element output (for 3phase line voltage) |
| 396 | OVL-C | OVL-C element output (for 3phase line voltage) |
| 397 | 3PLL | Three phase live line element output |
| 398 |  |  |
| 399 |  |  |
| 400 |  |  |
| 401 | OCMF-L1 | MULTI-STEP OC RELAY LEVEL 1 |
| 402 | OCMF-L2 | ditto LEVEL 2 |
| 403 | OCMF-L3 | ditto LEVEL 3 |
| 404 | OCMF-L4 | ditto LEVEL 4 |
| 405 | OCMF-L5 | ditto LEVEL 5 |
| 406 | OCMF-L6 | ditto LEVEL 6 |
| 407 | OCMF-L7 | ditto LEVEL 7 |
| 408 | OCMF | ditto OR LOGIC |
| 409 | OCDF-A | CURRENT CHANGE DETECTION RELAY |
| 410 | OCDF-B | ditto |
| 411 | OCDF-C | ditto |
| 412 |  |  |
| 413 |  |  |
| 414 |  |  |
| 415 |  |  |
| 416 | EFF | EARTH FAULT DETECTION RELAY |
| 417 | UVSF-AB | UV RELAY |
| 418 | UVSF-BC | ditto |
| 419 | UVSF-CA | ditto |
| 420 |  |  |

Signal list

| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 421 | UVGF-A | ditto |
| 422 | UVGF-B | ditto |
| 423 | UVGF-C | ditto |
| 424 |  |  |
| 425 | UVDF-A | VOLTAGE CHANGE DETECTION RELAY |
| 426 | UVDF-B | ditto |
| 427 | UVDF-C | ditto |
| 428 |  |  |
| 429 |  |  |
| 430 |  |  |
| 431 | 52AND1 | CB1 contact AND logic |
| 432 | 52AND2 | CB2 contact AND logic |
| 433 | LB | Selected live bus mode |
| 434 | DB | Selected dead bus mode |
| 435 | SYN | Selected Synchronism check mode |
| 436 | OVS1-AB | OVS1-AB relay element output |
| 437 | OVS1-BC | OVS1-BC relay element output |
| 438 | OVS1-CA | OVS1-CA relay element output |
| 439 | OVS2-AB | OVS2-AB relay element output |
| 440 | OVS2-BC | OVS2-BC relay element output |
| 441 | OVS2-CA | OVS2-CA relay element output |
| 442 | OVG1-A | OVG1-A relay element output |
| 443 | OVG1-B | OVG1-B relay element output |
| 444 | OVG1-C | OVG1-C relay element output |
| 445 | OVG2-A | OVG2-A relay element output |
| 446 | OVG2-B | OVG2-B relay element output |
| 447 | OVG2-C | OVG2-C relay element output |
| 448 | OVS1-AB INST | OVS1-AB relay element start |
| 449 | OVS1-BC INST | OVS1-BC relay element start |
| 450 | OVS1-CA INST | OVS1-CA relay element start |
| 451 | OVG1-A INST | OVG1-A relay element start |
| 452 | OVG1-B INST | OVG1-B relay element start |
| 453 | OVG1-C INST | OVG1-C relay element start |
| 454 | UVS1-AB | UVS1-AB relay element output |
| 455 | UVS1-BC | UVS1-BC relay element output |
| 456 | UVS1-CA | UVS1-CA relay element output |
| 457 | UVS2-AB | UVS2-AB relay element output |
| 458 | UVS2-BC | UVS2-BC relay element output |
| 459 | UVS2-CA | UVS2-CA relay element output |
| 460 | UVG1-A | UVG1-A relay element output |
| 461 | UVG1-B | UVG1-B relay element output |
| 462 | UVG1-C | UVG1-C relay element output |
| 463 | UVG2-A | UVG2-A relay element output |
| 464 | UVG2-B | UVG2-B relay element output |
| 465 | UVG2-C | UVG2-C relay element output |
| 466 | UVS1-AB INST | UVS1-AB relay element start |
| 467 | UVS1-BC INST | UVS1-BC relay element start |
| 468 | UVS1-CA INST | UVS1-CA relay element start |
| 469 | UVG1-A INST | UVG1-A relay element start |
| 470 | UVG1-B INST | UVG1-B relay element start |
| 471 | UVG1-C INST | UVG1-C relay element start |
| 472 | UVSBLK-AB | UVS BLK-AB relay element output |
| 473 | UVSBLK-BC | UVS BLK-BC relay element output |
| 474 | UVSBLK-CA | UVS BLK-CA relay element output |
| 475 | UVGBLK-A | UVG BLK-A relay element output |
| 476 | UVGBLK-B | UVG BLK-B relay element output |
| 477 | UVGBLK-C | UVG BLK-C relay element output |
| 478 |  |  |
| 479 |  |  |
| 480 | ARCMD OFF | Autoreclosing mode (Disable) |
| 481 | ARCMD SPAR | ditto (SPAR) |
| 482 | ARCMD TPAR | ditto (MPAR) |
| 483 | ARCMD S\&T | ditto (SPAR \& TPAR) |
| 484 | ARCMD EXT1P | ditto (EXT1P) |
| 485 | ARCMD EXT3P | ditto (EXT3P) |
| 486 | ARC-SET | output set signal in leader CB autoreclose |
| 487 | CB UNDRY.L ST | Starting signal for final trip with CB unready |
| 488 | TSUC1 | ARC.L success reset signal |
| 489 | TSUC2 | ARC.F success reset signal |
| 490 | ARC SUCCESS1 | leader CB autoreclose success signal |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 491 | ARC SUCCESS2 | Follower CB autoreclose success signal |
| 492 | ARC FAIL1 | leader CB autoreclose fail signal |
| 493 | ARC FAIL2 | Follower CB autoreclose fail signal |
| 494 |  |  |
| 495 |  |  |
| 496 |  |  |
| 497 |  |  |
| 498 |  |  |
| 499 |  |  |
| 500 |  |  |
| 501 | UARCSW P1 | User ARC switch Position1 |
| 502 | UARCSW P2 | User ARC switch Position2 |
| 503 | UARCSW P3 | User ARC switch Position3 |
| 504 |  |  |
| 505 |  |  |
| 506 |  |  |
| 507 |  |  |
| 508 |  |  |
| 509 |  |  |
| 510 |  |  |
| 511 |  |  |
| 512 |  |  |
| 513 | BI1 COMMAND | Binary input siqnal BI1 |
| 514 | BI2 COMMAND | Binary input signal BI2 |
| 515 | BI3 COMMAND | Binary input signal BI3 |
| 516 | BI4 COMMAND | Binary input signal BI4 |
| 517 | BI5 COMMAND | Binary input signal BI5 |
| 518 | BI6 COMMAND | Binary input siqnal BI6 |
| 519 | BI7 COMMAND | Binary input sionnal BI7 |
| 520 | BI8 COMMAND | Binary input sionnal BI8 |
| 521 | BI9 COMMAND | Binary input siqnal BI9 |
| 522 | BI10 COMMAND | Binary input signal BI10 |
| 523 | BI11 COMMAND | Binary input signal BI11 |
| 524 | BI12 COMMAND | Binary input signal BI12 |
| 525 | BI13 COMMAND | Binary input signal BI13 |
| 526 | BI14 COMMAND | Binary input signal BI14 |
| 527 | BI15 COMMAND | Binary input signal BI15 |
| 528 | BI16 COMMAND | Binary input signal BI16 |
| 529 | BI17 COMMAND | Binary input signal BI17 |
| 530 | BI18 COMMAND | Binary input signal BI18 |
| 531 | BI19 COMMAND | Binary input signal BI19 |
| 532 | BI20 COMMAND | Binary input signal BI20 |
| 533 | BI21 COMMAND | Binary input siqnal BI21 |
| 534 | BI22 COMMAND | Binary input signal BI22 |
| 535 | BI23 COMMAND | Binary input signal BI23 |
| 536 | BI24 COMMAND | Binary input signal BI24 |
| 537 | BI25 COMMAND | Binary input signal BI25 |
| 538 | BI26 COMMAND | Binary input signal BI26 |
| 539 | BI27 COMMAND | Binary input signal BI27 |
| 540 | BI28 COMMAND | Binary input siqnal BI28 |
| 541 | BI34 COMMAND | Binary input signal BI34 |
| 542 | BI35 COMMAND | Binary input siqnal BI35 |
| 543 | BI36 COMMAND | Binary input signal BI36 |
| 544 |  |  |
| 545 |  |  |
| 546 |  |  |
| 547 |  |  |
| 548 |  |  |
| 549 |  |  |
| 550 |  |  |
| 551 |  |  |
| 552 |  |  |
| 553 | ZR1S-AB | PHASE FAULT RELAY ZR1S |
| 554 | ZR1S-BC | ditto |
| 555 | ZR1S-CA | ditto |
| 556 | THM-T | Thermal trip relay |
| 557 | ZR2S-AB | PHASE FAULT RELAY ZR2S |
| 558 | ZR2S-BC | ditto |
| 559 | ZR2S-CA | ditto |
| 560 | THM-A | Thermal alarm relay |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 561 | PSBGIN-A | POWER SWING BLOCK FOR ZG INNER ELEMENT |
| 562 | PSBGIN-B | ditto |
| 563 | PSBGIN-C | ditto |
| 564 |  |  |
| 565 | PSBGOUT-A | POWER SWING BLOCK for ZG OUTER ELEMENT |
| 566 | PSBGOUT-B | ditto |
| 567 | PSBGOUT-C | ditto |
| 568 | EFL | EARTH FAULT RELAY |
| 569 | ZR1G-A | EARTH FAULT RELAY ZR1G |
| 570 | ZR1G-B | ditto |
| 571 | ZR1G-C | ditto |
| 572 |  |  |
| 573 | ZR2G-A | EARTH FAULT RELAY ZR2G |
| 574 | ZR2G-B | ditto |
| 575 | ZR2G-C | ditto |
| 576 |  |  |
| 577 | ZFS-AB | PHASE FAULT RELAY ZFS |
| 578 | ZFS-BC | ditto |
| 579 | ZFS-CA | ditto |
| 580 |  |  |
| 581 | ZNDS-AB | PHASE FAULT RELAY ZNDS |
| 582 | ZNDS-BC | ditto |
| 583 | ZNDS-CA | ditto |
| 584 |  |  |
| 585 |  |  |
| 586 |  |  |
| 587 |  |  |
| 588 |  |  |
| 589 |  |  |
| 590 |  |  |
| 591 |  |  |
| 592 |  |  |
| 593 | ZFG-A | EARTH FAULT RELAY ZFG |
| 594 | ZFG-B | ditto |
| 595 | ZFG-C | ditto |
| 596 |  |  |
| 597 | ZNDG-A | EARTH FAULT RELAY ZNDG |
| 598 | ZNDG-B | ditto |
| 599 | ZNDG-C | ditto |
| 600 |  |  |
| 601 |  |  |
| 602 |  |  |
| 603 |  |  |
| 604 |  |  |
| 605 |  |  |
| 606 |  |  |
| 607 |  |  |
| 608 |  |  |
| 609 | ZR1S-ABX | ZR1S-ABX |
| 610 | ZR1S-BCX | ZR1S-BCX |
| 611 | ZR1S-CAX | ZR1S-CAX |
| 612 | EXT CAR-R2 | CARRIER RECEIVE FROM REMOTE TERM. 2 |
| 613 | OC TRIP-A | OC trip sional (A-Phase) |
| 614 | OC TRIP-B | OC trip sional (B-Phase) |
| 615 | OC TRIP-C | OC trip signal (C-Phase) |
| 616 | OCI TRIP-A | OCI trip signal (A-Phase) |
| 617 | OCI TRIP-B | OCl trip signal (B-Phase) |
| 618 | OCl TRIP-C | OCl trip signal (C-Phase) |
| 619 | C/R DISECHO | Distance carrier echo signal |
| 620 | C/R DEFECHO | DEF carrier echo signal |
| 621 | CHF-SV R1 | CARRIER CHANNEL FAILURE (Remote terminal-1) |
| 622 | CHF-SV R2 | CARRIER CHANNEL FAILURE (Remote terminal-2) |
| 623 | TP-A | Trip A-phase command without off-delay timer |
| 624 | TP-B | Trip B-phase command without off-delay timer |
| 625 | TP-C | Trip C-phase command without off-delay timer |
| 626 | ZFG-AX | ZFG-AX |
| 627 | ZFG-BX | ZFG-BX |
| 628 | ZFG-CX | ZFG-CX |
| 629 | ZR1G-AX | ZR1G-AX |
| 630 | ZR1G-BX | ZR1G-BX |


| Signal list |  | Contents |
| :---: | :---: | :---: |
| No. | Signal Name |  |
| 631 | ZR1G-CX | ZR1G-CX |
| 632 | ZR2G-AX | ZR2G-AX |
| 633 | ZR2G-BX | ZR2G-BX |
| 634 | ZR2G-CX | ZR2G-CX |
| 635 | ZFS-ABX | ZFS-ABX |
| 636 | ZFS-BCX | ZFS-BCX |
| 637 | ZFS-CAX | ZFS-CAX |
| 638 | ZR2S-ABX | ZR2S-ABX |
| 639 | ZR2S-BCX | ZR2S-BCX |
| 640 | ZR2S-CAX | ZR2S-CAX |
| 641 | Z2G-A_TRIP | Z2G TRIP A ph. |
| 642 | Z2G-B_TRIP | Z2G TRIP B ph. |
| 643 | Z2G-C_TRIP | Z2G TRIP C ph. |
| 644 | Z3G-A_TRIP | Z3G TRIP A ph. |
| 645 | Z3G-B_TRIP | Z3G TRIP B ph. |
| 646 | Z3G-C-TRIP | Z3G TRIP C ph. |
| 647 | ZFG_TRIP | ZFG TRIP |
| 648 | ZFG-A_TRIP | ZFG TRIP A ph. |
| 649 | ZFG-B_TRIP | ZFG TRIP B ph. |
| 650 | ZFG-C_TRIP | ZFG TRIP C ph. |
| 651 | ZFS_TRIP | ZFS TRIP |
| 652 | ZR1G-A_TRIP | ZR1G TRIP Aph. |
| 653 | ZR1G-B_TRIP | ZR1G TRIP B ph. |
| 654 | ZR1G-C_TRIP | ZR1G TRIP C ph. |
| 655 | ZR2G_TRIP | ZR2G TRIP |
| 656 | ZR2G-A_TRIP | ZR2G TRIP Aph. |
| 657 | ZR2G-B_TRIP | ZR2G TRIP B ph. |
| 658 | ZR2G-C-TRIP | ZR2G TRIP C ph. |
| 659 | ZR2S_TRIP | ZR2S TRIP |
| 660 | Z1GOR | Z1G RELAY OR LOGIC |
| 661 | Z1SOR | Z1S RELAY OR LOGIC |
| 662 | ZFGOR | ZFG RELAY OR LOGIC |
| 663 | ZFSOR | ZFS RELAY OR LOGIC |
| 664 | ZR2GOR | ZR2G RELAY OR LOGIC |
| 665 | ZR2SOR | ZR2S RELAY OR LOGIC |
| 666 | ZNDG-AX | ZNDG-AX |
| 667 | ZNDG-BX | ZNDG-BX |
| 668 | ZNDG-CX | ZNDG-CX |
| 669 | ZNDS-ABX | ZNDS-ABX |
| 670 | ZNDS-BCX | ZNDS-BCX |
| 671 | ZNDS-CAX | ZNDS-CAX |
| 672 | ZNDG_TRIP | ZNDG TRIP |
| 673 | ZNDG-A_TRIP | ZNDG TRIP A ph. |
| 674 | ZNDG-B_TRIP | ZNDG TRIP B ph. |
| 675 | ZNDG-C_TRIP | ZNDG TRIP C ph. |
| 676 | ZNDS_TRIP | ZNDS TRIP |
| 677 | DEF_TRIP | DEF BACK-UP TRIP |
| 678 | EF_TRIP | EF BACK-UP TRIP |
| 679 | STŪB-A_TRIP | Stub TRIP A ph. |
| 680 | STUB-B_TRIP | Stub TRIP B ph. |
| 681 | STUB-C_TRIP | Stub TRIP C ph. |
| 682 | SOTF-A_TRIP | SOTF-OCH TRIP A ph. |
| 683 | SOTF-B_TRIP | SOTF-OCH TRIP B ph. |
| 684 | SOTF-C_TRIP | SOTF-OCH TRIP C ph. |
| 685 | SOTF-Z_TRIP | SOTF-Distance TRIP |
| 686 | OCH_TRIP | OCH TRIP |
| 687 | OCH-A_TRIP | OCH TRIP A ph. |
| 688 | OCH-B_TRIP | OCH TRIP B ph. |
| 689 | OCH-C_TRIP | OCH TRIP C ph. |
| 690 | THM_ALARM | THERMAL ALARM |
| 691 | THM -TRIP | THERMAL TRIP |
| 692 | CBF_RETRIP | RE-TRIP FOR CBF |
| 693 | CBF_TRIP-A | RELATED CB TRIP A ph. FOR CBF |
| 694 | CBF $=$ TRIP-B | RELATED CB TRIP B ph. FOR CBF |
| 695 | CBF_TRIP-C | RELATED CB TRIP C ph. FOR CBF |
| 696 | PSBḠOUT-AX | PSBGOUT-AX |
| 697 | PSBGOUT-BX | PSBGOUT-BX |
| 698 | PSBGOUT-CX | PSBGOUT-CX |
| 699 | PSBGIN-AX | PSBGIN-AX |
| 700 | PSBGIN-BX | PSBGIN-BX |

Signal list

| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 701 | PSBGIN-CX | PSBGIN-CX |
| 702 | PSBS DET | PSB for ZS DETECTION |
| 703 | PSBG DET | PSB for ZG DETECTION |
| 704 | ZF TRIP | ZONE-F TRIP |
| 705 | ZR2 TRIP | ZONE-R2 TRIP |
| 706 | ZND TRIP | ZONE-ND TRIP |
| 707 | SHOT NUM1 | Trip/Auto-Reclosing shot number1 condition |
| 708 | SHOT NUM2 | Trip/Auto-Reclosing shot number2 condition |
| 709 | SHOT NUM3 | Trip/Auto-Reclosing shot number3 condition |
| 710 | SHOT NUM4 | Trip/Auto-Reclosing shot number4 condition |
| 711 | SHOT NUM5 | Trip/Auto-Reclosing shot number5 condition |
| 712 | Z1CNT INST | Z1 CONTROL COMMAND (Instantly trip) |
| 713 | Z1CNT 3PTP | Z1 CONTROL COMMAND (3-phase trip) |
| 714 | Z1CNT ARCBLK | Z1 CONTROL COMMAND (Autoreclosing block) |
| 715 | Z1CNT TPBLK | Z1 CONTROL COMMAND (Trip block) |
| 716 | ZNDGOR | ZNDG RELAY OR LOGIC |
| 717 | ZNDSOR | ZNDS RELAY OR LOGIC |
| 718 |  |  |
| 719 |  |  |
| 720 | ZGC-AX | CARRIER CONTROL RELAY(Z2G/Z3G-A ph.) |
| 721 | ZGC-BX | CARRIER CONTROL RELAY(Z2G/Z3G-B ph.) |
| 722 | ZGC-CX | CARRIER CONTROL RELAY(Z2G/Z3G-C ph.) |
| 723 | C/R PUP-A | CARRIER SEND FOR PUTT (ZG-A ph.) |
| 724 | C/R PUP-B | CARRIER SEND FOR PUTT (ZG-B ph.) |
| 725 | C/R PUP-C | CARRIER SEND FOR PUTT (ZG-C ph.) |
| 726 | C/R PUP-S | CARRIER SEND FOR PUTT (ZS) |
| 727 | PUP TRIP-A | PUTT LOCAL TRIP (A ph.) |
| 728 | PUP TRIP-B | PUTT LOCAL TRIP (B ph.) |
| 729 | PUP TRIP-C | PUTT LOCAL TRIP ( C ph.) |
| 730 | C/R POUP-A | CARRIER SEND FOR POTT/UNBLOCK (ZG-A ph.) |
| 731 | C/R POUP-B | CARRIER SEND FOR POTT/UNBLOCK (ZG-B ph.) |
| 732 | C/R POUP-C | CARRIER SEND FOR POTT/UNBLOCK (ZG-C ph.) |
| 733 | C/R POUP-S | CARRIER SEND FOR POTT/UNBLOCK (ZS) |
| 734 | POUP TRIP-A | POTT/UNBLOCK LOCAL TRIP (A ph.) |
| 735 | POUP TRIP-B | POTT/UNBLOCK LOCAL TRIP (B ph.) |
| 736 | POUP TRIP-C | POTT/UNBLOCK LOCAL TRIP (C ph.) |
| 737 | REV BLK-A | CARRIER SEND FOR BLOCK (ZG-A ph.) |
| 738 | REV BLK-B | CARRIER SEND FOR BLOCK (ZG-B ph.) |
| 739 | REV BLK-C | CARRIER SEND FOR BLOCK (ZG-C ph.) |
| 740 | REV BLK-S | CARRIER SEND FOR BLOCK (ZS) |
| 741 | C/R BOP-A | CARRIER SEND FOR BLOCKING (ZG-A ph.) |
| 742 | C/R BOP-B | CARRIER SEND FOR BLOCKING (ZG-B ph.) |
| 743 | C/R BOP-C | CARRIER SEND FOR BLOCKING (ZG-C ph.) |
| 744 | C/R BOP-S | CARRIER SEND FOR BLOCKING (ZS) |
| 745 | BOP TRIP-A | BLOCKING LOCAL TRIP (A ph.) |
| 746 | BOP TRIP-B | BLOCKING LOCAL TRIP (B ph.) |
| 747 | BOP TRIP-C | BLOCKING LOCAL TRIP ( C ph.) |
| 748 | C/R DEF-A | DG CARRIER SEND (PUTT,POTT,UNBLOCK) (A ph.) |
| 749 | C/R DEF-B | DG CARRIER SEND (PUTT,POTT,UNBLOCK) (B ph.) |
| 750 | C/R DEF-C | DG CARRIER SEND (PUTT,POTT,UNBLOCK) (C ph.) |
| 751 | DEFCR TRIP-A | DG CARRIER LOCAL TRIP (PUTT,POTT,UNBLOCK) (A ph.) |
| 752 | DEFCR TRIP-B | DG CARRIER LOCAL TRIP (PUTT,POTT,UNBLOCK) (B ph.) |
| 753 | DEFCR TRIP-C | DG CARRIER LOCAL TRIP (PUTT,POTT,UNBLOCK) ( C ph.) |
| 754 | C/R DEFBOP-A | DG CARRIER SEND (BLOCKING) (A ph.) |
| 755 | C/R DEFBOP-B | DG CARRIER SEND (BLOCKING) (B ph.) |
| 756 | C/R DEFBOP-C | DG CARRIER SEND (BLOCKING) ( C ph.) |
| 757 | DEFBOP TRIP-A | DG CARRIER LOCAL TRIP (BLOCKING) (A ph.) |
| 758 | DEFBOP TRIP-B | DG CARRIER LOCAL TRIP (BLOCKING) (B ph.) |
| 759 | DEFBOP TRIP-C | DG CARRIER LOCAL TRIP (BLOCKING) ( C ph.) |
| 760 | POUP TRIP | POUP TRIP |
| 761 | BOP TRIP | BOP TRIP |
| 762 | REV BLK-DEF | DG.CARRIER SEND FOR BLOCK |
| 763 | DEFR TRIP | DEF BACK-UP TRIP |
| 764 | UVSBLK | UVS BLOCK |
| 765 | UVGBLK | UVG BLOCK |
| 766 | BCD | BCD relay element output |
| 767 | BCD TRIP | BCD TRIP |
| 768 | C/R DISECHO-A | CARRIER SEND FOR ECHO (ZG-A ph.) |
| 769 | C/R DISECHO-B | CARRIER SEND FOR ECHO (ZG-B ph.) |
| 770 | C/R DISECHO-C | CARRIER SEND FOR ECHO (ZG-C ph.) |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 771 | C/R DISECHO-S | CARRIER SEND FOR ECHO (ZS) |
| 772 | C/R DEFECHO-A | DG CARRIER SEND FOR ECHO (A ph.) |
| 773 | C/R DEFECHO-B | DG CARRIER SEND FOR ECHO (B ph.) |
| 774 | C/R DEFECHO-C | DG CARRIER SEND FOR ECHO ( C ph.) |
| 775 | WI TRIP-A | WEEK INFEED LOCAL TRIP (A ph.) |
| 776 | WI TRIP-B | WEEK INFEED LOCAL TRIP (B ph.) |
| 777 | WI TRIP-C | WEEK INFEED LOCAL TRIP (C ph.) |
| 778 | DEFWI TRIP-A | DG CARRIER WEEK INFEED LOCAL TRIP (A ph.) |
| 779 | DEFWI TRIP-B | DG CARRIER WEEK INFEED LOCAL TRIP (B ph.) |
| 780 | DEFWI TRIP-C | DG CARRIER WEEK INFEED LOCAL TRIP (C ph.) |
| 781 |  |  |
| 782 |  |  |
| 783 |  |  |
| 784 | DISCR TRIP | DISTANCE CARRIER TRIP |
| 785 | DISCR-A TRIP | DISTANCE CARRIER TRIP (A ph.) |
| 786 | DISCR-B TRIP | DISTANCE CARRIER TRIP (B ph.) |
| 787 | DISCR-C TRIP | DISTANCE CARRIER TRIP ( C ph.) |
| 788 | DEFCR-A TRIP | DG CARRIER TRIP (A ph.) |
| 789 | DEFCR-B TRIP | DG CARRIER TRIP (B ph.) |
| 790 | DEFCR-C TRIP | DG CARRIER TRIP (C ph.) |
| 791 | PSBTP TRIP | PSBTP CARRIER TRIP |
| 792 | PSBTP-A TRIP | PSBTP CARRIER TRIP (A ph.) |
| 793 | PSBTP-B TRIP | PSBTP CARRIER TRIP (B ph.) |
| 794 | PSBTP-C TRIP | PSBTP CARRIER TRIP (C ph.) |
| 795 |  |  |
| 796 |  |  |
| 797 |  |  |
| 798 |  |  |
| 799 |  |  |
| 800 | C/R SEND-A | DISTANCE CARRIER SEND COMMAND (ZG-A ph.) |
| 801 | C/R SEND-B | DISTANCE CARRIER SEND COMMAND (ZG-B ph.) |
| 802 | C/R SEND-C | DISTANCE CARRIER SEND COMMAND (ZG-C ph.) |
| 803 | C/R SEND-S | DISTANCE CARRIER SEND COMMAND (ZS) |
| 804 | C/R SEND-DEFA | DG CARRIER SEND COMMAND (A ph.) |
| 805 | C/R SEND-DEFB | DG CARRIER SEND COMMAND (B ph.) |
| 806 | C/R SEND-DEFC | DG CARRIER SEND COMMAND ( C ph.) |
| 807 |  |  |
| 808 |  |  |
| 809 |  |  |
| 810 |  |  |
| 811 |  |  |
| 812 | C/R SEND-PSBA | PSBTP CARRIER SEND COMMAND (A ph.) |
| 813 | C/R SEND-PSBB | PSBTP CARRIER SEND COMMAND (B ph.) |
| 814 | C/R SEND-PSBC | PSBTP CARRIER SEND COMMAND ( C ph.) |
| 815 | C/R SEND-PSB | PSBTP CARRIER SEND COMMAND |
| 816 | CAR-R-R1 | Distance carrier OR signal from remote term-1 |
| 817 | DEFCAR-R-R1 | DEF carrier OR signal from remote term-1 |
| 818 | PSBCAR-R-R1 | PSB carrier OR signal from remote term-1 |
| 819 |  |  |
| 820 | CAR-R-R2 | Distance carrier OR signal from remote term-2 |
| 821 | DEFCAR-R-R2 | DEF carrier OR signal from remote term-2 |
| 822 | PSBCAR-R-R2 | PSB carrier OR signal from remote term-2 |
| 823 |  |  |
| 824 |  |  |
| 825 |  |  |
| 826 |  |  |
| 827 |  |  |
| 828 |  |  |
| 829 |  |  |
| 830 |  |  |
| 831 |  |  |
| 832 | TR1 TRIP | TRANSFER TRIP-1 |
| 833 | TR1-A TRIP | TRANSFER TRIP-1 (A ph.) |
| 834 | TR1-B TRIP | TRANSFER TRIP-1 ( B ph.) |
| 835 | TR1-C TRIP | TRANSFER TRIP-1 ( C ph.) |
| 836 | INTER TRIP1 | INTER TRIP-1 |
| 837 | INTER TRIP1-A | INTER TRIP-1 (A ph.) |
| 838 | INTER TRIP1-B | INTER TRIP-1 (B ph.) |
| 839 | INTER TRIP1-C | INTER TRIP-1 (C ph.) |
| 840 | TR2 TRIP | TRANSFER TRIP-2 |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 841 | TR2-A TRIP | TRANSFER TRIP-2 (A ph.) |
| 842 | TR2-B TRIP | TRANSFER TRIP-2 (B ph.) |
| 843 | TR2-C TRIP | TRANSFER TRIP-2 ( C ph.) |
| 844 | INTER TRIP2 | INTER TRIP-2 |
| 845 | INTER TRIP2-A | INTER TRIP-2 (A ph.) |
| 846 | INTER TRIP2-B | INTER TRIP-2 (B ph.) |
| 847 | INTER TRIP2-C | INTER TRIP-2 ( C ph.) |
| 848 | LOCAL TEST | LOCAL TESTING SW ON |
| 849 | ARCMD ALARM | PLC Autoreclosing mode discrepancy alarm |
| 850 |  |  |
| 851 |  |  |
| 852 |  |  |
| 853 |  |  |
| 854 |  |  |
| 855 |  |  |
| 856 |  |  |
| 857 |  |  |
| 858 |  |  |
| 859 |  |  |
| 860 |  |  |
| 861 |  |  |
| 862 |  |  |
| 863 |  |  |
| 864 |  |  |
| 865 |  |  |
| 866 |  |  |
| 867 |  |  |
| 868 |  |  |
| 869 |  |  |
| 870 |  |  |
| 871 |  |  |
| 872 |  |  |
| 873 |  |  |
| 874 |  |  |
| 875 |  |  |
| 876 |  |  |
| 877 |  |  |
| 878 |  |  |
| 879 |  |  |
| 880 | SEVERE CF | Severe CF detection |
| 881 | SEVERE CF-L | Severe CF detection at local terminal |
| 882 | DATA.CH1-DIS | CH 1 receiving data disable |
| 883 | DATA.CH2-DIS | CH 2 receiving data disable |
| 884 | BUCAR MODE | Back up carrier mode condition |
| 885 |  |  |
| 886 |  |  |
| 887 |  |  |
| 888 | MASTER | Being set to master terminal |
| 889 | SLAVE | Being set to slave terminal |
| 890 | CH1.DATA USE | CH 1 comm.data using |
| 891 | CH2.DATA USE | CH2 comm.data using |
| 892 |  |  |
| 893 |  |  |
| 894 |  |  |
| 895 |  |  |
| 896 | REM1 READY | Remote term. 1 ready condition |
| 897 | CF1 | Remote term. 1 comm.fail |
| 898 | SPF1 | Remote term. 1 SP.sync.fail |
| 899 |  |  |
| 900 | COMM1 FAIL | Remote term. 1 Comm.fail alarm (902+903+906+907) |
| 901 | READY1 | Remote term. 1 Ready alarm |
| 902 | UNREADY1 | Remote term. 1 Un-Ready alarm |
| 903 | CFSV1 | Remote term. 1 Comm.fail alarm |
| 904 | SPSV1 | Remote term. 1 SP.sync.fail alarm |
| 905 | TX LEVEL1 | Remote term. 1 Transmission signal level drop alarm |
| 906 | RX LEVEL1 | Remote term. 1 Receiving signal level drop alarm |
| 907 | CLK1 | Remote term. 1 Clock siqnal interruption alarm |
| 908 | CFSV1-L | Remote term. 1 Receiving Comm.fail alarm |
| 909 | CFSV1-R | Remote term. 1 Sending Comm.fail alarm |
| 910 |  |  |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 911 |  |  |
| 912 | REM2 READY | Remote term. 2 ready condition |
| 913 | CF2 | Remote term. 2 comm.fail |
| 914 | SPF2 | Remote term. 2 SP.sync.fail |
| 915 |  |  |
| 916 | COMM2 FAIL | Remote term. 2 Comm.fail alarm (918+919+922+923) |
| 917 | READY2 | Remote term. 2 Ready alarm |
| 918 | UNREADY2 | Remote term. 2 Un-Ready alarm |
| 919 | CFSV2 | Remote term. 2 Comm.fail alarm |
| 920 | SPSV2 | Remote term. 2 SP.sync.fail alarm |
| 921 | TX LEVEL2 | Remote term. 2 Transmission signal level drop alarm |
| 922 | RX LEVEL2 | Remote term. 2 Receiving signal level drop alarm |
| 923 | CLK2 | Remote term. 2 Clock signal interruption alarm |
| 924 | CFSV2-L | Remote term. 2 Receiving Comm.fail alarm |
| 925 | CFSV2-R | Remote term. 2 Sending Comm.fail alarm |
| 926 |  |  |
| 927 |  |  |
| 928 | CH1 CF | Ch1 comm.fail (for Severe-CF detection) |
| 929 | CH1 CAN.CODE | Ch1 cancel-code receiving (for Severe-CF detection) |
| 930 | CH1 CF-R1 | Remote term 1 Ch1 comm.fail (for Severe-CF detection) |
| 931 | CH1 CAN-R1 | Remote term 1 Ch1 cancel-code (for Severe-CF detection) |
| 932 |  |  |
| 933 |  |  |
| 934 |  |  |
| 935 |  |  |
| 936 |  |  |
| 937 |  |  |
| 938 |  |  |
| 939 |  |  |
| 940 |  |  |
| 941 |  |  |
| 942 |  |  |
| 943 |  |  |
| 944 | CH 2 CF | Ch2 comm.fail (for Severe-CF detection) |
| 945 | CH2 CAN.CODE | Ch2 cancel-code receiving (for Severe-CF detection) |
| 946 | CH2 CF-R1 | Remote term 1 Ch2 comm.fail (for Severe-CF detection) |
| 947 | CH2 CAN-R1 | Remote term 1 Ch2 cancel-code (for Severe-CF detection) |
| 948 |  |  |
| 949 | OVS1 TRIP | OVS1 TRIP |
| 950 | OVS1-AB TRIP | OVS1-AB TRIP |
| 951 | OVS1-BC TRIP | OVS1-BC TRIP |
| 952 | OVS1-CA TRIP | OVS1-CA TRIP |
| 953 | OVS2 ALARM | OVS2 ALARM |
| 954 | OVS2-AB ALM | OVS2-AB ALARM |
| 955 | OVS2-BC ALM | OVS2-BC ALARM |
| 956 | OVS2-CA ALM | OVS2-CA ALARM |
| 957 | OVG1 TRIP | OVS1 TRIP |
| 958 | OVG1-A TRIP | OVS1-AB TRIP |
| 959 | OVG1-B TRIP | OVS1-BC TRIP |
| 960 | OVG1-C TRIP | OVS1-CA TRIP |
| 961 | OVG2 ALARM | OVS2 ALARM |
| 962 | OVG2-A ALM | OVS2-AB ALARM |
| 963 | OVG2-B ALM | OVS2-BC ALARM |
| 964 | OVG2-C ALM | OVS2-CA ALARM |
| 965 | UVS1 TRIP | UVS1 TRIP |
| 966 | UVS1-AB TRIP | UVS1-AB TRIP |
| 967 | UVS1-BC TRIP | UVS1-BC TRIP |
| 968 | UVS1-CA TRIP | UVS1-CA TRIP |
| 969 | UVS2 ALARM | UVS2 ALARM |
| 970 | UVS2-AB ALM | UVS2-AB ALARM |
| 971 | UVS2-BC ALM | UVS2-BC ALARM |
| 972 | UVS2-CA ALM | UVS2-CA ALARM |
| 973 | UVG1 TRIP | UVS1 TRIP |
| 974 | UVG1-A TRIP | UVS1-AB TRIP |
| 975 | UVG1-B TRIP | UVS1-BC TRIP |
| 976 | UVG1-C TRIP | UVS1-CA TRIP |
| 977 | UVG2 ALARM | UVS2 ALARM |
| 978 | UVG2-A ALM | UVS2-AB ALARM |
| 979 | UVG2-B ALM | UVS2-BC ALARM |
| 980 | UVG2-C ALM | UVS2-CA ALARM |


| Signal list |  | Contents |
| :---: | :---: | :---: |
| No. | Signal Name |  |
| 981 | OVS1-AB_RST | OVS1-AB relay element delayed reset |
| 982 | OVS1-BC_RST | OVS1-BC relay element delayed reset |
| 983 | OVS1-CA_RST | OVS1-CA relay element delayed reset |
| 984 | OVG1-A_RST | OVG1-A relay element delayed reset |
| 985 | OVG1-B_RST | OVG1-B relay element delayed reset |
| 986 | OVG1-C_RST | OVG1-C relay element delayed reset |
| 987 | UVS1-AB_RST | UVS1-AB relay element delayed reset |
| 988 | UVS1-BC_RST | UVS1-BC relay element delayed reset |
| 989 | UVS1-CA - RST | UVS1-CA relay element delayed reset |
| 990 | UVG1-A_RST | UVG1-A relay element delayed reset |
| 991 | UVG1-B_RST | UVG1-B relay element delayed reset |
| 992 | UVG1-C_RST | UVG1-C relay element delayed reset |
| 993 | OV/UV_TRIP | OV/UV trip |
| 994 | C.CHK_INI_M | Carrier channel testing start (manual) |
| 995 | C. HCK _INI_A | ditto (automatic) |
| 996 |  |  |
| 997 |  |  |
| 998 |  |  |
| 999 |  |  |
| 1000 |  |  |
| 1001 |  |  |
| 1002 |  |  |
| 1003 |  |  |
| 1004 |  |  |
| 1005 |  |  |
| 1006 |  |  |
| 1007 |  |  |
| 1008 |  |  |
| 1009 |  |  |
| 1010 |  |  |
| 1011 |  |  |
| 1012 |  |  |
| 1013 |  |  |
| 1014 |  |  |
| 1015 |  |  |
| 1016 |  |  |
| 1017 |  |  |
| 1018 |  |  |
| 1019 |  |  |
| 1020 |  |  |
| 1021 |  |  |
| 1022 |  |  |
| 1023 |  |  |
| 1024 |  |  |
| 1025 |  |  |
| 1026 |  |  |
| 1027 |  |  |
| 1028 |  |  |
| 1029 |  |  |
| 1030 |  |  |
| 1031 |  |  |
| 1032 |  |  |
| 1033 |  |  |
| 1034 |  |  |
| 1035 |  |  |
| 1036 |  |  |
| 1037 |  |  |
| 1038 |  |  |
| 1039 |  |  |
| 1040 | FAULT_PHA_A | tault_phase_A |
| 1041 | FAULT-PHA_B | fault_phase_B |
| 1042 | FAULT_PHA_C | tault_phase_C |
| 1043 | FAULT_PHA_N | tault_phase_N |
| 1044 | FL_ERR | fault location start up error |
| 1045 | FL_OB_FWD | fault location out of bounds(forward) |
| 1046 | FL_OB_BACK | fault location out of bounds(backward) |
| 1047 | FL_NC | fault location not converged |
| 1048 | FL_COMPLETED | fault location completed |
| 1049 | FL_OJ | fault location over junction |
| 1050 | FL_Z | One-terminal fault location(TERM=3TERM) |


| Signal list |  | Contents |
| :---: | :---: | :---: |
| No. | Signal Name |  |
| 1051 |  |  |
| 1052 |  |  |
| 1053 |  |  |
| 1054 |  |  |
| 1055 |  |  |
| 1056 |  |  |
| 1057 |  |  |
| 1058 |  |  |
| 1059 |  |  |
| 1060 |  |  |
| 1061 |  |  |
| 1062 |  |  |
| 1063 |  |  |
| 1064 |  |  |
| 1065 |  |  |
| 1066 |  |  |
| 1067 |  |  |
| 1068 |  |  |
| 1069 |  |  |
| 1070 |  |  |
| 1071 |  |  |
| 1072 |  |  |
| 1073 |  |  |
| 1074 |  |  |
| 1075 |  |  |
| 1076 |  |  |
| 1077 |  |  |
| 1078 |  |  |
| 1079 |  |  |
| 1080 |  |  |
| 1081 |  |  |
| 1082 |  |  |
| 1083 |  |  |
| 1084 |  |  |
| 1085 |  |  |
| 1086 |  |  |
| 1087 |  |  |
| 1088 | COM1-R1 | Comm. data receive signal from remote term-1 |
| 1089 | COM2-R1 | ditto |
| 1090 | COM3-R1 | ditto |
| 1091 | COM4-R1 | ditto |
| 1092 | COM5-R1 | ditto |
| 1093 | COM6-R1 | ditto |
| 1094 | COM7-R1 | ditto |
| 1095 | COM8-R1 | ditto |
| 1096 | COM9-R1 | ditto |
| 1097 | COM10-R1 | ditto |
| 1098 | COM11-R1 | ditto |
| 1099 | COM12-R1 | ditto |
| 1100 | COM13-R1 | ditto |
| 1101 | COM14-R1 | ditto |
| 1102 |  |  |
| 1103 |  |  |
| 1104 | COM1-R1_UF | Comm. data receive signal from remote term-1 (unfiltered) |
| 1105 | COM2-R1_UF | ditto |
| 1106 | COM3-R1_UF | ditto |
| 1107 | COM4-R1_UF | ditto |
| 1108 | COM5-R1_UF | ditto |
| 1109 | COM6-R1_UF | ditto |
| 1110 | COM7-R1_UF | ditto |
| 1111 | COM8-R1_UF | ditto |
| 1112 | COM9-R1_UF | ditto |
| 1113 | COM10-R1_UF | ditto |
| 1114 | COM11-R1_UF | ditto |
| 1115 | COM12-R1_UF | ditto |
| 1116 | COM13-R1_UF | ditto |
| 1117 | COM14-R1_UF | ditto |
| 1118 |  |  |
| 1119 |  |  |
| 1120 | SUB_COM1-R1 | Sub comm. data receive signal from term-1 |


| Signal list |  | Contents |
| :---: | :---: | :---: |
| No. | Signal Name |  |
| 1121 | SUB_COM2-R1 | ditto |
| 1122 | SUB_COM3-R1 | ditto |
| 1123 | SUB_COM4-R1 | ditto |
| 1124 | BUCĀR-R1 | Back up carrier mode in remote term-1 data |
| 1125 |  |  |
| 1126 |  |  |
| 1127 |  |  |
| 1128 |  |  |
| 1129 |  |  |
| 1130 |  |  |
| 1131 |  |  |
| 1132 |  |  |
| 1133 |  |  |
| 1134 |  |  |
| 1135 |  |  |
| 1136 | COM1-R2 | Comm. data receive signal from remote term-2 |
| 1137 | COM2-R2 | ditto |
| 1138 | COM3-R2 | ditto |
| 1139 | COM4-R2 | ditto |
| 1140 | COM5-R2 | ditto |
| 1141 | COM6-R2 | ditto |
| 1142 | COM7-R2 | ditto |
| 1143 | COM8-R2 | ditto |
| 1144 | COM9-R2 | ditto |
| 1145 | COM10-R2 | ditto |
| 1146 | COM11-R2 | ditto |
| 1147 | COM12-R2 | ditto |
| 1148 | COM13-R2 | ditto |
| 1149 | COM14-R2 | ditto |
| 1150 |  |  |
| 1151 |  |  |
| 1152 | COM1-R2_UF | Comm. data receive signal from remote term-2 (unfiltered) |
| 1153 | COM2-R2_UF | ditto |
| 1154 | COM3-R2_UF | ditto |
| 1155 | COM4-R2_UF | ditto |
| 1156 | COM5-R2_UF | ditto |
| 1157 | COM6-R2_UF | ditto |
| 1158 | COM7-R2_UF | ditto |
| 1159 | COM8-R2_UF | ditto |
| 1160 | COM9-R2_UF | ditto |
| 1161 | COM10-R2_UF | ditto |
| 1162 | COM11-R2_UF | ditto |
| 1163 | COM12-R2_UF | ditto |
| 1164 | COM13-R2_UF | ditto |
| 1165 | COM14-R2_UF | ditto |
| 1166 |  |  |
| 1167 |  |  |
| 1168 | SUB_COM1-R2 | Sub comm. data receive signal from term-2 |
| 1169 | SUB_COM2-R2 | ditto |
| 1170 | SUB_COM3-R2 | ditto |
| 1171 | SUB_COM4-R2 | ditto |
| 1172 | BUCĀR-R2 | Back up carrier mode in remote term-2 data |
| 1173 |  |  |
| 1174 |  |  |
| 1175 |  |  |
| 1176 |  |  |
| 1177 |  |  |
| 1178 |  |  |
| 1179 |  |  |
| 1180 |  |  |
| 1181 |  |  |
| 1182 |  |  |
| 1183 |  |  |
| 1184 |  |  |
| 1185 |  |  |
| 1186 |  |  |
| 1187 |  |  |
| 1188 |  |  |
| 1189 |  |  |
| 1190 |  |  |


| Signal list |  | Contents |
| :---: | :---: | :---: |
| No. | Signal Name |  |
| 1191 |  |  |
| 1192 |  |  |
| 1193 |  |  |
| 1194 |  |  |
| 1195 |  |  |
| 1196 |  |  |
| 1197 |  |  |
| 1198 |  |  |
| 1199 |  |  |
| 1200 |  |  |
| 1201 |  |  |
| 1202 |  |  |
| 1203 |  |  |
| 1204 |  |  |
| 1205 |  |  |
| 1206 |  |  |
| 1207 |  |  |
| 1208 |  |  |
| 1209 |  |  |
| 1210 |  |  |
| 1211 |  |  |
| 1212 |  |  |
| 1213 |  |  |
| 1214 |  |  |
| 1215 |  |  |
| 1216 |  |  |
| 1217 |  |  |
| 1218 |  |  |
| 1219 |  |  |
| 1220 |  |  |
| 1221 |  |  |
| 1222 |  |  |
| 1223 |  |  |
| 1224 |  |  |
| 1225 |  |  |
| 1226 |  |  |
| 1227 |  |  |
| 1228 |  |  |
| 1229 |  |  |
| 1230 |  |  |
| 1231 |  |  |
| 1232 |  |  |
| 1233 |  |  |
| 1234 |  |  |
| 1235 |  |  |
| 1236 |  |  |
| 1237 |  |  |
| 1238 |  |  |
| 1239 |  |  |
| 1240 |  |  |
| 1241 | IEC_MDBLK | monitor direction blocked |
| 1242 | IEC TESTMODE | IEC61870-5-103 testmode |
| 1243 | GROUP1_ACTIVE | group1 active |
| 1244 | GROUP2_ACTIVE | group2 active |
| 1245 | GROUP3_ACTIVE | group3 active |
| 1246 | GROUP4_ACTIVE | group4 active |
| 1247 | GROUP5_ACTIVE | group5 active |
| 1248 | GROUP6_ACTIVE | group6 active |
| 1249 | GROUP7_ACTIVE | group7 active |
| 1250 | GROUP8_ACTIVE | group8 active |
| 1251 | RLY_FAlL | RELAY FAILURE |
| 1252 | RLY_OP_BLK | RELAY OUTPUT BLOCK |
| 1253 | AMF_OFF | SVBLOCK |
| 1254 |  |  |
| 1255 |  |  |
| 1256 |  |  |
| 1257 |  |  |
| 1258 | RELAY_FAIL-A |  |
| 1259 |  |  |
| 1260 |  |  |


| Signal list |  | Contents |
| :---: | :---: | :---: |
| No. | Signal Name |  |
| 1261 | TRIP-H | Trip signal hold |
| 1262 | CT_ERR_UF | CT error(unfiltered) |
| 1263 | 10_ERR_UF | 10 error(untiltered) |
| 1264 | V0_ERR_UF | V0 error(unfiltered) |
| 1265 | V2_ERR_UF | V2 error(unfiltered) |
| 1266 | CT_ERR | CT error |
| 1267 | 10_ERR | 10 error |
| 1268 | V0_ERR | V0 error |
| 1269 | V2_ERR | V2 error |
| 1270 - |  |  |
| 1271 |  |  |
| 1272 |  |  |
| 1273 |  |  |
| 1274 |  |  |
| 1275 |  |  |
| 1276 | 50/60Hz | Frequency pulse signal |
| (1277 |  |  |
| 1278 |  |  |
| 1279 | GEN_PICKUP | General start/pick-up |
| 1280 | GEN_TRIP | General trip |
| 1281 |  |  |
| 1282 |  |  |
| 1283 |  |  |
| 1284 | BII_COM_UF | Binary input signal BI1 (untiltered) |
| 1285 | B12_COM_UF | Binary input signal B12 (unfiltered) |
| 1286 | BI3_COM_UF | Binary input signal BI3 (unfiltered) |
| 1287 | B14_COM_UF | Binary input signal BI4 (unfiltered) |
| 1288 | BI5_COM_UF | Binary input signal BI5 (untiltered) |
| 1289 | B16_COM_UF | Binary input signal BI6 (unfiltered) |
| 1290 | BI7_COM_UF | Binary input signal BI7 (unfiltered) |
| 1291 | BI8_COM_UF | Binary input signal BI8 (unfiltered) |
| 1292 | B19_COM_UF | Binary input signal B19 (unfiltered) |
| 1293 | BIIO_COM_UF | Binary input signal BI10 (untiltered) |
| 1294 | BIII_COM_UF | Binary input signal BI11 (unfiltered) |
| 1295 | BII2_COM_UF | Binary input signal BI12 (unfiltered) |
| 1296 | BII3_COM_UF | Binary input signal BI13 (unfiltered) |
| 1297 | BI14_COM_UF | Binary input signal BI14 (untiltered) |
| 1298 | BII5_COM_UF | Binary input signal BI15 (unfiltered) |
| (1299 - |  |  |
| 1300 |  |  |
| 1301 |  |  |
| 1302 |  |  |
| 1303 |  |  |
| 1304 |  |  |
| 1305 |  |  |
| 1306 |  |  |
| 1307 |  |  |
| 1308 |  |  |
| 1309 |  |  |
| 1310 |  |  |
| 1311 |  |  |
| 1312 |  |  |
| 1313 |  |  |
| 1314 |  |  |
| 1315 |  |  |
| 1316 |  |  |
| 1317 |  |  |
| 1318 |  |  |
| 1319 |  |  |
| 1320 |  |  |
| 1321 |  |  |
| 1322 |  |  |
| 1323 |  |  |
| 1324 |  |  |
| $1325$ |  |  |
| 1326 |  |  |
| 1327 |  |  |
| 1328 |  |  |
| 1329 |  |  |
| 1330 |  |  |


| Signal list |  |  |
| ---: | ---: | :--- |
| No. | Signal Name |  |
| 1331 |  |  |
| 1332 |  |  |
| 1333 |  |  |
| 1334 |  |  |
| 1335 |  |  |
| 1336 |  |  |
| 1337 |  |  |
| 1338 |  |  |
| 1339 |  |  |
| 1340 |  |  |
| 1341 |  |  |
| 1342 |  |  |
| 1343 |  |  |
| 1344 |  |  |
| 1345 |  |  |
| 1346 |  |  |
| 1347 |  |  |
| 1348 |  |  |
| 1349 |  |  |
| 1350 |  |  |
| 1351 |  |  |
| 1352 |  |  |
| 1353 |  |  |
| 1354 |  |  |
| 1355 |  |  |
| 1356 |  |  |
| 1357 |  |  |
| 1358 |  |  |
| 1359 |  |  |
| 1360 |  |  |
| 1361 |  |  |
| 1362 |  |  |
| 1363 |  |  |
| 1364 |  |  |
| 1365 |  |  |
| 1366 |  |  |
| 1367 |  |  |
| 1368 |  |  |
| 1369 |  |  |
| 1370 |  |  |
| 1371 |  |  |
| 1372 |  |  |
| 1373 |  |  |
| 1374 |  |  |
| 1375 |  |  |
| 1376 |  |  |
| 1377 |  |  |
| 1378 |  |  |
| 1379 |  |  |
| 1380 |  |  |
| 1381 |  |  |
| 1382 |  |  |
| 1383 |  |  |
| 1384 |  |  |
| 1385 |  |  |
| 1386 |  |  |
| 1387 |  |  |
| 13999 |  |  |
| 1393 |  |  |
| 1396 |  |  |
| 1397 |  |  |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 1401 | LOCAL OP ACT | local operation active |
| 1402 | REMOTE OP ACT | remote operation active |
| 1403 | NORM LED ON | IN-SERVICE LED ON |
| 1404 | ALM LED ON | ALARM LED ON |
| 1405 | TRIP LED ON | TRIP LED ON |
| 1406 | TEST LED ON | TEST LED ON |
| 1407 |  |  |
| 1408 | PRG LED RESET | Latched progammable LED RESET |
| 1409 | LED RESET | TRIP LED RESET |
| 1410 |  |  |
| 1411 | ARC COM ON | IEC103 communication command |
| 1412 | TELE COM ON | IEC103 communication command |
| 1413 | PROT COM ON | IEC103 communication command |
| 1414 | PRG LED1 ON | PROGRAMMABLE LED1 ON |
| 1415 | PRG LED2 ON | PROGRAMMABLE LED2 ON |
| 1416 | PRG LED3 ON | PROGRAMMABLE LED3 ON |
| 1417 | PRG LED4 ON | PROGRAMMABLE LED4 ON |
| 1418 |  |  |
| 1419 |  |  |
| 1420 |  |  |
| 1421 |  |  |
| 1422 |  |  |
| 1423 |  |  |
| 1424 |  |  |
| 1425 |  |  |
| 1426 |  |  |
| 1427 |  |  |
| 1428 |  |  |
| 1429 |  |  |
| 1430 |  |  |
| 1431 |  |  |
| 1432 |  |  |
| 1433 |  |  |
| 1434 | F.Record DONE | fault location completed |
| 1435 | F.Record CLR | Fault record clear |
| 1436 | E.Record CLR | Event record clear |
| 1437 | D.Record CLR | Disturbance record clear |
| 1438 | Data Lost | Data clear by BU-RAM memory monitoring error |
| 1439 |  |  |
| 1440 |  |  |
| 1441 |  |  |
| 1442 |  |  |
| 1443 |  |  |
| 1444 |  |  |
| 1445 | PLC data CHG | PLC data change |
| 1446 |  |  |
| 1447 |  |  |
| 1448 | Sys.set change | System setting change |
| 1449 | Rly.set change | Relay setting change |
| 1450 | Grp.set change | Group setting change |
| 1451 |  |  |
| 1452 |  |  |
| 1453 |  |  |
| 1454 |  |  |
| 1455 |  |  |
| 1456 | KEY-VIEW | VIEW key status (1:pressed) |
| 1457 | KEY-RESET | RESET key status (2:pressed) |
| 1458 | KEY-ENTER | ENTER key status (3:pressed) |
| 1459 | KEY-END | END key status (4:pressed) |
| 1460 | KEY-CANCEL | CANCEL key status (5:pressed) |
| 1461 |  |  |
| 1462 |  |  |
| 1463 |  |  |
| 1464 |  |  |
| 1465 |  |  |
| 1466 |  |  |
| 1467 |  |  |
| 1468 |  |  |
| 1469 |  |  |
| 1470 |  |  |


| Signal list |  | Contents |
| :---: | :---: | :---: |
| No. | Signal Name |  |
| 1471 |  |  |
| 1472 | SUM err | Program ROM checksum error |
| 1473 |  |  |
| 1474 | SRAM_err | SRAM memory monitoring error |
| 1475 | BU-RAM_err | BU-RAM memory monitoring error |
| 1476 |  |  |
| 1477 | EEPROM_err | EEPROM memory monitoring error |
| 1478 |  |  |
| 1479 | AD_err | AD accuracy checking error |
| 1480 |  |  |
| 1481 |  |  |
| 1482 |  |  |
| 1483 |  |  |
| 1484 | DIO_err | DIO card connection error |
| 1485 |  |  |
| 1486 | LCD_err | LCD panel connection error |
| 1487 | ROM_data_err | Data ROM checksum error |
| 1488 |  |  |
| 1489 | COM_DPRAMerr1 | DP-RAM memory monitoring error |
| 1490 |  |  |
| 1491 | COM_SUM_err |  |
| 1492 |  |  |
| 1493 | COM_SRAM_err |  |
| 1494 | COM_DPRAMerr2 |  |
| 1495 | COM_AD_err |  |
| 1496 | COM_IRQ_err |  |
| 1497 | Sync1_fail |  |
| 1498 | Sync2_fail |  |
| 1499 | Com1_fail |  |
| 1500 | Com2_fail |  |
| 1501 | Com1_fail-R |  |
| 1502 | Com2_fail-R |  |
| 1503 | CLK1_fail |  |
| 1504 | CLK2_fail |  |
| 1505 | Term1_rdy_off |  |
| 1506 | Term2_rdy_off |  |
| 1507 | TX level1_err |  |
| 1508 | TX_level2_err |  |
| 1509 | RX_level1_err |  |
| 1510 | RX-level2_err |  |
| 1511 | Tdī_over |  |
| 1512 | Td2_over |  |
| 1513 | RYID1_err |  |
| 1514 | RYID2_err |  |
| 1515 |  |  |
| 1516 |  |  |
| 1517 |  |  |
| 1518 |  |  |
| 1519 |  |  |
| 1520 |  |  |
| 1521 |  |  |
| 1522 |  |  |
| 1523 |  |  |
| 1524 |  |  |
| 1525 |  |  |
| 1526 |  |  |
| 1527 |  |  |
| 1528 |  |  |
| 1529 |  |  |
| 1530 |  |  |
| 1531 |  |  |
| 1532 |  |  |
| 1533 |  |  |
| 1534 |  |  |
| 1535 |  | (reserved) |


| Signal list |  | Contents |
| :---: | :---: | :---: |
| No. | Signal Name |  |
| 1536 | CB1_CONT-A | CB1 contact (A-phase) |
| 1537 | CB1_CONT-B | (B-phase) |
| 1538 | CB1_CONT-C | (C-phase) |
| 1539 |  |  |
| 1540 | Z1X_INIT | Z1X protection initiation command |
| 1541 | EXT_VTF | External VTF command |
| 1542 | DS_N/O_CONT | DS N/O contact |
| 1543 | DS_N/C_CONT | DS N/C contact |
| 1544 | ARC_BLOCK | Autoreclosing block command |
| 1545 | CB1_READY | Autoreclisng ready command of bus CB |
| 1546 | CB2_READY | Autoreclisng ready comm and of center CB |
| 1547 | ARC_RESET | Autoreclosing out of service command |
| 1548 | IND. $\bar{R} E S E T$ | Indication reset command |
| 1549 | M-PROT_TRIP | Duplicated Main protection trip command |
| 1550 | M-PROT_ON | Duplicated Main protection in service command |
| 1551 _ |  |  |
| 1552 | CB2_CONT-A | CB2 contact (A-phase) |
| 1553 | CB2_CONT-B | (B-phase) |
| 1554 | CB2_CONT-C | (C-phase) |
| 1555 - |  |  |
| 1556 | EXT_TRIP-A | External trip comand (A-Phase) |
| 1557 | EXT TRIP-B | (B-phase) |
| 1558 | EXT_TRIP-C | (C-phase) |
| 1559 |  |  |
| 1560 | EXT_CBFIN-A | External CBF initiation command (A-Phase) |
| 1561 | EXT_CBFIN-B | (B-Phase) |
| 1562 | EXT_CBFIN-C | (C-Phase) |
| 1563 |  |  |
| 1564 |  |  |
| 1565 |  |  |
| 1566 |  |  |
| 1567 |  |  |
| 1568 | EXT_CAR.R1-1 | Trip carrier from remote terminal-1 |
| 1569 | EXT_CAR.R1-2 | Guard/And carrier from remote terminal-1 |
| 1570 | OPEN-TERM-R1 | Remote terminal-1 out of service command |
| 1571 | SEVERE_CF-R1 | Severe CF information command from remote terminal-1 |
| 1572 |  |  |
| 1573 |  |  |
| 1574 |  |  |
| 1575 |  |  |
| 1576 |  |  |
| 1577 |  |  |
| 1578 |  |  |
| 1579 |  |  |
| 1580 |  |  |
| 1581 |  |  |
| 1582 |  |  |
| 1583 |  |  |
| 1584 | EXT_CAR.R2-1 | Trip carrier from remote terminal-2 |
| 1585 | EXT_CAR.R2-2 | Guard/And carrier from remote terminal-1 |
| 1586 | OPEN_TERM-R2 | Remote terminal-2 out of service command |
| 1587 | SEVERE_CF-R2 | Severe CF information command from remote terminal-2 |
| 1588 |  |  |
| 1589 |  |  |
| 1590 |  |  |
| 1591 |  |  |
| 1592 |  |  |
| 1593 |  |  |
| 1594 |  |  |
| 1595 |  |  |
| 1596 |  |  |
| 1597 |  |  |
| 1598 |  |  |
| 1599 |  |  |
| 1600 | PROT_BLOCK | Protection block command |


| Signal list |  | Contents |
| :---: | :---: | :---: |
| No. | Signal Name |  |
| 1601 | CRT_BLOCK | Carrier trip block command |
| 1602 | DISCRT_BLOCK | Carrier protection out of service command |
| 1603 | DEFCRT_BLOCK | DEF carrier trip block command |
| 1604 | PSBTP_BLOCK | PSBTP block command |
| 1605 | PSB_BLOCK | PSB detection block command |
| 1606 |  |  |
| 1607 |  |  |
| 1608 | OC-A_FS | Fail sate command for OC-A trip |
| 1609 | OC-B_FS | Fail safe command for OC-B trip |
| 1610 | OC-C_FS | Fail safe command for OC-C trip |
| 1611 |  |  |
| 1612 | OCI-A_FS | Fail safe command for OCI-A trip |
| 1613 | OCI-B_FS | Fail safe command for OCI-B trip |
| 1614 | OCI-C_FS | Fail safe command for OCI-C trip |
| 1615 | THMA BLOCK | Thermal alarm block command |
| 1616 | Z1G_BLOCK | Z1G trip block command |
| 1617 | Z1XG_BLOCK | Z1XG trip block command |
| 1618 | Z2G_BLOCK | Z2G trip block command |
| 1619 | Z3G_BLOCK | Z3G trip block command |
| 1620 | ZR1G_BLOCK | ZR1G trip block command |
| 1621 | ZFG_BLOCK | ZFG trip block command |
| 1622 | STUB_BLOCK | Stub trip block command |
| 1623 | SOTF_BLOCK | SOTF trip block comm and |
| 1624 | OCH_BLOCK | OCH trip block command |
| 1625 | OC_BLOCK | OC trip block command |
| 1626 | OCl BLOCK | OCI trip block command |
| 1627 | EF_BLOCK | EF trip block command |
| 1628 | EFI_BLOCK | EFI trip block command |
| 1629 | DEF_BLOCK | DEF trip block command |
| 1630 | OST_BLOCK | OST trip block command |
| 1631 | THM_BLOCK | Thermal trip block command |
| 1632 | Z1S BLOCK | Z1S trip block command |
| 1633 | Z1XS_BLOCK | Z1XS trip block command |
| 1634 | Z2S_BLOCK | Z2S trip block command |
| 1635 | Z3S_BLOCK | Z3S trip block command |
| 1636 | ZR1S_BLOCK | ZR1S trip block command |
| 1637 | ZFS_BLOCK | ZFS trip block command |
| 1638 | ZR2G_BLOCK | ZR2G trip block command |
| 1639 | ZR2S BLOCK | ZR2S trip block command |
| 1640 | CBF_BLOCK | CBF trip block command |
| 1641 | EXTTP_BLOCK | External trip block command |
| 1642 | VTF_BLOCK | VTF monitoering block command |
| 1643 | VTF_ONLY_ALM | VTF only alarm command |
| 1644 | TR1_BLOCK | Transfer trip 1 block command |
| 1645 | TR2_BLOCK | Transfer trip 2 block command |
| 1646 | ZNDG_BLOCK | ZNDG trip block command |
| 1647 | ZNDS_BLOCK | ZNDS trip block command |
| 1648 | Z1S_G-BLK | Z1S block by multi-phase ground fault command |
| 1649 | STUB_CB | CB close command for stub protection |
| 1650 | OCHTP_ON | OCH trip pemmisive command |
| 1651 | PSB.F_RESET | PSB torcibly reset command |
| 1652 | DEF_PHSEL-A | Fault phase selection command for DEF |
| 1653 | DEF=PHSEL-B | ditto |
| 1654 | DEF_PHSEL-C | ditto |
| 1655 | Z1_ARC_BLOCK | Auto reclosing block command by Zone1 trip |
| 1656 | Z2'G-A_FS | Z2G-A fail-safe command |
| 1657 | Z2G-B_FS | Z2G-B fail-safe command |
| 1658 | Z2G-C_FS | Z2G-C fail-safe command |
| 1659 | Z1X_F.ENABLE | Z1X forcibly enable command |
| 1660 |  |  |
| 1661 |  |  |
| 1662 |  |  |
| 1663 |  |  |
| 1664 | ZFG-A_BLOCK | ZFG-Ablock command |
| 1665 | ZFG-B_BLOCK | ZFG-B block command |
| 1666 | ZFG-C_BLOCK | ZFG-C block command |
| 1667 |  |  |
| 1668 | ZNDG-A_COM | ZNDG-A operating command |
| 1669 | ZNDG-B_COM | ZNDG-B operating command |
| 1670 | ZNDG-C_COM | ZNDG-C operating command |


| Signal list |  | Contents |
| :---: | :---: | :---: |
| No. | Signal Name |  |
| 1671 | ZNDS_COM | ZNDS operating command |
| 1672 | Z2G-A_BLOCK | Z2G-Ablock command |
| 1673 | Z2G-B_BLOCK | Z2G-B block command |
| 1674 | Z2G-C_BLOCK | Z2G-C block command |
| 1675 |  |  |
| 1676 |  |  |
| 1677 |  |  |
| 1678 |  |  |
| 1679 |  |  |
| 1680 | TP-A_DELAY | Trip command off-delay timer setting |
| 1681 | TP-B_DELAY | Trip command off-delay timer setting |
| 1682 | TP-C_DELAY | Trip command off-delay timer setting |
| 1683 | ARC_OFF | Autoreclosing mode changing command |
| 1684 | ARC_SPAR | ditto |
| 1685 | ARC_TPAR | ditto |
| 1686 | ARC_S\&T | ditto |
| 1687 | ARC_EXT1P | ditto |
| 1688 | ARC_EXT3P | ditto |
| 1689 |  |  |
| 1690 |  |  |
| 1691 |  |  |
| 1692 |  |  |
| 1693 |  |  |
| 1694 |  |  |
| 1695 |  |  |
| 1696 | Z1_INST_TP | Z1 instantly trip command |
| 1697 |  |  |
| 1698 | Z2_INST_TP | Z2 instantly trip command |
| 1699 | Z3_INST_TP | Z3 instantly trip command |
| 1700 | ZR1_INST_TP | ZR1 instantly trip command |
| 1701 | ZF_INST_TP | ZF instantly trip command |
| 1702 | EF_INST_TP | EF instantly trip command |
| 1703 | OC_INST_TP | OC instantly trip command |
| 1704 |  |  |
| 1705 | DEF_INST_TP | DEF instantly trip command |
| 1706 |  |  |
| 1707 | DEFR_INST_TP | DEF instantly trip command |
| 1708 | ZR2_INST_TP | ZR2 instantly trip command |
| 1709 | ZND_INST_TP | ZND instantly trip command |
| 1710 |  |  |
| 1711 |  |  |
| 1712 | Z1 3PTP | Z1 3-phase trip command |
| 1713 | Z1或3PTP | Z1X3-phase trip command |
| 1714 | Z2_3PTP | Z2 3-phase trip command |
| 1715 |  |  |
| 1716 | OC_3PTP | OC 3-phase trip command |
| 1717 | OCl_3PTP | OCl 3-phase trip command |
| 1718 |  |  |
| 1719 |  |  |
| 1720 | CAR_3PTP | Distance CAR 3-phase trip command |
| 1721 | DEFC̄AR_3PTP | DG.CAR 3-phase trip command |
| 1722 | PSBTP_3PTP | PSBTP 3-phase trip command |
| 1723 |  |  |
| 1724 | TR1_3PTP | Transfer trip 1 3-phase trip command |
| 1725 | TR2_3PTP | Transfer trip 2 3-phase trip command |
| 1726 |  |  |
| 1727 | 3P_TRIP | 3-Phase trip command |
| 1728 | CĀR-A-R1 | Distance carrier command from remote term-1 |
| 1729 | CAR-B-R1 | ditto |
| 1730 | CAR-C-R1 | ditto |
| 1731 | CAR-S-R1 | ditto |
| 1732 | DEFCAR-A-R1 | DEF carrier command from remote term-1 |
| 1733 | DEFCAR-B-R1 | ditto |
| 1734 | DEFCAR-C-R1 | ditto |
| 1735 |  |  |
| 1736 |  |  |
| 1737 |  |  |
| 1738 |  |  |
| 1739 |  |  |
| 1740 | PSBCAR-A-R1 | PSBTP carrier command from remote term-1 |


| Signal list |  | Contents |
| :---: | :---: | :---: |
| No. | Signal Name |  |
| 1741 | PSBCAR-B-R1 | ditto |
| 1742 | PSBCAR-C-R1 | ditto |
| 1743 |  |  |
| 1744 | TR1-A-R1 | Transfer trip-1 command from remote term-1 |
| 1745 | TR1-B-R1 | ditto |
| 1746 | TR1-C-R1 | ditto |
| 1747 |  |  |
| 1748 | TR2-A-R1 | Transfer trip-2 command from remote term-1 |
| 1749 | TR2-B-R1 | ditto |
| 1750 | TR2-C-R1 | ditto |
| 1751 |  |  |
| 1752 |  |  |
| 1753 |  |  |
| 1754 |  |  |
| 1755 |  |  |
| 1756 |  |  |
| 1757 |  |  |
| 1758 |  |  |
| 1759 |  |  |
| 1760 | CAR-A-R2 | Distance carrier command from remote term-2 |
| 1761 | CAR-B-R2 | ditto |
| 1762 | CAR-C-R2 | ditto |
| 1763 | CAR-S-R2 | ditto |
| 1764 | DEFCAR-A-R2 | DEF carrier command from remote term-2 |
| 1765 | DEFCAR-B-R2 | ditto |
| 1766 | DEFCAR-C-R2 | ditto |
| 1767 |  |  |
| 1768 |  |  |
| 1769 |  |  |
| 1770 |  |  |
| 1771 |  |  |
| 1772 | PSBCAR-A-R2 | PSBTP carrier command from remote term-2 |
| 1773 | PSBCAR-B-R2 | ditto |
| 1774 | PSBCAR-C-R2 | ditto |
| 1775 |  |  |
| 1776 | TR1-A-R2 | Transfer trip-1 command from remote term-2 |
| 1777 | TR1-B-R2 | ditto |
| 1778 | TR1-C-R2 | ditto |
| 1779 |  |  |
| 1780 | TR2-A-R2 | Transfer trip-2 command from remote term-2 |
| 1781 | TR2-B-R2 | ditto |
| 1782 | TR2-C-R2 | ditto |
| 1783 |  |  |
| 1784 |  |  |
| 1785 |  |  |
| 1786 |  |  |
| 1787 |  |  |
| 1788 |  |  |
| 1789 |  |  |
| 1790 |  |  |
| 1791 |  |  |
| 1792 | TO\#1-TP-A1 | Binary output signal of TP-A1 |
| 1793 | IO\#1-TP-B1 | TP-B1 |
| 1794 | IO\#1-TP-C1 | TP-C1 |
| 1795 | IO\#1-TP-A2 | Binary output signal of TP-A2 |
| 1796 | IO\#1-TP-B2 | TP-B2 |
| 1797 | IO\#1-TP-C2 | TP-C2 |
| 1798 |  |  |
| 1799 |  |  |
| 1800 |  |  |
| 1801 |  |  |
| 1802 |  |  |
| 1803 |  |  |
| 1804 |  |  |
| 1805 |  |  |
| 1806 |  |  |
| 1807 |  |  |
| 1808 | OVS1_INST_TP | OVS1 instantly trip command |
| 1809 | OVS2_INST_TP | OVS2 instantly trip command |
| 1810 |  |  |


| Signal list |  | Contents |
| :---: | :---: | :---: |
| No. | Signal Name |  |
| 1811 |  |  |
| 1812 | OVG1_INST_TP | OVG1 instantly trip command |
| 1813 | OVG2_INST_TP | OVG2 instantly trip command |
| 1814 |  |  |
| 1815 |  |  |
| 1816 | UVS1_INST_TP | UVS1 instantly trip command |
| 1817 | UVS2_INST_TP | UVS2 instantly trip command |
| 1818 |  |  |
| 1819 |  |  |
| 1820 | UVG1_INST_TP | UVG1 instantly trip command |
| 1821 | UVG2_INST_TP | UVG2 instantly trip command |
| 1822 |  |  |
| 1823 |  |  |
| 1824 | SPR.L-REQ | Leader SPAR requirement |
| 1825 | TPR.L-REQ | Leader TPAR requirement |
| 1826 | SPR.F-REQ | Follower SPAR requirement |
| 1827 | TPR.F-REQ | Follower TPAR requirement |
| 1828 | SPR.F-ST.REQ | Follower SPAR starting requirement |
| 1829 | TPR.F-ST.REQ | Follower TPAR starting requirement |
| 1830 |  |  |
| 1831 |  |  |
| 1832 | R.F-ST.REQ | Follower AR starting requirement |
| 1833 | SPR.F2-REQ | Follower SPAR requirement |
| 1834 | TPR.F2-REQ | Follower TPAR requirement |
| 1835 |  |  |
| 1836 |  |  |
| 1837 |  |  |
| 1838 | ARC.L_TERM | Leader terminal of Autoreclosing |
| 1839 | ARC.F-TERM | Follower terminal of Autoreclosing |
| 1840 | ECHO_BLOCK | Echo carrier block command |
| 1841 | WKIT_BLOCK | Week infeed trip block command |
| 1842 | PSCM_TCHDEN | TCHD timer enable command (for PUP/POP/UOP scheme) |
| 1843 |  |  |
| 1844 |  |  |
| 1845 |  |  |
| 1846 |  |  |
| 1847 |  |  |
| 1848 | BCD_BLOCK | BCD trip block command |
| 1849 | DEFF_BLOCK | DEFF trip block command |
| 1850 |  |  |
| 1851 | DEFR_BLOCK | DEFR trip block command |
| 1852 |  |  |
| 1853 |  |  |
| 1854 |  |  |
| 1855 |  |  |
| 1856 | OVS1_BLOCK | OVS1 trip block command |
| 1857 | OVS2_BLOCK | OVS2 trip block command |
| 1858 |  |  |
| 1859 |  |  |
| 1860 | OVG1_BLOCK | OVG1 trip block command |
| 1861 | OVG2_BLOCK | OVG2 trip block command |
| 1862 |  |  |
| 1863 |  |  |
| 1864 | UVS1_BLOCK | UVS1 trip block command |
| 1865 | UVS2_BLOCK | UVS2 trip block command |
| 1866 |  |  |
| 1867 |  |  |
| 1868 | UVG1_BLOCK | UVG1 trip block command |
| 1869 | UVG2_BLOCK | UVG2 trip block command |
| 1870 |  |  |
| 1871 |  |  |
| 1872 |  |  |
| 1873 |  |  |
| 1874 |  |  |
| 1875 |  |  |
| 1876 |  |  |
| 1877 |  |  |
| : |  |  |
| : |  |  |
| 2040 |  |  |


| Sianal list |  |  |
| ---: | :--- | :--- |
| No. | Signal Name |  |
| 2041 |  |  |
| 2042 |  |  |
| 2043 |  |  |
| 2044 |  |  |
| 2045 |  |  |
| 2046 |  | Communication on/off data send command |
| 2047 |  | ditto |
| 2048 | COM1-S | ditto |
| 2049 | COM2-S | ditto |
| 2050 | COM3-S | ditto |
| 2051 | COM4-S | ditto |
| 2052 | COM5-S | ditto |
| 2053 | COM6-S | ditto |
| 2054 | COM7-S | ditto |
| 2055 | COM8-S | ditto |
| 2056 | COM9-S | ditto |
| 2057 | COM10-S | ditto |
| 2058 | COM11-S |  |
| 2059 | COM12-S |  |
| 2060 | COM13-S |  |
| 2061 | COM14-S |  |
| 2062 |  |  |
| 2063 |  |  |
| 2064 | SUB COM1-S |  |
| 2065 | SUB COM2-S |  |
| 2066 | SUB COM3-S |  |
| 2067 | SUB COM4-S | ditto communication on/off data send command |
| 2068 |  | ditto |
| 2069 |  | ditto |
| 2070 |  |  |
| 2071 |  |  |
| 2072 |  |  |
| 2073 |  |  |
| 2074 |  |  |
| 2075 |  |  |
| 2076 |  |  |
| 2077 |  |  |
| 2078 |  |  |
| 2079 |  |  |
| 2080 |  |  |
| 2081 |  |  |
| 2082 |  |  |
| 2083 |  |  |
| 2084 |  |  |
| 2085 |  |  |
| 2086 |  |  |
| 2087 |  |  |
| 2088 |  |  |
| 2089 |  |  |
| 2090 |  |  |
| 2091 |  |  |
| 2092 |  |  |
| 2093 |  |  |
| 2094 |  |  |
| 2095 |  |  |
| 2097 |  |  |
| 2098 |  |  |
| 2100 |  |  |
| 2103 |  |  |
| 2107 |  |  |


| Signal list |  | Contents |
| :---: | :---: | :---: |
| No. | Signal Name |  |
| 2581 |  |  |
| 2582 |  |  |
| 2583 |  |  |
| 2584 |  |  |
| 2585 |  |  |
| 2586 |  |  |
| 2587 |  |  |
| 2588 |  |  |
| 2589 |  |  |
| 2590 |  |  |
| 2591 |  |  |
| 2592 |  |  |
| 2593 |  |  |
| 2594 |  |  |
| 2595 |  |  |
| 2596 |  |  |
| 2597 |  |  |
| 2598 |  |  |
| 2599 |  |  |
| 2600 |  |  |
| 2601 |  |  |
| 2602 |  |  |
| 2603 |  |  |
| 2604 |  |  |
| 2605 |  |  |
| 2606 |  |  |
| 2607 |  |  |
| 2608 |  |  |
| 2609 |  |  |
| 2610 | ALARM_LED_SET | Alarm LED set |
| 2611 |  |  |
| 2612 |  |  |
| 2613 |  |  |
| 2614 |  |  |
| 2615 |  |  |
| 2616 |  |  |
| 2617 |  |  |
| 2618 |  |  |
| 2619 |  |  |
| 2620 |  |  |
| 2621 |  |  |
| 2622 |  |  |
| 2623 |  |  |
| 2624 | F.RECORD1 | Fault record stored command 1 |
| 2625 | F.RECORD2 | Fault record stored comm and 2 |
| 2626 | F.RECORD3 | Fault record stored command 3 |
| 2627 | F.RECORD4 | Fault record stored command 4 |
| 2628 |  |  |
| 2629 |  |  |
| 2630 |  |  |
| 2631 |  |  |
| 2632 | D.RECORD1 | Disturbance record stored command 1 |
| 2633 | D.RECORD2 | Disturbance record stored command 2 |
| 2634 | D.RECORD3 | Disturbance record stored command 3 |
| 2635 | D.RECORD4 | Disturbance record stored command 4 |
| 2636 |  |  |
| 2637 |  |  |
| 2638 |  |  |
| 2639 |  |  |
| 2640 | SET.GROUP1 | Active setting group changed commamd (Change to group1) |
| 2641 | SET.GROUP2 | 2 |
| 2642 | SET.GROUP3 | 3 |
| 2643 | SET.GROUP4 | 4 |
| 2644 | SET.GROUP5 | 5 |
| 2645 | SET.GROUP6 | 6 |
| 2646 | SET.GROUP7 | 7 |
| 2647 | SET.GROUP8 | 8 |
| 2648 |  |  |
| 2649 |  |  |
| 2650 |  |  |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 2651 |  |  |
| 2652 |  |  |
| 2653 |  |  |
| 2654 |  |  |
| 2655 |  |  |
| 2656 | CON TPMD1 | User configrable trip mode in fault record |
| 2657 | CON TPMD2 | ditto |
| 2658 | CON TPMD3 | ditto |
| 2659 | CON TPMD4 | ditto |
| 2660 | CON TPMD5 | ditto |
| 2661 | CON TPMD6 | ditto |
| 2662 | CON TPMD7 | ditto |
| 2663 | CON TPMD8 | ditto |
| 2664 |  |  |
| 2665 |  |  |
| 2666 |  |  |
| 2667 |  |  |
| 2668 |  |  |
| 2669 |  |  |
| 2670 |  |  |
| 2671 |  |  |
| 2672 |  |  |
| 2673 |  |  |
| 2674 |  |  |
| 2675 |  |  |
| 2676 |  |  |
| 2677 |  |  |
| 2678 |  |  |
| 2679 |  |  |
| 2680 |  |  |
| 2681 |  |  |
| 2682 |  |  |
| 2683 |  |  |
| 2684 | ARC COM RECV | Auto-recloser inactivate command received |
| 2685 | TELE COM RECV | Teleprotection inactivate command received |
| 2686 | PROT COM RECV | protection inactivate command received |
| 2687 |  |  |
| 2688 | TPLED RST RCV | TRIP LED RESET command received |
| 2689 |  |  |
| 2690 |  |  |
| 2691 |  |  |
| 2692 |  |  |
| 2693 |  |  |
| 2694 |  |  |
| 2695 |  |  |
| 2696 |  |  |
| 2697 |  |  |
| 2698 |  |  |
| 2699 |  |  |
| 2700 |  |  |
| 2701 |  |  |
| 2702 |  |  |
| 2703 |  |  |
| 2704 |  |  |
| 2705 |  |  |
| 2706 |  |  |
| 2707 |  |  |
| 2708 |  |  |
| 2709 |  |  |
| 2710 |  |  |
| 2711 |  |  |
| 2712 |  |  |
| 2713 |  |  |
| 2714 |  |  |
| 2715 |  |  |
| 2716 |  |  |
| 2717 |  |  |
| : |  |  |
| : |  |  |
| 2790 |  |  |


| Signal | list |  |
| ---: | :--- | :--- |
| No. | Signal Name |  |
| 2791 |  |  |
| 2792 |  |  |
| 2793 |  |  |
| 2794 |  |  |
| 2795 |  |  |
| 2796 |  |  |
| 2797 |  |  |
| 2798 |  |  |
| 2799 |  |  |
| 2800 |  |  |
| 2801 |  |  |
| 2802 |  |  |
| 2803 |  |  |
| 2804 |  |  |
| 2805 |  |  |
| 2806 |  |  |
| 2807 |  |  |
| 2808 |  |  |
| 2809 |  |  |
| 2810 |  |  |
| 2811 |  |  |
| 2812 |  |  |
| 2813 |  |  |
| 2814 |  |  |
| 2815 |  |  |
| 2816 | TEMP001 |  |
| 2817 | TEMP002 |  |
| 2818 | TEMP003 |  |
| 2819 | TEMP004 |  |
| 2820 | TEMP005 |  |
| 2821 | TEMP006 |  |
| 2822 | TEMP007 |  |
| 2823 | TEMP008 |  |
| 2824 | TEMP009 |  |
| 2825 | TEMP010 |  |
| 2826 | TEMP011 |  |
| 2827 | TEMP012 |  |
| 2828 | TEMP013 |  |
| 2829 | TEMP014 |  |
| 2830 | TEMP015 |  |
| 2831 | TEMP016 |  |
| 2832 | TEMP017 |  |
| 2833 | TEMP018 |  |
| 2834 | TEMP019 |  |
| 2835 | TEMP020 |  |
| 2836 | TEMP021 |  |
| 2837 | TEMP022 |  |
| 2838 | TEMP023 |  |
| 2839 | TEMP024 |  |
| 2840 | TEMP025 |  |
| 2841 | TEMP026 |  |
| 2842 | TEMP027 |  |
| 2843 | TEMP028 |  |
| 2844 | TEMP029 |  |
| 2845 | TEMP030 |  |
| 2846 | TEMP031 |  |
| 2847 | TEMP032 |  |
| 2848 | TEMP033 |  |
| 2849 | TEMP034 |  |
| 2850 | TEMP035 |  |
| 2851 | TEMP036 |  |
| 2852 | TEMP037 |  |
| 28535 | TEMP038 | TEMP039 |
| 28567 | TEMP040 | TEMP042 |
| 2858 | TEMP043 |  |
| 2859 | TEMP044 |  |
| 2860 | TEMP045 |  |
|  |  |  |


| Signal |  | list |
| :---: | :---: | :--- |
| No. | Signal Name |  |
| 2861 | TEMP046 |  |
| 2862 | TEMP047 |  |
| 2863 | TEMP048 |  |
| 2864 | TEMP049 |  |
| 2865 | TEMP050 |  |
| 2866 | TEMP051 |  |
| 2867 | TEMP052 |  |
| 2868 | TEMP053 |  |
| 2869 | TEMP054 |  |
| 2870 | TEMP055 |  |
| 2871 | TEMP056 |  |
| 2872 | TEMP057 |  |
| 2873 | TEMP058 |  |
| 2874 | TEMP059 |  |
| 2875 | TEMP060 |  |
| 2876 | TEMP061 |  |
| 2877 | TEMP062 |  |
| 2878 | TEMP063 |  |
| 2879 | TEMP064 |  |
| 2880 | TEMP065 |  |
| 2881 | TEMP066 |  |
| 2882 | TEMP067 |  |
| 2883 | TEMP068 |  |
| 2884 | TEMP069 |  |
| 2885 | TEMP070 |  |
| 2886 | TEMP071 |  |
| 2887 | TEMP072 |  |
| 2888 | TEMP073 |  |
| 2889 | TEMP074 |  |
| 2890 | TEMP075 |  |
| 2891 | TEMP076 |  |
| 2892 | TEMP077 |  |
| 2893 | TEMP078 |  |
| 2894 | TEMP079 |  |
| 2895 | TEMP080 |  |
| 2896 | TEMP081 |  |
| 2897 | TEMP082 |  |
| 2898 | TEMP083 |  |
| 2899 | TEMP084 |  |
| 2900 | TEMP085 |  |
| 2901 | TEMP086 |  |
| 2902 | TEMP087 |  |
| 2903 | TEMP088 |  |
| 2904 | TEMP089 |  |
| 2905 | TEMP090 |  |
| 2906 | TEMP091 |  |
| 2907 | TEMP092 |  |
| 2908 | TEMP093 |  |
| 2909 | TEMP094 |  |
| 2910 | TEMP095 |  |
| 2911 | TEMP096 |  |
| 2912 | TEMP097 |  |
| 2913 | TEMP098 |  |
| 2914 | TEMP099 |  |
| 2915 | TEMP100 |  |
| 2916 | TEMP101 |  |
| 2917 | TEMP102 |  |
| 2918 | TEMP103 |  |
| 2919 | TEMP104 |  |
| 2920 | TEMP105 |  |
| 2921 | TEMP106 |  |
| 2922 | TEMP107 |  |
| 2923 | TEMP108 | TEMP109 |
| 29267 | TEMP110 |  |
| 2928 | TEMP112 |  |
| 2929 | TEMP113 |  |
| 2930 | TEMP114 |  |
|  |  |  |


| Signal list |  | Contents |
| :---: | :---: | :---: |
| No. | Signal Name |  |
| 2931 | TEMP116 |  |
| 2932 | TEMP117 |  |
| 2933 | TEMP118 |  |
| 2934 | TEMP119 |  |
| 2935 | TEMP120 |  |
| 2936 | TEMP121 |  |
| 2937 | TEMP122 |  |
| 2938 | TEMP123 |  |
| 2939 | TEMP124 |  |
| 2940 | TEMP125 |  |
| 2941 | TEMP126 |  |
| 2942 | TEMP127 |  |
| 2943 | TEMP128 |  |
| 2944 | TEMP129 |  |
| 2945 | TEMP130 |  |
| 2946 | TEMP131 |  |
| 2947 | TEMP132 |  |
| 2948 | TEMP133 |  |
| 2949 | TEMP134 |  |
| 2950 | TEMP135 |  |
| 2951 | TEMP136 |  |
| 2952 | TEMP137 |  |
| 2953 | TEMP138 |  |
| 2954 | TEMP139 |  |
| 2955 | TEMP140 |  |
| 2956 | TEMP141 |  |
| 2957 | TEMP142 |  |
| 2958 | TEMP143 |  |
| 2959 | TEMP144 |  |
| 2960 | TEMP145 |  |
| 2961 | TEMP146 |  |
| 2962 | TEMP147 |  |
| 2963 | TEMP148 |  |
| 2964 | TEMP149 |  |
| 2965 | TEMP150 |  |
| 2966 | TEMP151 |  |
| 2967 | TEMP152 |  |
| 2968 | TEMP153 |  |
| 2969 | TEMP154 |  |
| 2970 | TEMP155 |  |
| 2971 | TEMP156 |  |
| 2972 | TEMP157 |  |
| 2973 | TEMP158 |  |
| 2974 | TEMP159 |  |
| 2975 | TEMP160 |  |
| 2976 | TEMP161 |  |
| 2977 | TEMP162 |  |
| 2978 | TEMP163 |  |
| 2979 | TEMP164 |  |
| 2980 | TEMP165 |  |
| 2981 | TEMP166 |  |
| 2982 | TEMP167 |  |
| 2983 | TEMP168 |  |
| 2984 | TEMP169 |  |
| 2985 | TEMP170 |  |
| 2986 | TEMP171 |  |
| 2987 | TEMP172 |  |
| 2988 | TEMP173 |  |
| 2989 | TEMP174 |  |
| 2990 | TEMP175 |  |
| 2991 | TEMP176 |  |
| 2992 | TEMP177 |  |
| 2993 | TEMP178 |  |
| 2994 | TEMP179 |  |
| 2995 | TEMP180 |  |
| 2996 | TEMP181 |  |
| 2997 | TEMP182 |  |
| 2998 | TEMP183 |  |
| 2999 | TEMP184 |  |
| 3000 | TEMP185 |  |


| Signal |  | list |
| ---: | :--- | :--- |
| No. |  |  |
| 3001 | TEMP18nal Name |  |
| 3002 | TEMP187 |  |
| 3003 | TEMP188 |  |
| 3004 | TEMP189 |  |
| 3005 | TEMP190 |  |
| 3006 | TEMP191 |  |
| 3007 | TEMP192 |  |
| 3008 | TEMP193 |  |
| 3009 | TEMP194 |  |
| 3010 | TEMP195 |  |
| 3011 | TEMP196 |  |
| 3012 | TEMP197 |  |
| 3013 | TEMP198 |  |
| 3014 | TEMP199 |  |
| 3015 | TEMP200 |  |
| 3016 | TEMP201 |  |
| 3017 | TEMP202 |  |
| 3018 | TEMP203 |  |
| 3019 | TEMP204 |  |
| 3020 | TEMP205 |  |
| 3021 | TEMP206 |  |
| 3022 | TEMP207 |  |
| 3023 | TEMP208 |  |
| 3024 | TEMP209 |  |
| 3025 | TEMP210 |  |
| 3026 | TEMP211 |  |
| 3027 | TEMP212 |  |
| 3028 | TEMP213 |  |
| 3029 | TEMP214 |  |
| 3030 | TEMP215 |  |
| 3031 | TEMP216 |  |
| 3032 | TEMP217 |  |
| 3033 | TEMP218 |  |
| 3034 | TEMP219 |  |
| 3035 | TEMP220 |  |
| 3036 | TEMP221 |  |
| 3037 | TEMP222 |  |
| 3038 | TEMP223 |  |
| 3039 | TEMP224 |  |
| 3040 | TEMP225 |  |
| 3041 | TEMP226 |  |
| 3042 | TEMP227 |  |
| 3043 | TEMP228 |  |
| 3044 | TEMP229 |  |
| 3045 | TEMP230 |  |
| 3046 | TEMP231 |  |
| 3047 | TEMP232 |  |
| 3048 | TEMP233 |  |
| 3049 | TEMP234 |  |
| 3050 | TEMP235 |  |
| 3051 | TEMP236 |  |
| 3052 | TEMP237 |  |
| 3053 | TEMP238 |  |
| 3054 | TEMP239 |  |
| 3055 | TEMP240 |  |
| 3056 | TEMP241 |  |
| 3057 | TEMP242 |  |
| 3058 | TEMP243 |  |
| 3059 | TEMP244 |  |
| 3060 | TEMP245 |  |
| 3061 | TEMP246 |  |
| 3062 | TEMP247 |  |
| 3063 | TEMP248 | TEMP249 |
| 30667 | TEMP250 | TEMP252 |
| 3068 | TEMP253 |  |
| 3069 | TEMP254 |  |
| 3070 | TEMP255 |  |
| 3071 | TEMP256 |  |
|  |  |  |

## Appendix C

Variable Timer List

## Variable Timer List

| Timer | Timer No. | Contents | Timer | Timer No. | Contents |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TZ1GA | 1 | Z1G TRIP TIMER | T3PLL | 61 | THREE PHASE LIVE LINE TIMER |
| TZ1GB | 2 | ditto | TDER | 62 | DEFR BACK-UP TRIP TIMER |
| TZ1GC | 3 | ditto | TOS1 | 63 | OVS1 BACK-UP TRIP TIMER |
| TZ2G | 4 | Z2G TRIP TIMER | TOS2 | 64 | OVS2 BACK-UP TRIP TIMER |
| TZ3G | 5 | Z3G TRIP TIMER | TOG1 | 65 | OVG1 BACK-UP TRIP TIMER |
| TZ1S | 6 | Z1S TRIP TIMER | TOG2 | 66 | OVG2 BACK-UP TRIP TIMER |
| TZ2S | 7 | Z2S TRIP TIMER | TUS1 | 67 | UVS1 BACK-UP TRIP TIMER |
| TZ3S | 8 | Z3S TRIP TIMER | TUS2 | 68 | UVS2 BACK-UP TRIP TIMER |
| TEF | 9 | EF BACK-UP TRIP TIMER | TUG1 | 69 | UVG1 BACK-UP TRIP TIMER |
| TDEF | 10 | DEFF BACK-UP TRIP TIMER | TUG2 | 70 | UVG2 BACK-UP TRIP TIMER |
| TZR1S | 11 | ZR1S BACK-UP TRIP TIMER | TBCD | 71 | BCD TRIP TIMER |
| TZR1G | 12 | ZR1G BACK-UP TRIP TIMER |  |  |  |
| TBF1A | 13 | CBF DETECTION TIMER 1 |  |  |  |
| TBF1B | 14 | ditto |  |  |  |
| TBF1C | 15 | ditto |  |  |  |
| TBF2A | 16 | CBF DETECTION TIMER 2 |  |  |  |
| TBF2B | 17 | ditto |  |  |  |
| TBF2C | 18 | ditto |  |  |  |
| TOST1 | 19 | OUT-OF-STEP DET. TIMER |  |  |  |
| TOST2 | 20 | ditto |  |  |  |
| TDEFF | 21 | DEF CARRIER TRIP DELAY TIMER |  |  |  |
| TDEFR | 22 | CARR.COORDINATION DEFR TIMER |  |  |  |
| TCHD | 23 | CARRIER COORDINATION TIMER |  |  |  |
| TEVLV | 26 | EVOLVING FAULT WAITING TIMER |  |  |  |
| TRDY1 | 27 | RECLAIM TIMER |  |  |  |
| TSPR1 | 28 | SPAR DEAD LINE TIMER |  |  |  |
| TTPR1 | 29 | TPAR DEAD LINE TIMER |  |  |  |
| TRR1 | 30 | RESET TIMER |  |  |  |
| TW1 | 31 | RECLOSING O/P FOR BUS CB |  |  |  |
| TRDY2 | 32 | FLW RECLAIM TIMER |  |  |  |
| TSPR2 | 33 | FLW SPAR DEAD LINE TIMER |  |  |  |
| TTPR2 | 34 | FLW TPAR DEAD LINE TIMER |  |  |  |
| TRR2 | 35 | FLW RESET TIMER |  |  |  |
| TW2 | 36 | RECLOSING O/P FOR CENTER CB |  |  |  |
| TSYN1 | 37 | LEAD SYN CHECK TIMER |  |  |  |
| TSYN2 | 38 | FLW SYN CHECK TIMER |  |  |  |
| TDBL1 | 39 | VOLTAGE CHECK TIMER |  |  |  |
| TDBL2 | 40 | ditto |  |  |  |
| TLBD1 | 41 | ditto |  |  |  |
| TLBD2 | 42 | ditto |  |  |  |
| TS2 | 43 | MULTI. SHOT DEAD TIMER |  |  |  |
| TS3 | 44 | ditto |  |  |  |
| TS4 | 45 | ditto |  |  |  |
| TS2R | 46 | MULTI. SHOT RESET TIMER |  |  |  |
| TS3R | 47 | ditto |  |  |  |
| TS4R | 48 | ditto |  |  |  |
| TOC | 49 | OC BACK-UP TRIP TIMER |  |  |  |
| TPSB | 50 | PSB DETECTION TIMER |  |  |  |
| TSOTF | 51 | SOTF CHECK TIMER |  |  |  |
| TZFG | 52 | ZFG TRIP TIMER |  |  |  |
| TZFS | 53 | ZFS TRIP TIMER |  |  |  |
| TZR2G | 54 | ZR2G BACK-UP TRIP TIMER |  |  |  |
| TZR2S | 55 | ZR2S BACK-UP TRIP TIMER |  |  |  |
| TZNDG | 56 | ZNDG BACK-UP TRIP TIMER |  |  |  |
| TZNDS | 57 | ZNDS BACK-UP TRIP TIMER |  |  |  |
| TREBK | 58 | CURRENT REVERSAL BLOCKING TIME |  |  |  |
| TECCB | 59 | ECHO ENABLE TIME FROM CB OPENED |  |  |  |
| TSBCT | 60 | SBCNT TIME |  |  |  |

## Appendix D

## Binary Input/Output Default Setting List

Binary Input Default Setting List

| No. | Model |  |  |  |  |  |  |  |  |  | Model |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | NO-ARC,NO-FD |  | 1CB-ARC,NO-FD |  |  | 2CB-ARC,NO-FD |  |  | $\begin{array}{\|c\|} \hline \text { 1CB-ARC,FD } \\ \hline 401 \end{array}$ | $\begin{array}{\|c\|} \hline \text { 2CB-ARC,FD } \\ \hline 501 \\ \hline \end{array}$ | 1CB-ARC,NO-FD |  |  |
|  | 101 | 102 | 201 | 202 | 203 | 301 | 302 | 303 |  |  | 204 | 205 | 206 |
| B11 | CB1-A |  |  |  |  |  |  |  |  |  | CB1-A |  |  |
| B12 | CB1-B |  |  |  |  |  |  |  |  |  | CB1-B |  |  |
| B13 | CB1-C |  |  |  |  |  |  |  |  |  | CB1-C |  |  |
| B14 | Signal Receive(CH1) |  |  |  |  |  |  |  |  |  | Signal Receive(CH1) |  |  |
| B15 | Signal Receive(CH2) or Z1X init |  |  |  |  |  |  |  |  |  | Signal Receive(CH2) or Z1X init |  |  |
| B16 | EXT VTF |  |  |  |  |  |  |  |  |  | EXT VTF |  |  |
| B17 | DS-N/O |  |  |  |  |  |  |  |  |  | DS-N/O |  |  |
| B18 | DS-N/C |  |  |  |  |  |  |  |  |  | DS-N/C |  |  |
| B19 | Carrier block |  |  |  |  |  |  |  |  |  | Carrier block |  |  |
| Bl10 | (SPARE) |  | CB1 ready |  |  |  |  |  |  |  | IND.RESET |  |  |
| B111 | (SPARE) |  | (SPARE) |  |  | CB2 ready |  |  | (SPARE) | CB2 ready | PROT BLCOK |  |  |
| Bl12 | (SPARE) |  | REC BLOCK |  |  |  |  |  |  |  | Z1X INIT |  |  |
| Bl13 | IND.RESET |  |  |  |  |  |  |  |  |  | -- |  |  |
| Bl14 | M-prot Trip |  |  |  |  |  |  |  |  |  | -- |  |  |
| Bl15 | M-prot On |  |  |  |  |  |  |  |  |  | -- |  |  |
| Bl16 | EXT trip-A |  |  |  |  |  |  |  |  |  | EXT trip-A |  |  |
| Bl17 | EXT trip-B |  |  |  |  |  |  |  |  |  | EXT trip-B |  |  |
| Bl18 | EXT trip-C |  |  |  |  |  |  |  |  |  | EXT trip-C |  |  |
| Bl19 | -- |  |  | (SPARE) |  | -- | CB2-A |  | (SPARE) | CB2-A | OCI BLOCK |  |  |
| BI20 |  | -- |  | (SPARE) |  | -- | CB2-B |  | (SPARE) | CB2-B | EFI BLOCK |  |  |
| BI21 |  | -- |  | (SPARE) |  | -- | CB2-C |  | (SPARE) | CB2-C | OC BLOCK |  |  |
| B122 | -- |  |  |  |  |  |  |  |  |  | DEF BLOCK |  |  |
| B123 | -- |  |  |  |  |  |  |  |  |  | EXTTP BLOCK |  |  |
| Bl24 | -- |  |  |  |  |  |  |  |  |  | STUB BLOCK |  |  |
| BI25 | -- |  |  |  |  |  |  |  |  |  | SOTF BLOCK |  |  |
| BI26 | -- |  |  |  |  |  |  |  |  |  | -- | ARC BLOCK |  |
| B127 | -- |  |  |  |  |  |  |  |  |  | -- | CB1 READY |  |
| B128 | -- |  |  |  |  |  |  |  |  |  | -- | CBF BLOCK |  |
| B134 | -- |  |  |  | (SPARE) | -- |  | (SPARE) | -- |  | -- |  | (SPARE) |
| B135 | -- |  |  |  | (SPARE) | -- |  | (SPARE) | -- |  | -- |  | (SPARE) |
| B136 | -- |  |  |  | (SPARE) | -- |  | (SPARE) | -- |  | -- |  | (SPARE) |

Binary Output Default Setting List (1)

| Relay Model | Module Name | BO No. | Terminal No. | Signal Name | Contents | Setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Signal No. | LOGIC (OR:1, AND:2) | TIMER (OFF:0, ON:1) |
| $\begin{aligned} & \text { GRZ100 } \\ & -101 \end{aligned}$ | IO\#2 | BO1 <br> BO2 <br> BO3 <br> BO4 <br> BO5 <br> BO6 <br> BO7 <br>  <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 <br> - FAIL $^{-2}$ | TB3: <br> A2-A1 <br> A2-B1 <br> A2-B2 <br> A3-B3 <br> A4-B4 <br> A5-B5 <br> A6-B6 <br> A7-B7 <br> A8-B8 <br> A9-B9 <br> A10-B10 <br> A11-B11 <br> A13-B13 <br> A12-B12 | TRIP-A1 <br> TRIP-B1 <br> TRIP-C1 <br> TRIP-A1 <br> TRIP-B1 <br> TRIP-C1 <br> CAR/Z1G/Z1S_- <br> TRIP <br> BU_TRIP <br> SOTFISTUB_TRIP <br> BURECLK <br> CBF_TRIP <br> CHF <br> EXT_CAR-S <br> RELĀY FAILURE | Trip O/P for bus CB <br> Distance or DG carrier/Z1G/ <br> Z1S trip <br> Back-up trip <br> SOTF/Stub trip <br> BU reclose block <br> Related CB trip for CBF <br> Carrier channel failure <br> External carrier send command $\qquad$ | $\begin{gathered} 240 \\ 241 \\ 242 \\ 240 \\ 241 \\ 242 \\ 231,148,160 \\ \\ 194 \\ 183,182 \\ 195 \\ 200 \\ 253 \\ 225 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| $\begin{array}{\|l} \mid G R Z 100 \\ -102 \end{array}$ | IO\#2 | BO1 <br> BO2 <br> BO3 <br> BO4 <br> BO5 <br> BO6 <br> BO7 <br>  <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 <br> - FAIL $^{-2}$ | TB3: <br> A2-A1 <br> A2-B1 <br> A2-B2 <br> A3-B3 <br> A4-B4 <br> A5-B5 <br> A6-B6 <br> A7-B7 <br> A8-B8 <br> A9-B9 <br> A10-B10 <br> A11-B11 <br> A13-B13 <br> A12-B12 | TRIP-A1 <br> TRIP-B1 <br> TRIP-C1 <br> TRIP-A1 <br> TRIP-B1 <br> TRIP-C1 <br> CAR/Z1G/Z1S_ <br> TRIP <br> BU_TRIP <br> SOTFISTUB_TRIP <br> BURECLK <br> CBF_TRIP <br> CHF <br> EXT_CAR-S <br> $R E L A \bar{Y}$ | Trip O/P for bus CB <br> Distance or DG carrier/Z1G/ <br> Z1S trip <br> Back-up trip <br> SOTF/Stub trip <br> BU reclose block <br> Related CB trip for CBF <br> Carrier channel failure <br> External carrier send command <br> -- | $\begin{gathered} 240 \\ 241 \\ 242 \\ 240 \\ 241 \\ 242 \\ 231,148,160 \\ \\ 194 \\ 183,182 \\ 195 \\ 200 \\ 253 \\ 225 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
|  | IO\#3 | $\begin{aligned} & \mathrm{BO} 1 \\ & \mathrm{BO} 2 \\ & \mathrm{BO} \\ & \mathrm{BO} 4 \\ & \mathrm{BO} 9 \end{aligned}$ | TB2: A1-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-B6 A7-B7 A8-B8 A9-B9 A10-B10 | TRIP-A1 TRIP-B1 TRIP-C1 TRIP-A1 TRIP-B1 TRIP-C1 TRIP-A1 TRIP-B1 TRIP-C1 TRIP-OR | Trip O/P for bus CB Trip O/P or | $\begin{aligned} & 240 \\ & 241 \\ & 242 \\ & 240 \\ & 241 \\ & 242 \\ & 240 \\ & 241 \\ & 242 \\ & 238 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |

Binary Output Default Setting List (2)

| Relay Model | Module Name | BO No. | Terminal No. | Signal Name | Contents | Setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Signal No. | $\begin{gathered} \hline \text { LOGIC } \\ \text { (OR:1, AND:2) } \end{gathered}$ | TIMER (OFF:0, ON:1) |
| $\begin{aligned} & \text { GRZ100 } \\ & -201 \end{aligned}$ | IO\#2 | BO1 <br> BO2 <br> BO3 <br> BO4 <br> BO5 <br> BO6 <br> BO7 <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 <br> (FAIL) | TB3: <br> A2-A1 <br> A2-B1 <br> A2-B2 <br> A3-B3 <br> A4-B4 <br> A5-B5 <br> A6-B6 <br> A7-B7 <br> A8-B8 <br> A9-B9 <br> A10-B10 <br> A11-B11 <br> A13-B13 <br> A12-B12 | TRIP-A1 <br> TRIP-B1 <br> TRIP-C1 <br> CAR/Z1G/Z1S_- <br> TRIP <br> Z2G/Z3G/ZR1G/ <br> Z2S/Z3S/ZR1S_ <br> TRIP <br> EF_BU-TRIP <br> SOTF/STUB_TRIP <br> BURECLK <br> CBF_TRIP <br> ARC1 <br> VTF_ALARM,CHF <br> CBF_DET <br> EXT_CAR-S <br> RELAY FAILURE | Trip O/P for bus CB <br> Trip O/P for bus CB <br> Trip O/P for bus CB <br> Distance or DG carrier/Z1G/ <br> Z1S trip <br> Z2G/Z3G/Z4G Back-up/ <br> Z2S/Z3S/ZR1S trip <br> EF or DEF Back-up trip SOTF/Stub trip BU reclose block Related CB trip for CBF Rec output for bus CB VTF alarm, Carrier channel failure <br> CBF Detection <br> External carrier send command -- | $\begin{gathered} 240 \\ 241 \\ 242 \\ 231,148,160 \\ 153,156,192,162,165 \\ , 189 \\ 187 \\ 183,182 \\ 195 \\ 200 \\ 291 \\ 172,253 \\ 199 \\ 225 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$ |
|  | IO\#3 | $\begin{aligned} & \mathrm{BO} 1 \\ & \mathrm{BO} 2 \\ & \mathrm{BO} 3 \\ & \mathrm{BO} 4 \\ & \mathrm{BO} 5 \\ & \mathrm{BO} 6 \\ & \mathrm{BO} 7 \\ & \mathrm{BO} \\ & \mathrm{BO} \\ & \mathrm{BO} \end{aligned}$ | TB2: A1-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-B6 A7-B7 A8-B8 A9-B9 A10-B10 | TRIP-A1 TRIP-B1 TRIP-C1 TRIP-A1 TRIP-B1 TRIP-C1 TRIP-A1 TRIP-B1 TRIP-C1 TRIP-OR | Trip O/P for bus CB Trip O/P or | $\begin{aligned} & 240 \\ & 241 \\ & 242 \\ & 240 \\ & 241 \\ & 242 \\ & 240 \\ & 241 \\ & 242 \\ & 238 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| $\begin{aligned} & \text { GRZ100 } \\ & -202 \end{aligned}$ | IO\#2 | BO1 <br> BO2 <br> BO3 <br> BO4 <br> BO5 <br> BO6 <br> BO7 <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 | TB2: <br> A2-A1 <br> A2-B1 <br> A2-B2 <br> A3-B3 <br> A4-B4 <br> A5-B5 <br> A6-B6 <br> A7-B7 <br> A8-B8 <br> A9-B9 <br> A10-B10 <br> A11-B11 <br> A13-B13 <br> A12-B12 | TRIP-A1 <br> TRIP-B1 <br> TRIP-C1 <br> CAR/Z1G/Z1S_ <br> TRIP <br> Z2G/Z3G/ZR1G/ <br> Z2S/Z3S/ZR1S_ <br> TRIP <br> EF_BU-TRIP <br> SOTF/STUB_TRIP <br> BURECLK <br> CBF_TRIP <br> ARC1 <br> VTF_ALARM,CHF <br> CBF_DET <br> EXT_CAR-S <br> REIAY FAll | Trip O/P for bus CB <br> Trip O/P for bus CB <br> Trip O/P for bus CB <br> Distance or DG carrier/Z1G/ <br> Z1S trip <br> Z2G/Z3G/Z4G Back-up/ <br> Z2S/Z3S/ZR1S trip <br> EF or DEF Back-up trip SOTF/Stub trip <br> BU reclose block <br> Related CB trip for CBF <br> Rec output for bus CB <br> VTF alarm, Carrier channel failure <br> CBF Detection <br> External carrier send command <br> -- | $\begin{gathered} 240 \\ 241 \\ 242 \\ 231,148,160 \\ 153,156,192,162,165 \\ , 189 \\ 187 \\ 183,182 \\ 195 \\ 200 \\ 291 \\ 172,253 \\ 199 \\ 225 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$ |
|  | IO\#3 | BO1 <br> BO2 <br> BO3 <br> BO4 <br> BO5 <br> BO6 <br> BO7 <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 <br> BO14 | TB5: A2-A1 A2-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-B6 A7-B7 A8-B8 A9-B9 A10-B10 A11-B11 A12-B12 A13-B13 | TRIP-A1 TRIP-B1 TRIP-C1 TRIP-A1 TRIP-B1 TRIP-C1 TRIP-A1 TRIP-B1 TRIP-C1 TRIP-A1 TRIP-B1 TRIP-C1 TRIP-OR TRIP-OR | Trip O/P for bus CB Trip O/P or Trip O/P or | $\begin{aligned} & 240 \\ & 241 \\ & 242 \\ & 240 \\ & 241 \\ & 242 \\ & 240 \\ & 241 \\ & 242 \\ & 240 \\ & 241 \\ & 242 \\ & 238 \\ & 238 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |

Binary Output Default Setting List (3)

| Relay Model | Module Name | BO No. | Terminal No. | Signal Name | Contents | Setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Signal No. | $\begin{gathered} \text { LOGIC } \\ \text { (OR:1, AND:2) } \end{gathered}$ | TIMER (OFF:0, ON:1) |
| $\begin{aligned} & \text { GRZ100 } \\ & -203 \end{aligned}$ | IO\#2 | BO1 <br> BO2 <br> BO3 <br> BO4 <br> BO5 <br> BO6 <br> BO7 <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 <br> (FAIL) | TB2: <br> A2-A1 <br> A2-B1 <br> A2-B2 <br> A3-B3 <br> A4-B4 <br> A5-B5 <br> A6-B6 <br> A7-B7 <br> A8-B8 <br> A9-B9 <br> A10-B10 <br> A11-B11 <br> A13-B13 <br> A12-B12 | TRIP-A1 <br> TRIP-B1 <br> TRIP-C1 <br> CAR/Z1G/Z1S_- <br> TRIP <br> Z2G/Z3G/ZR1G/ <br> Z2S/Z3S/ZR1S_ <br> TRIP <br> EF_BU-TRIP <br> SOTF/STUB_TRIP <br> BURECLK <br> CBF_TRIP <br> ARC1 <br> VTF_ALARM,CHF <br> CBF_DET <br> EXT_CAR-S <br> RELAY FAILURE | Trip O/P for bus CB <br> Trip O/P for bus CB <br> Trip O/P for bus CB <br> Distance or DG carrier/Z1G/ <br> Z1S trip <br> Z2G/Z3G/Z4G Back-up/ <br> Z2S/Z3S/ZR1S trip <br> EF or DEF back-up trip SOTF/Stub trip <br> BU reclose block <br> Related CB trip for CBF <br> Rec output for bus CB <br> VTF alarm, Carrier channel failure <br> CBF Detection <br> External carrier send command | $\begin{gathered} 240 \\ 241 \\ 242 \\ 231,148,160 \\ 153,156,192,162,165 \\ , 189 \\ 187 \\ 183,182 \\ 195 \\ 200 \\ 291 \\ 172,253 \\ 199 \\ 225 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$ |
|  | IO\#3 | BO1 <br> BO2 <br> BO3 <br> BO4 <br> BO5 <br> BO6 <br> BO7 <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 <br> BO14 | TB5: A2-A1 A2-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-B6 A7-B7 A8-B8 A9-B9 A10-B10 A11-B11 A12-B12 A13-B13 | TRIP-A1 TRIP-B1 TRIP-C1 TRIP-A1 TRIP-B1 TRIP-C1 TRIP-A1 TRIP-B1 TRIP-C1 TRIP-A1 TRIP-B1 TRIP-C1 TRIP-OR TRIP-OR | Trip O/P for bus CB Trip O/P or Trip O/P or | $\begin{aligned} & 240 \\ & 241 \\ & 242 \\ & 240 \\ & 241 \\ & 242 \\ & 240 \\ & 241 \\ & 242 \\ & 240 \\ & 241 \\ & 242 \\ & 238 \\ & 238 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
|  | IO\#4 | $\begin{aligned} & \mathrm{BO} 1 \\ & \mathrm{BO} 2 \\ & \mathrm{BO} 3 \\ & \mathrm{BO} 4 \\ & \mathrm{BO} \\ & \mathrm{BO6} \\ & \mathrm{BO} 10 \\ & \mathrm{BO} \\ & \mathrm{BO} 12 \\ & \mathrm{BO} 13 \end{aligned}$ | TB3: A2-A1 A2-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-B6 A7-B7 A8-B8 A9-B9 A10-B10 A11-B11 A12-B12 A13-B13 | Z1G_TRIP <br> Z2G_TRIP <br> Z3G_TRIP <br> Z1S_TRIP <br> Z2S_TRIP <br> Z3S_TRIP <br> STUB_TRIP <br> SOTF_TRIP <br> EF_BU-TRIP <br> ZR1G_TRIP <br> ZR1S_TRIP <br> CBF_DET <br> DEFCR/WICAR_ <br> TRIP <br> ARC1 | Z1G trip <br> Z2G trip <br> Z3G trip <br> Z1S trip <br> Z2S trip <br> Z3S trip <br> Stub trip <br> SOTF trip <br> EF or DEF back-up trip Z4G back-up trip ZR1S trip CBF Detection DG/WEAK carrier trip <br> Rec output for bus CB | $\begin{gathered} 148 \\ 153 \\ 156 \\ 160 \\ 162 \\ 165 \\ 182 \\ 183 \\ 187 \\ 192 \\ 189 \\ 199 \\ 232,233 \\ \\ 291 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |

Binary Output Default Setting List (4)

| Relay Model | Module Name | BO No. | Terminal No. | Signal Name | Contents | Setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Signal No. | LOGIC (OR:1, AND:2) | TIMER (OFF:0, ON:1) |
| $\begin{aligned} & \text { GRZ100 } \\ & -204 \end{aligned}$ | IO\#2 | BO1 <br> BO2 <br> BO3 <br> BO4 <br> BO5 <br> BO6 <br> BO7 <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 |  | Z1G/Z1S_TRIP Z2G/Z2S_TRIP Z3G/Z3S_TRIP TRIP-OR BU_TRIP TRIP-OR Z2G/Z2S OR VTF_ALARM EF_TRIP STUB_TRIP SOTF_TRIP EXT_CAR-S EXT_CAR-S RELAY FAILURE | Z1G/ Z1S trip <br> Z2G/ Z2S trip <br> Z3G/ Z3S trip <br> Trip O/P or <br> Back-up trip <br> Trip O/P or <br> Z2G/Z2S relay or logic <br> VTF alarm <br> EF back-up trip <br> Stub trip <br> SOTF trip <br> External carrier send command <br> External carrier send command <br> -- | $\begin{gathered} 148,160 \\ 153,162 \\ 156,165 \\ 238 \\ 194 \\ 238 \\ 154,163 \\ 172 \\ 678 \\ 182 \\ 183 \\ 225 \\ 225 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
|  | IO\#3 | $\begin{array}{\|l} \mathrm{BO} 1 \\ \mathrm{BO} 2 \\ \mathrm{BO} \\ \mathrm{BO} \\ \mathrm{BO} \\ \mathrm{BO5} \\ \mathrm{BO} \end{array}$ | TB2: A1-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-B6 | TRIP-OR Z2G/Z3G/Z2S/Z3S OR OCI_TRIP EFI_TRIP OC_TRIP DEF_TRIP | Trip O/P or <br> Z2G/Z3G/Z2S/Z3S relay or logic <br> IDMT OC back-up trip EF IDMT trip OC back-up trip DEF back-up trip | $\begin{gathered} 238 \\ 154,157,163,166 \\ 327 \\ 184 \\ 326 \\ 677 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| $\left\lvert\, \begin{aligned} & \text { GRZ100 } \\ & -205 \end{aligned}\right.$ | IO\#2 | BO2 <br> BO3 <br> BO4 <br> BO5 <br> BO6 <br> BO7 <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 | TB2: A2-A1 A2-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-B6 A7-B7 A8-B8 A9-B9 A10-B10 A11-B11 A13-B13 | Z1G/Z1S_TRIP <br> Z2G/Z2S_TRIP <br> Z3G/Z3S_TRIP <br> TRIP-OR <br> BU_TRIP <br> TRIP-OR <br> Z2G/Z2S OR <br> VTF_ALARM <br> EF_TRIP <br> STUB_TRIP <br> SOTF_TRIP <br> EXT_CAR-S <br> EXT_CAR-S | Z1G/ Z1S trip <br> Z2G/ Z2S trip <br> Z3G/ Z3S trip <br> Trip O/P or <br> Back-up trip <br> Trip O/P or <br> Z2G/Z2S relay or logic <br> VTF alarm <br> EF back-up trip <br> Stub trip <br> SOTF trip <br> External carrier send command <br> External carrier send command | $\begin{gathered} 148,160 \\ 153,162 \\ 156,165 \\ 238 \\ 194 \\ 238 \\ 154,163 \\ 172 \\ 678 \\ 182 \\ 183 \\ 225 \\ 225 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$ |
|  |  | (FAIL) | A12-B12 | RELAY FAILUR | -- | -- | -- | -- |
|  | IO\#3 | $\begin{aligned} & \mathrm{BO} 1 \\ & \mathrm{BO} 2 \\ & \\ & \mathrm{BO} 3 \\ & \mathrm{BO} 4 \\ & \mathrm{BO} 5 \\ & \mathrm{BO} \end{aligned}$ | TB5: A1-B1 A2-B2 A3-B3 A4-B4 $A 5-B 5$ $A 6-B 6$ $A 7-B 7$ $A 8-B 8$ $A 9-B 9$ $A 10-B 10$ | TRIP-OR Z2G/Z3G/Z2S/Z3S OR OCI_TRIP EFI_TRIP OC_TRIP DEF_TRIP ARC1 ARC1 BU_TRIP IN-PROG1 | Trip O/P or <br> Z2G/Z3G/Z2S/Z3S relay or logic <br> IDMT OC back-up trip EF IDMT trip OC back-up trip DEF back-up trip Rec output for bus CB Rec output for bus CB Back-up trip Lead rec. in progress | $\begin{gathered} 238 \\ 154,157,163,166 \\ 327 \\ 184 \\ 326 \\ 677 \\ 291 \\ 291 \\ 194 \\ 285 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$ |

Binary Output Default Setting List (5)

| Relay Model | Module Name | BO No. | Terminal No. | Signal Name | Contents | Setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Signal No. | LOGIC (OR:1, AND:2) | $\begin{gathered} \text { TIMER } \\ (\mathrm{OFF}: 0, \mathrm{ON}: 1) \\ \hline \end{gathered}$ |
| $\begin{array}{\|l} \text { GRZ100 } \\ -206 \end{array}$ | IO\#2 | $\mathrm{BO1}$ BO 2 BO 3 $\mathrm{BO4}$ $\mathrm{BO5}$ $\mathrm{BO6}$ $\mathrm{BO7}$ $\mathrm{BO8}$ $\mathrm{BO9}$ BO 10 BO 11 BO12 BO13 | TB2: <br> A2-A1 <br> A2-B1 <br> A2-B2 <br> A3-B3 <br> A4-B4 <br> A5-B5 <br> A6-B6 <br> A7-B7 <br> A8-B8 <br> A9-B9 <br> A10-B10 <br> A11-B11 <br> A13-B13 | Z1G/Z1S_TRIP Z2G/Z2S_TRIP Z3G/Z3S_TRIP TRIP-OR BU_TRIP TRIP-OR Z2G/Z2S OR VTF_ALARM EF_TRIP STUB_TRIP SOTF_TRIP EXT_CAR-S EXT_CAR-S | Z1G/ Z1S trip <br> Z2G/ Z2S trip <br> Z3G/ Z3S trip <br> Trip O/P or <br> Back-up trip <br> Trip O/P or <br> Z2G/Z2S relay or logic <br> VTF alarm <br> EF back-up trip <br> Stub trip <br> SOTF trip <br> External carrier send command <br> External carrier send command | 148,160 153,162 156,165 238 194 238 154,163 172 678 182 183 225 225 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$ |
|  | IO\#3 | $\begin{aligned} & \mathrm{BO} 1 \\ & \mathrm{BO} 2 \\ & \\ & \mathrm{BO} 3 \\ & \mathrm{BO} 4 \\ & \mathrm{BO} \\ & \mathrm{BO9} \\ & \mathrm{BO} 10 \end{aligned}$ | TB5: A1-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-B6 A7-B7 A8-B8 A9-B9 A10-B10 | TRIP-OR Z2G/Z3G/Z2S/Z3S OR OCI_TRIP EFI_TRIP OC_TRIP DEF_TRIP ARC1 ARC1 BU_TRIP IN-PROG1 | Trip O/P or <br> Z2G/Z3G/Z2S/Z3S relay or logic <br> IDMT OC back-up trip EF IDMT trip OC back-up trip DEF back-up trip Rec output for bus CB Rec output for bus CB Back-up trip Lead rec. in progress | $\begin{gathered} 238 \\ 154,157,163,166 \\ 327 \\ 184 \\ 326 \\ 677 \\ 291 \\ 291 \\ 194 \\ 285 \\ \hline \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$ |
|  | IO\#4 | BO1 <br> BO2 <br> BO3 <br> BO4 <br> BO5 <br> BO6 <br> BO7 <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 <br> BO14 | TB3: A2-A1 A2-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-B6 A7-B7 A8-B8 A9-B9 A10-B10 A11-B11 A12-B12 A13-B13 | CBF_RETRIP-A CBF_RETRIP-B CBF_RETRIP-C CBF_TRIP CBF_TRIP CBF_DET TRIP-A1 TRIP-B1 TRIP-C1 TRIP-OR TRIP-A1 TRIP-B1 TRIP-C1 TRIP-OR | Re-trip A ph. for CBF Re-trip B ph. for CBF Re-trip C ph. for CBF Related CB trip for CBF Related CB trip for CBF CBF Detection <br> Trip O/P for bus CB <br> Trip O/P for bus CB <br> Trip O/P for bus CB <br> Trip O/P or <br> Trip O/P for bus CB <br> Trip O/P for bus CB <br> Trip O/P for bus CB <br> Trip O/P or | $\begin{aligned} & 196 \\ & 197 \\ & 198 \\ & 200 \\ & 200 \\ & 199 \\ & 240 \\ & 241 \\ & 242 \\ & 238 \\ & 240 \\ & 241 \\ & 242 \\ & 238 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |

Binary Output Default Setting List (6)

| Relay Model | Module Name | BO No. | Terminal No. | Signal Name | Contents | Setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Signal No. | LOGIC (OR:1, AND:2) | TIMER (OFF:0, ON:1) |
| $\begin{array}{\|l} \mid \text { GRZ100 } \\ -301 \end{array}$ | IO\#2 | BO1 <br> BO2 <br> BO3 <br> BO4 <br> BO5 <br> BO6 <br> BO7 <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 <br> (FAIL) | TB3: <br> A2-A1 <br> A2-B1 <br> A2-B2 <br> A3-B3 <br> A4-B4 <br> A5-B5 <br> $A 6-B 6$ <br> $A 7-B 7$ <br> $A 8-B 8$ <br> $A 9-B 9$ <br> $A 10-B 10$ <br> $A 11-B 11$ <br> $A 13-B 13$ <br> $A 12-B 12$ | TRIP-A1,2 <br> TRIP-B1,2 <br> TRIP-C1,2 <br> CAR/Z1G/Z1S_- <br> TRIP <br> Z2G/Z3G/ZR1G/ <br> Z2S/Z3S/ZR1S_ <br> TRIP <br> EF_BU-TRIP <br> SOTFISTUB_TRIP <br> BURECLK <br> CBF_TRIP <br> ARC1 <br> ARC2 <br> VTF_ALARM,CHF <br> EXT_CAR-S <br> RELAY FAILURE | Trip O/P for bus/center CB <br> Trip O/P for bus/center CB <br> Trip O/P for bus/center CB <br> Distance or DG carrier/Z1G/ <br> Z1S trip <br> Z2G/Z3G/Z4G Back-up/ <br> Z2S/Z3S/ZR1S trip <br> EF or DEF back-up trip SOTF/Stub trip <br> BU reclose block <br> Related CB trip for CBF <br> Rec output for bus CB <br> Rec output for center CB <br> VTF alarm, Carrier channel <br> failure <br> External carrier send command $\qquad$ | $\begin{gathered} 240,243 \\ 241,244 \\ 242,245 \\ 231,148,160 \\ \\ 153,156,192,162,165 \\ , 189 \\ 187 \\ 183,182 \\ 195 \\ 200 \\ 291 \\ 292 \\ 172,253 \\ \\ 225 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$ |
|  | IO\#3 | $\begin{aligned} & \mathrm{BO} 1 \\ & \mathrm{BO} 2 \\ & \mathrm{BO} \\ & \mathrm{BO} 4 \\ & \mathrm{BO} \end{aligned}$ | TB2: A1-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-B6 A7-B7 A8-B8 A9-B9 A10-B10 | TRIP-A1,2 TRIP-B1,2 TRIP-C1,2 TRIP-A1,2 TRIP-B1,2 TRIP-C1,2 TRIP-A1,2 TRIP-B1,2 TRIP-C1,2 TRIP-OR | Trip O/P for bus/center CB Trip O/P or | $\begin{gathered} 240,243 \\ 241,244 \\ 242,245 \\ 240,243 \\ 241,244 \\ 242,245 \\ 240,243 \\ 241,244 \\ 242,245 \\ 238 \\ \hline \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| $\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { GRZ100 } \\ -302 \end{array}$ | IO\#2 | BO 1 BO 2 BO 3 BO 4 $\mathrm{BO5}$ BO BO BO $\mathrm{BO9}$ BO 10 BO 11 BO 12 BO 2 | TB2: A2-A1 A2-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-B6 A7-B7 A8-B8 A9-B9 A10-B10 A11-B11 A13-B13 | TRIP-A1,2 TRIP-B1,2 TRIP-C1,2 CAR/Z1G/Z1S__ TRIP Z2G/Z3G/ZR1G/ Z2S/Z3S/ZR1S_ TRIP EF_BU-TRIP SOTF/STUB_TRIP BURECLK CBF_TRIP ARC1 ARC2 VTF_ALARM,CHF EXT_CAR-S | Trip O/P for bus/center CB <br> Trip O/P for bus/center CB <br> Trip O/P for bus/center CB <br> Distance or DG carrier/Z1G/ <br> Z1S trip <br> Z2G/Z3G/Z4G Back-up/ <br> Z2S/Z3S/ZR1S trip <br> EF or DEF back-up trip SOTF/Stub trip <br> BU reclose block <br> Related CB trip for CBF <br> Rec output for bus CB <br> Rec output for center CB <br> VTF alarm, Carrier channel <br> failure <br> External carrier send command | $\begin{gathered} 240,243 \\ 241,244 \\ 242,245 \\ 231,148,160 \\ 153,156,192,162,165 \\ , 189 \\ 187 \\ 183,182 \\ 195 \\ 200 \\ 291 \\ 292 \\ 172,253 \\ \\ 225 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$ |
|  |  |  | A12-B12 | RE | -- | -- | -- | -- |
|  | IO\#3 | $\begin{aligned} & \mathrm{BO} 1 \\ & \mathrm{BO} 2 \\ & \mathrm{BO} 3 \\ & \mathrm{BO} 4 \\ & \mathrm{BO} \\ & \mathrm{BO9} \\ & \mathrm{BO} 10 \\ & \mathrm{BO} 11 \\ & \mathrm{BO} 12 \\ & \mathrm{BO} 13 \\ & \mathrm{BO} 14 \end{aligned}$ | TB5: A2-A1 A2-B1 A2-B2 A3-B3 A4-B4 A5-B5 $A 6-B 6$ $A 7-B 7$ A8-B8 A9-B9 A10-B10 A11-B11 A12-B12 A13-B13 | TRIP-A1 TRIP-B1 TRIP-C1 TRIP-A1 TRIP-B1 TRIP-C1 TRIP-A2 TRIP-B2 TRIP-C2 TRIP-A2 TRIP-B2 TRIP-C2 TRIP-OR TRIP-OR | Trip O/P for bus CB Trip O/P for center CB Trip O/P or Trip O/P or | $\begin{aligned} & 240 \\ & 241 \\ & 242 \\ & 240 \\ & 241 \\ & 242 \\ & 243 \\ & 244 \\ & 245 \\ & 243 \\ & 244 \\ & 245 \\ & 238 \\ & 238 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |

Binary Output Default Setting List (7)

| Relay Model | Module Name | BO No. | Terminal No. | Signal Name | Contents | Setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Signal No. | LOGIC (OR:1, AND:2) | TIMER (OFF:0, ON:1) |
| $\begin{aligned} & \text { GRZ100 } \\ & -303 \end{aligned}$ | IO\#2 | BO1 <br> BO2 <br> BO3 <br> BO4 <br> BO5 <br> BO6 <br> BO7 <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 <br> (FAIL) | TB2: <br> A2-A1 <br> A2-B1 <br> A2-B2 <br> A3-B3 <br> A4-B4 <br> A5-B5 <br> A6-B6 <br> A7-B7 <br> A8-B8 <br> A9-B9 <br> A10-B10 <br> A11-B11 <br> A13-B13 <br> A12-B12 | TRIP-A1,2 <br> TRIP-B1,2 <br> TRIP-C1,2 <br> CAR/Z1G/Z1S_ <br> TRIP <br> Z2G/Z3G/ZR1G/ <br> Z2S/Z3S/ZR1S_ <br> TRIP <br> EF_BU-TRIP <br> SOTF/STUB_TRIP <br> BURECLK <br> CBF_TRIP <br> ARC1 <br> ARC2 <br> VTF_ALARM,CHF <br> EXT_CAR-S <br> RELAY FAILURE | Trip O/P for bus/center CB <br> Trip O/P for bus/center CB <br> Trip O/P for bus/center CB <br> Distance or DG carrier/Z1G/ <br> Z1S trip <br> Z2G/Z3G/Z4G Back-up/ <br> Z2S/Z3S/ZR1S trip <br> EF or DEF back-up trip SOTF/Stub trip <br> BU reclose block <br> Related CB trip for CBF <br> Rec output for bus CB <br> Rec output for center CB <br> VTF alarm, Carrier channel failure <br> External carrier send command <br> -- | $\begin{gathered} 240,243 \\ 241,244 \\ 242,245 \\ 231,148,160 \\ 153,156,192,162,165 \\ , 189 \\ 187 \\ 183,182 \\ 195 \\ 200 \\ 291 \\ 292 \\ 172,253 \\ \\ 225 \\ -- \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$ |
|  | IO\#3 | BO1 <br> BO2 <br> BO3 <br> BO4 <br> BO5 <br> BO6 <br> BO7 <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 <br> BO14 | TB5: A2-A1 A2-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-B6 A7-B7 A8-B8 A9-B9 A10-B10 A11-B11 A12-B12 A13-B13 | TRIP-A1 TRIP-B1 TRIP-C1 TRIP-A1 TRIP-B1 TRIP-C1 TRIP-A2 TRIP-B2 TRIP-C2 TRIP-A2 TRIP-B2 TRIP-C2 TRIP-OR TRIP-OR | Trip O/P for bus CB Trip O/P for center CB Trip O/P or Trip O/P or | $\begin{aligned} & 240 \\ & 241 \\ & 242 \\ & 240 \\ & 241 \\ & 242 \\ & 243 \\ & 244 \\ & 245 \\ & 243 \\ & 244 \\ & 245 \\ & 238 \\ & 238 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
|  | IO\#4 | BO1 <br> BO2 <br> BO3 <br> BO4 <br> BO5 <br> BO6 <br> BO7 <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 <br> BO14 | TB3: A2-A1 A2-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-B6 A7-B7 A8-B8 A9-B9 A10-B10 A11-B11 A12-B12 A13-B13 | Z1G_TRIP Z2G_TRIP Z3G_TRIP Z1S_TRIP Z2S_TRIP Z3S_TRIP STUB_TRIP SOTF_TRIP EF_BU-TRIP ZR1G_TRIP ZR1S_TRIP CBF_DET DEFCR/WICAR_ TRIP ARC1/2 | Z1G trip Z2G trip Z3G trip Z1S trip Z2S trip Z3S trip Stub trip SOTF trip EF or DEF back-up trip Z4G back-up trip ZR1S trip CBF Detection DG/WEAK carrier trip Rec output for bus/center CB | 148 153 156 160 162 165 182 183 187 192 189 199 232,233 291,292 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |

Binary Output Default Setting List (8)

| Relay Model | $\begin{array}{\|c\|} \hline \text { Module } \\ \text { Name } \end{array}$ | BO No. | Terminal No. | Signal Name | Contents | Setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Signal No. | LOGIC (OR:1, AND:2) | $\begin{gathered} \text { TIMER } \\ (\mathrm{OFF}: 0, \mathrm{ON}: 1) \\ \hline \end{gathered}$ |
| $\begin{array}{\|l} \mid \text { GRZ100 } \\ -401 \end{array}$ | IO\#2 | BO 1 <br> BO 2 <br> BO 3 <br> BO 4 <br> $\mathrm{BO5}$ <br>  <br> $\mathrm{BO6}$ <br> $\mathrm{BO7}$ <br> $\mathrm{BO8}$ <br> $\mathrm{BO9}$ <br> BO10 <br> BO11 <br> BO12 <br> BO13 <br> (FAIL) | TB2: <br> A2-A1 <br> A2-B1 <br> A2-B2 <br> A3-B3 <br> A4-B4 <br>  <br> A5-B5 <br> A6-B6 <br> A7-B7 <br> A8-B8 <br> A9-B9 <br> A10-B10 <br> A11-B11 <br> A13-B13 <br> A12-B12 | TRIP-A1 <br> TRIP-B1 <br> TRIP-C1 <br> CAR/Z1G/Z1S_ <br> TRIP <br> Z2G/Z3G/ZR1G/ <br> Z2S/Z3S/ZR1S _ <br> TRIP <br> EF_BU-TRIP <br> SOTF/STUB_TRIP <br> BURECLK <br> CBF_TRIP <br> ARC1 <br> VTF_ALARM,CHF <br> CBF_DET <br> EXT_CAR-S <br> RELAY FAILURE | Trip O/P for bus CB <br> Trip O/P for bus CB <br> Trip O/P for bus CB <br> Distance or DG carrier/Z1G/ <br> Z1S trip <br> Z2G/Z3G/Z4G Back-up/ <br> Z2S/Z3S/ZR1S trip <br> EF or DEF back-up trip SOTF/Stub trip <br> BU reclose block <br> Related CB trip for CBF <br> Rec output for bus CB <br> VTF alarm, Carrier channel failure <br> CBF Detection <br> External carrier send command $\qquad$ | $\begin{gathered} 240 \\ 241 \\ 242 \\ 231,148,160 \\ 153,156,192,162,165 \\ , 189 \\ 187 \\ 183,182 \\ 195 \\ 200 \\ 291 \\ 172,253 \\ 199 \\ 225 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
|  | IO\#4 | BO 1 BO 2 BO BO BO BO BO BO BO | TB3: <br> A1-B1 <br> A2-B2 <br> A3-B3 <br> A4-B4 <br> A10-B10 <br> A11-B11 <br> A12-B12 <br> A13-B13 | $\begin{aligned} & \text { FD } \\ & \text { FD } \\ & \text { TRIP-A1 } \\ & \text { TRIP-B1 } \\ & \text { TRIP-C1 } \\ & \text { TRIP-A1 } \\ & \text { TRIP-B1 } \\ & \text { TRIP-C1 } \end{aligned}$ | FD trip "OR" <br> FD trip "OR" <br> Trip O/P for bus CB | $\begin{aligned} & 250 \\ & 250 \\ & 240 \\ & 241 \\ & 242 \\ & 240 \\ & 241 \\ & 242 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
|  | IO\#3 | $\begin{aligned} & \mathrm{BO} 1 \\ & \mathrm{BO} 2 \\ & \mathrm{BO} 3 \\ & \mathrm{BO} 4 \\ & \mathrm{BO} 10 \\ & \mathrm{BO} 11 \\ & \mathrm{BO} 12 \\ & \mathrm{BO} 13 \\ & \mathrm{BO} 14 \\ & \hline \end{aligned}$ | TB5: A2-A1 A2-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-B6 A7-B7 A8-B8 A9-B9 A10-B10 A11-B11 A12-B12 A13-B13 | Z1G_TRIP Z2G_TRIP Z3G_TRIP Z1S_TRIP Z2S_TRIP Z3S_TRIP STUB_TRIP SOTF_TRIP EF_BU-TRIP ZR1G_TRIP ZR1S_TRIP CBF_DET DEFCR/WICAR _ TRIP ARC1 | Z1G trip Z2G trip Z3G trip Z1S trip Z2S trip Z3S trip Stub trip SOTF trip EF or DEF back-up trip Z4G back-up trip ZR1S trip CBF Detection DG/WEAK carrier trip Rec output for bus CB | $\begin{gathered} 148 \\ 153 \\ 156 \\ 160 \\ 162 \\ 165 \\ 182 \\ 183 \\ 187 \\ 192 \\ 189 \\ 199 \\ 232,233 \\ \\ 291 \\ \hline \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |

Binary Output Default Setting List (9)

| Relay Model | Module Name | BO No. | Terminal No. | Signal Name | Contents | Setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Signal No. | LOGIC (OR:1, AND:2) | $\begin{gathered} \text { TIMER } \\ (\mathrm{OFF}: 0, \mathrm{ON}: 1) \\ \hline \end{gathered}$ |
| $\begin{aligned} & \text { GRZ100 } \\ & -501 \end{aligned}$ | IO\#2 | BO1 <br> BO2 <br> BO3 <br> BO4 <br> BO5 <br>  <br> BO6 <br> BO7 <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 <br> (FAIL) | TB2: <br> A2-A1 <br> A2-B1 <br> A2-B2 <br> A3-B3 <br> A4-B4 <br> A5-B5 <br> A6-B6 <br> A7-B7 <br> A8-B8 <br> A9-B9 <br> A10-B10 <br> A11-B11 <br> A13-B13 <br> A12-B12 | TRIP-A1,2 <br> TRIP-B1,2 <br> TRIP-C1,2 <br> CAR/Z1G/Z1S_ <br> TRIP <br> Z2G/Z3G/ZR1G/ <br> Z2SIZ3S/ZR1S _ <br> TRIP <br> EF_BU-TRIP <br> SOTF/STUB_TRIP <br> BURECLK <br> CBF_TRIP <br> ARC1 <br> ARC2 <br> VTF_ALARM,CHF <br> EXT_CAR-S <br> RELAY FAILURE | Trip O/P for bus/center CB <br> Trip O/P for bus/center CB <br> Trip O/P for bus/center CB <br> Distance or DG carrier/Z1G/ <br> Z1S trip <br> Z2G/Z3G/Z4G Back-up/ <br> Z2S/Z3S/ZR1S trip <br> EF or DEF back-up trip SOTF/Stub trip <br> BU reclose block <br> Related CB trip for CBF <br> Rec output for bus CB <br> Rec output for center CB <br> VTF alarm, Carrier channel <br> failure <br> External carrier send command <br> -- | $\begin{gathered} 240,243 \\ 241,244 \\ 242,245 \\ 231,148,160 \\ 153,156,192,162,165 \\ , 189 \\ 187 \\ 183,182 \\ 195 \\ 200 \\ 291 \\ 292 \\ 172,253 \\ \\ 225 \\ -- \end{gathered}$ |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$ |
|  | IO\#4 | $\begin{aligned} & \mathrm{BO1} \\ & \mathrm{BO} 2 \\ & \mathrm{BO} \\ & \mathrm{BO} \\ & \mathrm{BO5} \\ & \mathrm{BO6} \\ & \mathrm{BO} \\ & \mathrm{BO8} \end{aligned}$ | TB3: A1-B1 A2-B2 A3-B3 A4-B4 A10-B10 A11-B11 A12-B12 A13-B13 | FD FD TRIP-A1,2 TRIP-B1,2 TRIP-C1,2 TRIP-A1,2 TRIP-B1,2 TRIP-C1,2 | FD trip "OR" FD trip "OR" <br> Trip O/P for bus/center CB | 250 250 240,243 241,244 242,245 240,243 241,244 242,245 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
|  | IO\#3 | BO1 <br> BO2 <br> BO3 <br> BO4 <br> BO5 <br> BO6 <br> BO7 <br> BO8 <br> BO9 <br> BO10 <br> BO11 <br> BO12 <br> BO13 <br> BO14 | TB5: A2-A1 A2-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-B6 A7-B7 A8-B8 A9-B9 A10-B10 A11-B11 A12-B12 A13-B13 | Z1G_TRIP <br> Z2G_TRIP <br> Z3G_TRIP <br> Z1S_TRIP <br> Z2S_TRIP <br> Z3S_TRIP <br> STUB_TRIP <br> SOTF_TRIP <br> EF_BU-TRIP <br> ZR1G_TRIP <br> ZR1S_TRIP <br> CBF_DET <br> DEFCR/WICAR_ <br> TRIP <br> ARC1/2 | Z1G trip Z2G trip Z3G trip Z1S trip Z2S trip Z3S trip Stub trip SOTF trip EF or DEF back-up trip Z4G back-up trip ZR1S trip CBF Detection DG/WEAK carrier trip Rec output for bus/center CB | $\begin{gathered} 148 \\ 153 \\ 156 \\ 160 \\ 162 \\ 165 \\ 182 \\ 183 \\ 187 \\ 192 \\ 189 \\ 199 \\ 232,233 \\ \\ 291,292 \\ \hline \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |

## Appendix E

Details of Relay Menu and LCD \& Button Operation

| MENU <br> 1=Record <br> 3=Setting(view) <br> 5=Test |
| :--- |
|  |
| 11 Record <br> 1=Fault record <br> 3=Disturbance record <br> 5=Autoreclose count 2=Status <br> 4=Setting(change) |



l3 Reset autoreclose count

$1=C B 1$$\quad$| /3 Reset autoreclose count |
| :--- |
| Reset count ? |
| ENTER=Yes CANCEL=No |




| /3 Protection | (Group 1) |
| :--- | :--- |
| 1=Line parameter |  |
| 2=Trip |  |




| 14 Trip <br> 1=Protection scheme <br> $2=$ Scheme switch <br> $3=P r o t e c t i o n ~ e l e m e n t ~$ | (Group 1) |
| :--- | :--- |






| /6 OC, DEF\&UV 3/14 |  |  |  |
| :---: | :---: | :---: | :---: |
| OCH | 2.0 A ) | TPSB | 40 ms ) |
| OCBF ( | 0.5 A ) | TBF1 ( | 50 ms ) |
| TBF2 ( | 50 ms ) | DEFFI ( | 0.5 A) |



| $/ 6$ Synchrocheck |  | $3 / 9$ |  |  |
| :--- | :--- | :--- | :--- | :--- |
| OVB $($ | $51 \vee$ | UVB | $(13 \vee$ | $)$ |
| OVL1 $($ | $51 \vee$ | $)$ | UVL1 $($ | $13 \vee$ |$)$


| 13 Protection <br> 1=Line parameter <br> 2=Trip <br> 3=Autoreclose relay | (Group 2) |
| :--- | :--- |
|  |  |
| 13 Protection <br> 1=Line parameter <br> 2=Trip <br> 3=Autoreclose relay |  |

a-1 a-

| /2 Binary input | $3 / 18$ |
| :--- | :--- |
| BISW1 | 1=Norm |
| =Inv | 1 |
| BISW2 | 1=Norm |
| EInv | 1 |
| BISW3 | 1=Norm |
|  | $=$ Inv |



Password trap

4 : Confirmation trap

a-1 a-3




LCD AND BUTTON OPERATION INSTRUCTION


## Appendix F

## Case Outline

- Case Type-A: Flush Mount Type
- Case Type-B: Flush Mount Type
- Case Type-A, B: Rack Mount Type


Case Type-A: Flush Mount Type for Model 101, 102, 201, 204, 301


Case Type-B: Flush Mount Type for Model 202, 203, 205, 206, 302, 303, 401, 501


Top View

4 HOLES - $6.8 \times 10.3$


Front View

Rack Mount Type: Case Type-A for Model 101, 102, 201, 204, 301


Rack Mount: Case Type-B for Model 202, 203, 205, 206, 302, 303, 401, 501


Dimensions of Attachment Kit EP-101


(a) Large Bracket

(b) Small Bracket

| $\stackrel{\infty}{\sim}$ | $\bigcirc$ |  | $\bigcirc$ |
| :---: | :---: | :---: | :---: |
|  |  | 326 |  |

(c) Bar for Top and Bottom of Relay

|  | Parts |
| :--- | :--- |
| (a) | 1 Large bracket, 5 Round head screws with spring washers and washers (M4×10) |
| (b) | 1 Small bracket, 3 Countersunk head screws (M4x6) |
| (c) | 2 Bars, 4 Countersunk head screws (M3x8) |

## How to Mount Attachment Kit for Rack-Mounting

Caution: Be careful that the relay modules or terminal blocks, etc., are not damage while mounting. Tighten screws to the specified torque according to the size of screw.

Step 1.


Step 2.


Step 3

Remove case cover.

Remove the left and right brackets by unscrewing the three screws respectively, then remove two screws on left side of the relay.
And then, remove four seals on the top and bottom of the relay.

Mount the small bracket by screwing three countersunk head screws(M4x6) and apply adhesives to the screws to prevent them from loosening.
Mount the large bracket by five round head screws(M4×10) with washer and spring washer.
And then, mount the top and bottom bars by two countersunk head screws(M3x8) respectivelv.
$\widetilde{S}_{\text {Small bracket }}$

Completed.

## Appendix G

Typical External Connections



| IO module |  |
| :--- | :--- |
| IO\#1 | IO1 |
| IO\#2 | IO2 |
| IO\#3 | IO3 |



Terminal Block Arrangement (Rear view) (*2) Model 102 is not provided with $10 \# 3$.

Model 101/102











## Appendix H

# Relay Setting Sheet 

- Relay Identification

Transmission line parameters
Distance scheme
Autoreclose scheme

- Contacts setting
- Relay and Protection Scheme Setting Sheets
- PLC default setting


## Relay Setting Sheets

1. Relay Identification

| Relay type |
| :--- |
| Frequency |
| VT rating |
| Password |
| Active setting group |

2. Transmission line parameters

| Line type |  |
| :--- | :--- |
| Line impedance | $\underline{\mathrm{Z1}=}$ |
|  | $\underline{\mathrm{Zm}=}$ |
| VT ratio |  |
| Tripping mode | $1+3$ phase $/ 3$ phase |

3. Distance scheme

| Basic (3zone) |  |
| :--- | :--- |
| Zone 1 extension | - |
| PUP | $\square$ |
| POP | $\square$ |
| UOP | $\square$ |
| BOP | $\square$ |
| POP + DEF | $\square$ |
| UOP + DEF | $\square$ |
| BOP + DEF | $\square$ |
| PUP + DEF |  |

4. Autoreclose scheme

Not used
SPAR
SPAR + TPAR
TPAR
EX1P (external autoreclose SPAR + TPAR scheme)
EX3P (external autoreclose TPAR scheme)
1CB or 2CB reclosing
Multi-shot autoreclose
1 shot, 2 shots, 3 shots or 4 shots

## Date:

Serial Number
CT rating
dc supply voltage

Line length

Z0 (mutual) $=$

CT ratio


## 5. Contacts setting

| (1) IO\#2 | B01 |
| :---: | :---: |
|  | BO2 |
|  | BO3 |
|  | B04 |
|  | B05 |
|  | B06 |
|  | B07 |
|  | B08 |
|  | B09 |
|  | B010 |
|  | B011 |
|  | BO12 |
|  | B013 |
| (2) 10\#3 | BO1 |
|  | BO2 |
|  | B03 |
|  | B04 |
|  | B05 |
|  | B06 |
|  | B07 |
|  | B08 |
|  | B09 |
|  | B010 |
|  | B011 |
|  | B012 |
|  | B013 |
|  | B014 |
| (3) 10\#4 | B01 |
|  | B02 |
|  | B03 |
|  | B04 |
|  | B05 |
|  | B06 |
|  | B07 |
|  | B08 |
|  | B09 |
|  | B010 |
|  | B011 |
|  | B012 |
|  | B013 |
|  | B014 |

(Memo: For relay elements and scheme logic settings, the setting list as shown on the next page is made.)

## 6. Default setting

Relay and protection scheme setting sheet


Relay and protection scheme setting sheet


Relay and protection scheme setting sheet

| № | Name |  | Range |  | Units | Contents <br> Relay model | Default Seting of Relay Seies（5A rating／1A rating） |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{\|c\|} \hline \text { User } \\ \hline \text { Setting } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | NO－ARC，${ }^{\text {NO－FD }}$ | 1CB－ARC，NOFD |  |  | 2CB－ARC，No．fD |  |  | 1CB－ARC，FD 2 CBARC，FD |  | 1CB－ARC，NOFD |  |  |  |
|  |  |  | 5 Arating | 1 A raing |  |  | 101 | 102 | 201 | 202 | 203 | 301 | 302 | 303 | 401 | 501 | 204 | 205 | 206 |  |
| 133 | ZG | 216 |  |  | 0．01－50．00 |  | 0．10－250．00 | $\Omega$ | Z16 reactance |  |  |  |  |  | 崖 8.00 |  |  |  |  |  | ．6018．00 |  |  |
| 134 |  | Z1XG | 0．01－50．00 | 0．10－250．00 |  | $\Omega$ | Z1XG reactance |  |  |  |  |  | ／12．00 |  |  |  |  |  | 40／12．00 |  |  |
| 135 |  | Z1601 | 0－45 |  | deg | Z1G angle with reference to an $X$－ axis | 0 |  |  |  |  |  |  |  |  |  |  | 0 |  |  |
| 136 |  | Z1602 | 45－90 |  | deg | Angle for Z1G hooked point with <br> reference to an Raxis | 90 |  |  |  |  |  |  |  |  |  | 90 |  |  |  |
| 137 |  | BFRIG | 0．10－20．00 | 0．5－100．0 | $\Omega$ | Blinder for $215 \mathrm{foward}(R)$ | $5.10 / 25.5$ |  |  |  |  |  |  |  |  |  | $5.10 / 25.5$ |  |  |  |
| 138 |  | BFRXG | 0．10－20．00 | 0．5－100．0 | $\Omega$ | Binderfor Z1XS foward（R） | $5.10 / 25.5$ |  |  |  |  |  |  |  |  |  | $5.10 / 25.5$ |  |  |  |
| 139 |  | 22G | 0．01－50．00 | 0．10－250．00 | $\Omega$ | Z2G reactance | $4.00 / 20.00$ |  |  |  |  |  |  |  |  |  | $4.00 / 20.00$ |  |  |  |
| 140 |  | BFR2G | 0．10－20．00 | 0．5－100．0 | $\Omega$ | Blinder for 225 foward（R） | $5.10 / 25.5$ |  |  |  |  |  |  |  |  |  | $5.10 / 25.5$ |  |  |  |
| 141 |  | ZFG | 0．01－100．00 | $0.1-500.0$ | $\Omega$ | ZFG reatance | $6.00 / 30.0$ |  |  |  |  |  |  |  |  |  | $6.00 / 30.00$ |  |  |  |
| 142 |  | BFPFG | 0．10－20．00 | 0．5－100．0 | $\Omega$ | Blinder for ZFS foward（R） | $5.10 / 25.5$ |  |  |  |  |  |  |  |  |  | $5.10 / 25.5$ |  |  |  |
| 143 |  | 236 | 0．01－100．00 | 0．1－500．0 | $\Omega$ | 236 mho | $8.0 / 40.0$ |  |  |  |  |  |  |  |  |  | 8.0140 .0 |  |  |  |
| 144 |  | Z360 | 45－90 |  | deg | Line angle for Z3s（Mho）element | 85 |  |  |  |  |  |  |  |  |  | 85 |  |  |  |
| 145 |  | ZBG日 | 0－45 |  | deg | Angle of direction（Quad）lement | 30 |  |  |  |  |  |  |  |  |  | 30 |  |  |  |
| 146 |  | BFRG | 0．10－20．00 | 0．5－100．0 | $\Omega$ | Blindef for ZG foward（R） | $5.10 / 25.5$ |  |  |  |  |  |  |  |  |  | $5.10 / 25.5$ |  |  |  |
| 147 |  | BFRGE | 75 （fixec） |  | deg | Angle of BFRG | － |  |  |  |  |  |  |  |  |  | － |  |  |  |
| 148 |  | BFLG | 0 （fixed） |  | $\Omega$ | Blinder for ZG foward（R） | － |  |  |  |  |  |  |  |  |  | － |  |  |  |
| 149 |  | BFLGO | 90－135 |  | deg | Angle of BFLG | 120 |  |  |  |  |  |  |  |  |  | 120 |  |  |  |
| 150 |  | ZR1G | $0.01-50.00$ $0.1-250.0$ |  | $\Omega$ | ZR1G reactance | $2.00 / 10.0$ |  |  |  |  |  |  |  |  |  | $2.00 / 10.00$ |  |  |  |
| 151 |  | ZR2G | 0．01－100．00 00.1 － 500.0 |  | $\Omega$ | ZR2G reactance | $4.00 / 20.0$ |  |  |  |  |  |  |  |  |  | $4.00 / 20.00$ |  |  |  |
| 152 |  | 246 | $0.01-100.00$ $0.1-500.0$ |  | $\Omega$ | Z46 mho | $8.00 / 40.0$ |  |  |  |  |  |  |  |  |  | $8.00 / 40.0$ |  |  |  |
| 153 |  | Z460 | $45-90$ |  | deg | Line angle for Z4G（Mho）element | －（Linked with Z3G日） |  |  |  |  |  |  |  |  |  | －（LinkedwithZ3G日） |  |  |  |
| 154 |  | Z4BGE | 0－45 |  | deg | Angle of Z4G（Quad）offet | －（Sinked with ZBGE） |  |  |  |  |  |  |  |  |  | －（Linked with ZBGe） |  |  |  |
| 155 |  | BRRG | $0.10-20.00$ $0.5-100.0$ |  | $\Omega$ | Blinder forzG reverse（R） | $5.10 / 25.5$ |  |  |  |  |  |  |  |  |  | $5.10 / 25.5$ |  |  |  |
| 156 |  | BRRGE | 75 （fixed） |  | deg | Angle of BRRG | － |  |  |  |  |  |  |  |  |  | － |  |  |  |
| 157 |  | BRLG | $0.10-20.00$ $0.5-100.0$ |  | $\Omega$ | Blindef for ZG reverse（R） | －（Linked with BRRG） |  |  |  |  |  |  |  |  |  | －（Linked with BRRG） |  |  |  |
| 158 |  | BRLGE | 90－135 |  | deg | Angle of BRLG | －（Linked with BFLGE） |  |  |  |  |  |  |  |  |  | －（Linked with BFLG日） |  |  |  |
| 159 |  | Kis | 0－1000 |  | \％ | Zero phase curent factor．Self line ＂ROR1＂ | 340 |  |  |  |  |  |  |  |  |  | 340 |  |  |  |
| 160 |  | Kxs | 0－1000 |  | \％ | $\begin{aligned} & \hline \text { Zero phase current factor. Seff line } \\ & \text { "Xoxx1" } \end{aligned}$ | 340 |  |  |  |  |  |  |  |  |  | 340 |  |  |  |
| 161 |  | Km | 0－1000 |  | \％ | Zero phase curent factor：Adjacent <br> line＂Rom／R1＂ | 300 |  |  |  |  |  |  |  |  |  | 300 |  |  |  |
| 162 |  | kxm | 0－1000 |  | \％ | Zero phase curent factor：Adjacent <br> line＂XomX1＂ | 300 |  |  |  |  |  |  |  |  |  | 300 |  |  |  |
| 163 |  | KsR | 0－1000 |  | \％ | Zero phase current factor for ZR <br> element：Seff line＂RORR1＂ | 100 |  |  |  |  |  |  |  |  |  | 100 |  |  |  |
| 164 |  | KxsR | 0－1000 |  | \％ | Zero phase curent factor for Zr <br> element：Self line＂X0XX1＂ | 100 |  |  |  |  |  |  |  |  |  | 100 |  |  |  |
| 165 |  | ZNDG | $0.01-100.00$ $0.1-500.0$ |  | $\Omega$ | ZNDG | $10.00 / 50.0$ |  |  |  |  |  |  |  |  |  | 10．00／50．0 |  |  |  |
| 166 |  | BNDG | $\begin{array}{rl}0.10-20.00 & 0.5-100.0\end{array}$ |  | $\Omega$ | Blinder for ZNDG | 12．00／60．0 |  |  |  |  |  |  |  |  |  | 12．00／60．0 |  |  |  |
| 167 |  | TZ1G | $0.00-10.00$ |  | s | z1G timededay tip | 0.00 |  |  |  |  |  |  |  |  |  | 0.00 |  |  |  |
| 168 |  | TZ2G | 0．00－10．00 |  | s | Z2G back－pptip timer | 0.30 |  |  |  |  |  |  |  |  |  | 0.30 |  |  |  |
| 169 |  | TZFG | 0．00－10．00 |  | s | ZFG back－lp tip timer | 0.35 |  |  |  |  |  |  |  |  |  | 0.35 |  |  |  |
| 170 |  | TZ3G | $0.00-10.00$ |  | s | Z3G back－pptip timer | 0.40 |  |  |  |  |  |  |  |  |  | 0.40 |  |  |  |
| 171 |  | TZR1G | 0．00－10．00 |  | s | ZR1G back－up tip timer | 0.50 |  |  |  |  |  |  |  |  |  | 0.50 |  |  |  |
| 172 |  | TZR2G | 0．00－10．00 |  | s | ZR2G back－up tip timer | 0.60 |  |  |  |  |  |  |  |  |  | 0.60 |  |  |  |
| 173 |  | TZNDG | 0．00－10．00 |  | s | Non－diriectional zone tip timer | 0.70 |  |  |  |  |  |  |  |  |  | 0.70 |  |  |  |
| 174 |  | ZIC | $0.00-5.00$ $0.00-1.00$ |  | A | Charging curent compensation | 0.00 |  |  |  |  |  |  |  |  |  | 0.00 |  |  |  |
| 175 |  | V | 100－120 |  | v | Rated voltage | 110 |  |  |  |  |  |  |  |  |  | 110 |  |  |  |
| 176 | ZPCC | ZPCC | 0.8 （Sensitivity ratio） |  | － | Zero phase curent | － |  |  |  |  |  |  |  |  |  | － |  |  |  |
| 177 |  | OCG | $0.2(f i x e d)$ 0.04 （fixed） <br> 0  |  | A | compensation controller | － |  |  |  |  |  |  |  |  |  | － |  |  |  |
| 178 | PSB | PSBSZ | $0.50-15.00$ $2.5-75.0$ |  | $\Omega$ | Power swing block for Ph．ph | 2.001100 |  |  |  |  |  |  |  |  |  | $2.00 / 10.0$ |  |  |  |
| 179 |  | PSBGZ | $0.50-15.00$ $2.5-75.0$ |  | $\Omega$ | Power swing block for Ph－G | $2.00 / 10.0$ |  |  |  |  |  |  |  |  |  | $2.00 / 10.0$ |  |  |  |
| 180 |  | PSBRA | 75 （fixec） |  | deg | ditto | ， |  |  |  |  |  |  |  |  |  | － |  |  |  |
| 181 |  | PSBLE | 105 （fixeca） |  | deg | ditto | － |  |  |  |  |  |  |  |  |  | － |  |  |  |
| 182 |  | TPSB | 20－60 |  | ms | PS detection timer | 40 |  |  |  |  |  |  |  |  |  | 40 |  |  |  |
| 183 | OST | OSTR1 | $3.0-30.0$ $15-150$ |  | $\Omega$ | Out of step reay |  |  |  |  |  | $1 / 25$ |  |  |  |  |  | $5.1 / 25$ |  |  |
| 184 |  | OSTR2 | $1.0-10.0$ $5-50$ |  | $\Omega$ | ditto |  |  |  |  |  | $5 / 12$ |  |  |  |  |  | $2.5 / 12$ |  |  |
| 185 |  | OSTXF | $10 \cdot 50.0$ $5-250$ |  | $\Omega$ | ditto |  |  |  |  |  | $0 / 30$ |  |  |  |  |  | 6.0130 |  |  |
| 186 |  | OSTXB | $0.2-10.0$ $1-50$ |  | $\Omega$ | ditto |  |  |  |  |  | 0／5 |  |  |  |  |  | $1.0 / 5$ |  |  |
| 187 |  | TOST1 | 0．01－1．00 |  | s | ditio |  |  |  |  |  | 0.04 |  |  |  |  |  | 0.04 |  |  |
| 188 |  | TOST2 | 0．01－1．00 |  | s | dito |  |  |  |  |  | 0.04 |  |  |  |  |  | 0.04 |  |  |
| 189 | OCH |  | 2．0－15．0 $0.4-3.0$ |  | A | Overcurnent lement |  |  |  |  |  | ／1．2 |  |  |  |  |  | 6．0／1．2 |  |  |
| 190 | TSOTF |  |  |  | s | CB open detect timer for SOTF |  |  |  |  |  | 5 |  |  |  |  |  | 5 |  |  |
| 191 | CBF | OCBF | 0．5－10．0 | 0．1－2．0 | A | Overcurente element |  |  |  |  |  | ／0．8 |  |  |  |  |  | 4.010 .8 |  |  |
| 192 |  | TBF1 |  |  | ms | CBF fimer for retip |  |  |  |  |  | 150 |  |  |  |  |  | 150 |  |  |
| 193 |  | TBF2 |  |  | ms | CBF timer for related tip |  |  |  |  |  | 200 |  |  |  |  |  | 200 |  |  |
| 194 |  | CD | 0.5 （fixed） | 0.1 （fixed） | A | Oir．change defector |  |  |  |  |  | － |  |  |  |  |  | － |  |  |
| 195 |  | CCR | 0.4 （fixed） | 0.08 （fixec） | A | OCelement |  |  |  |  |  | － |  |  |  |  |  | － |  |  |

Relay and protection scheme setting sheet


Relay and protection scheme setting sheet

| № | Name | Range | Units | Contents | Default Setting of Relay Series(5A rating / 1A rating) |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \hline \text { User } \\ \hline \text { Setting } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | NO-ARC,NO-FD |  | 1CB-ARC, $\mathrm{NO}-\mathrm{FD}$ |  |  | 2 CB -ARC,NO-FD |  |  | 1CB-ARC,FD 2 CBARC,FD |  | 1CB-ARC, NO-FD |  |  |  |
|  |  | 5Arating $\quad 1$ Arating |  | Relay model | 101 | 102 | 201 | 202 | 203 | 301 | 302 | 303 | 401 | 501 | 204 | 205 | 206 |  |
| 264 | TDEFF | 0.00-0.30 | s | DEF carier tip delay timer | 0.15 |  |  |  |  |  |  |  |  |  | 0.15 |  |  |  |
| 265 | TDEFR | 0.00-0.30 | s | ditto | 0.15 |  |  |  |  |  |  |  |  |  | 0.15 |  |  |  |
| 266 | TCHD | 0-50 | ms | Coordination timer | 12 |  |  |  |  |  |  |  |  |  | 12 |  |  |  |
| 267 | TREBK | 0.00-10.00 | s | Ourentr reverse blocking time | 0.10 |  |  |  |  |  |  |  |  |  | 0.10 |  |  |  |
| 268 | TECCB | 0.00-200.00 | s | Echo enable timer from CB open | 0.10 |  |  |  |  |  |  |  |  |  | 0.10 |  |  |  |
| 269 | TSBCT | 0.00-1.00 | s | SBCNT timer | 0.10 |  |  |  |  |  |  |  |  |  | 0.10 |  |  |  |
| 270 | Autoreclose mode | (Off) - Disable -SPAR - TPAR-SPAR\&TPAR-EXT1P-EXT3P | - | Autoreclosing mode | SPAR\&TPAR |  |  |  |  |  |  |  |  |  | SPAR\&TPAR |  |  |  |
| 271 | ARCCB | ONE-01-02-L1-L2 | - | ARC mode for 1.5CB system | - |  |  | - |  |  | L1 |  | - | L1 |  | - |  |  |
| 272 | ARCEXT | Off-On | - | ARC initiated by ext. tip | - |  | Off |  |  |  |  |  |  |  | Off |  |  |  |
| 273 | ARCDEF | Off-On | - | $\begin{aligned} & \text { ARC by DG carr. tip } \\ & \hline \text { ARC by back-up tipp } \end{aligned}$ | - |  | Off |  |  |  |  |  |  |  | Off |  |  |  |
| 274 | ARCBU | Off-On |  |  | - |  | Off |  |  |  |  |  |  |  | Off |  |  |  |
| 275 | VCHK | Off-LB-DB-SY | - | ARC by back-up lip | - |  | LB |  |  | - |  |  | LB | - | LB |  |  |  |
| 276 | 产 ${ }^{\text {a }}$ | Off-LB1-LB2-DB-SY |  |  | - |  |  |  |  | LB1 |  |  | - | LB1 | - |  |  |  |
| 271 | ARCSM | Off-S2-S3-54 | - | Multi. shot ARC mode | - |  | Off |  |  |  |  |  |  |  | Off |  |  |  |
| 278 | ARCSUC | Off-On | - | ARC success reset | - |  | Off |  |  |  |  |  |  |  | Off |  |  |  |
| 279 | VTPHSEL | A-B-C | - | VT phase selection | - |  | A |  |  |  |  |  |  |  | A |  |  |  |
| 280 | VT-RATE | PHG - PHPH | - | VT rating | - |  | PHVG |  |  |  |  |  |  |  | PHG |  |  |  |
| 281 | 3PH-VT | Bus - Line | - | 3ph. VT location | - |  | Line |  |  |  |  |  |  |  | Line |  |  |  |
| 282 | UARCSW | P1-P2-P3 | - | User ARC switch | - |  | NA |  |  |  |  |  |  |  | NA |  |  |  |
| 283 | TEVLV | 0.01-10.00 | s | Dead timer reset timing | - |  | 0.30 |  |  |  |  |  |  |  | 0.30 |  |  |  |
| 284 | TRDY1 | 5-300 | s | Reclaimtimer | - |  | 60 |  |  |  |  |  |  |  | 60 |  |  |  |
| 285 | TSPR1 | 0.01-10.00 | s | SPAR dead line timer | - |  | 0.80 |  |  |  |  |  |  |  | 0.80 |  |  |  |
| 286 | TTPR1 | 0.01-100.00 | s | TPAR dead line timer | - |  | 0.60 |  |  |  |  |  |  |  | 0.60 |  |  |  |
| 287 | TRR | 0.01-100.00 | s | ARC reset timer | - |  | 2.00 |  |  |  |  |  |  |  | 2.00 |  |  |  |
| 288 | TW1 | 0.1-10.0 | s | ARC output pulse timer | - |  | 0.2 |  |  |  |  |  |  |  | 0.2 |  |  |  |
| 289 | TRDY2 | 5-300 | s | Reclaimtimer | - |  |  | - |  |  | 60 |  | - | 60 | - |  |  |  |
| 290 | TSPR2 | 0.01-10.00 | s | SPAR dead line timer | - |  |  | - |  |  | 0.80 |  | - | 0.80 | - |  |  |  |
| 291 | TTPR2 | 0.1-10.0 | s | ARC timing for follower CB | - |  |  | - |  |  | 0.1 |  | - | 0.1 | - |  |  |  |
| 292 | TW2 | 0.1-10.0 | s | ARC reset timer | - |  |  | - |  |  | 0.2 |  | - | 0.2 | - |  |  |  |
| 293 | TS2 | 5.0-300.0 | s | Multi. shot dead timer | - |  | 20.0 |  |  |  |  |  |  |  | 20.0 |  |  |  |
| 294 | TS2R | 5.0-300.0 | s | Multi. shot reset timer | - |  | 30.0 |  |  |  |  |  |  |  | 30.0 |  |  |  |
| 295 | TS3 | 5.0-300.0 | s | Multi. shot dead timer | - |  | 20.0 |  |  |  |  |  |  |  | 20.0 |  |  |  |
| 296 | TS3R | 5.0-300.0 | s | Multi. shot reset timer | - |  | 30.0 |  |  |  |  |  |  |  | 30.0 |  |  |  |
| 297 | TS4 | 5.0-300.0 | s | Multi. shot dead timer | - |  | 20.0 |  |  |  |  |  |  |  | 20.0 |  |  |  |
| 298 | TS4R | 5.0-300.0 | s | Multi. shot reset timer | - |  | 30.0 |  |  |  |  |  |  |  | 30.0 |  |  |  |
| 299 | TSUC | 0.1-10.0 | s | ARC success reset timer | - |  | 3.0 |  |  |  |  |  |  |  | 0.80 |  |  |  |
| 300 | OVB | 10-150 | V | OV element | - |  | $\overline{51}$ |  |  |  |  |  |  |  | 51 |  |  |  |
| 301 | UB | 10-150 | V | UV element | - |  |  |  |  |  | 13 |  |  |  |  | 13 |  |  |
| 302 | OVL1 | 10-150 | V | OV element | - |  |  |  |  |  | 51 |  |  |  |  | 51 |  |  |
| 303 | UL1 | 10-150 | V | UV element | - |  |  |  |  |  | 13 |  |  |  |  | 13 |  |  |
| 304 | SYN1 SY1U | 10-150 | V | Synchro. check (W) | - |  |  |  |  |  | 83 |  |  |  |  | 83 |  |  |
| 305 | SY10V | 10-150 | V | Synchro. check (OV) | - |  |  |  |  |  | 51 |  |  |  |  | 51 |  |  |
| 306 | SY10 | 5-75 | deg | Synchro. check (ph. dif.) | - |  |  |  |  |  | 30 |  |  |  |  | 30 |  |  |
| 307 | TSYM1 | 0.01-10.00 | s | Synchronism check timer | - |  |  |  |  |  | 1.00 |  |  |  |  | 1.00 |  |  |
| 308 | TDBL1 | 0.01-1.00 | s | Voltage check timer | - |  |  |  |  |  | 0.05 |  |  |  |  | 0.05 |  |  |
| 309 | TLBD1 | 0.01-1.00 | s | Voltage check timer | - |  |  |  |  |  | 0.05 |  |  |  |  | 0.05 |  |  |
| 310 | T3PLL | 0.01-1.00 |  | three phase live line check timer | - |  |  |  |  |  | 0.05 |  |  |  |  | 0.05 |  |  |
| 311 | OVL2 | 10-150 | V | OV element | - |  |  | - |  |  | 51 |  | - | 51 |  | - |  |  |
| 312 | UVL2 | 10-150 | V | UV element | - |  |  | - |  |  | 13 |  | - | 13 |  | - |  |  |
| 313 | SYN2 ${ }^{\text {SY2UV }}$ | 10-150 | V | Synchro. check (UW) | - |  |  | - |  |  | 83 |  | - | 83 |  | - |  |  |
| 314 | SY2OV | 10-150 | V | Synchro. check (OV) | - |  |  | - |  |  | 51 |  | - | 51 |  | - |  |  |
| 315 | SY2\% | 5-75 | deg | Synchro. check (ph. diff.) | - |  |  | - |  |  | 30 |  | - | 30 |  | - |  |  |
| 316 | TSYNR | 0.01-10.00 | s | Synchronism check timer | - |  |  | - |  |  | 1.00 |  | - | 1.00 |  | - |  |  |
| 317 | TDBL2 | 0.01-1.00 | s | Voltage check timer | - |  |  | - |  |  | 0.05 |  | - | 0.05 |  | - |  |  |
| 318 | TLBD2 | 0.01-1.00 | s | Voltage check timer | - |  |  | - |  |  | 0.05 |  | - | 0.05 |  | - |  |  |
| 319 | BISW1 | Nom-Inv | - | Binary input |  |  |  |  |  | Nom |  |  |  |  |  | Nom |  |  |
| 320 | BISW2 | Nom-Inv | - | ditto |  |  |  |  |  | Nom |  |  |  |  |  | Nom |  |  |
| 321 | BISW3 | Nom-Inv | - | ditto |  |  |  |  |  | Nom |  |  |  |  |  | Nom |  |  |
| 322 | BISW4 | Nom-Inv | - | ditto |  |  |  |  |  | Nom |  |  |  |  |  | Nom |  |  |
| 323 | BISW5 | Nom-Inv | - | ditto |  |  |  |  |  | Nom |  |  |  |  |  | Nom |  |  |
| 324 | BISW6 | Nom-Inv | - | ditto |  |  |  |  |  | Nom |  |  |  |  |  | Nom |  |  |
| 325 | BISW7 | Nom-Inv | - | ditto |  |  |  |  |  | Nom |  |  |  |  |  | Inv |  |  |
| 326 | BISW8 | Nom-Inv | - | ditto |  |  |  |  |  | Nom |  |  |  |  |  | Inv |  |  |
| 327 | BISW9 | Nom-Inv | - | ditto |  |  |  |  |  | Nom |  |  |  |  |  | Nom |  |  |
| 328 | BISW10 | Nom-Inv | - | ditto |  |  |  |  |  | Nom |  |  |  |  |  | Nom |  |  |
| 329 | BISW11 | Nom-Inv | - | ditto |  |  |  |  |  | Nom |  |  |  |  |  | Nom |  |  |
| 330 | BISW12 | Nom-Inv | - | ditto |  |  |  |  |  | Nom |  |  |  |  |  | Nom |  |  |

Relay and protection scheme setting sheet


Relay and protection scheme setting sheet


Event record default setting

| No. | Name | Range | Unit | Contents | Default setting |  |  | All models |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Sig. NO. | Signal name | type |  |
| 1 | EV1 | 0-3071 | - | Event record signal | 1536 | CB1A | On/Off | $\checkmark$ |
| 2 | EV2 | 0-3071 | - | ditto | 1537 | CB1 B | On/Off | $\checkmark$ |
| 3 | EV3 | 0-3071 | - | ditto | 1538 | CB1 C | On/Off | $\checkmark$ |
| 4 | EV4 | 0-3071 | - | ditto | 1552 | CB2 A | On/Off | $\checkmark$ |
| 5 | EV5 | 0-3071 | - | ditto | 1553 | CB2 B | On/Off | $\checkmark$ |
| 6 | EV6 | 0-3071 | - | ditto | 1554 | CB2 C | On/Off | $\checkmark$ |
| 7 | EV7 | 0-3071 | - | ditto | 1542 | DS | On/Off | $\checkmark$ |
| 8 | EV8 | 0-3071 | - | ditto | 9 | COM.block | On/Off | $\checkmark$ |
| 9 | EV9 | 0-3071 | - | ditto | 1545 | CB1 ready | On/Off | $\checkmark$ |
| 10 | EV10 | 0-3071 | - | ditto | 1546 | CB2 ready | On/Off | $\checkmark$ |
| 11 | EV11 | 0-3071 | - | ditto | 1547 | ARC block | On/Off | $\checkmark$ |
| 12 | EV12 | 0-3071 | - | ditto | 1548 | Ind.reset | On/Off | $\checkmark$ |
| 13 | EV13 | 0-3071 | - | ditto | 1549 | Ext.M.trip | On/Off | $\checkmark$ |
| 14 | EV14 | 0-3071 | - | ditto | 1550 | Ext.M.prot. | On/Off | $\checkmark$ |
| 15 | EV15 | 0-3071 | - | ditto | 1556 | Ext.trip A | On/Off | $\checkmark$ |
| 16 | EV16 | 0-3071 | - | ditto | 1557 | Ext.trip B | On/Off | $\checkmark$ |
| 17 | EV17 | 0-3071 | - | ditto | 1558 | Ext.trip C | On/Off | $\checkmark$ |
| 18 | EV18 | 0-3071 | - | ditto | 238 | Trip | On/Off | $\checkmark$ |
| 19 | EV19 | 0-3071 | - | ditto | 291 | CB1 ARC | On/Off | $\checkmark$ |
| 20 | EV20 | 0-3071 | - | ditto | 292 | CB2 ARC | On/Off | $\checkmark$ |
| 21 | EV21 | 0-3071 | - | ditto | 172 | VTF | On/Off | $\checkmark$ |
| 22 | EV22 | 0-3071 | - | ditto | 176 | PSB | On/Off | $\checkmark$ |
| 23 | EV23 | 0-3071 | - | ditto | 253 | Ch.fail | On/Off | $\checkmark$ |
| 24 | EV24 | 0-3071 | - | ditto | 254 | Relay fail | On/Off | $\checkmark$ |
| 25 | EV25 | 0-3071 | - | ditto | 1268 | V0 err | On/Off | $\checkmark$ |
| 26 | EV26 | 0-3071 | - | ditto | 1269 | V2 err | On/Off | $\checkmark$ |
| 27 | EV27 | 0-3071 | - | ditto | 1267 | 10 err | On/Off | $\checkmark$ |
| 28 | EV28 | 0-3071 | - | ditto | 257 | DS fail | On/Off | $\checkmark$ |
| 29 | EV29 | 0-3071 | - | ditto | 490 | AS1 | On/Off | $\checkmark$ |
| 30 | EV30 | 0-3071 | - | ditto | 491 | AS2 | On/Off | $\checkmark$ |
| 31 | EV31 | 0-3071 | - | ditto | 492 | AF1 | On/Off | $\checkmark$ |
| 32 | EV32 | 0-3071 | - | ditto | 493 | AF2 | On/Off | $\checkmark$ |
| 33 | EV33 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 34 | EV34 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 35 | EV35 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 36 | EV36 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 37 | EV37 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 38 | EV38 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 39 | EV39 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 40 | EV40 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 41 | EV41 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 42 | EV42 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 43 | EV43 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 44 | EV44 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 45 | EV45 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 46 | EV46 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 47 | EV47 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 48 | EV48 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 49 | EV49 | 0-3071 | - | ditto | 1258 | Relayfail-A | On/Off | $\checkmark$ |
| 50 | EV50 | 0-3071 | - | ditto | 1438 | Data lost | On/Off | $\checkmark$ |
| 51 | EV51 | 0-3071 | - | ditto | 1266 | CT err | On/Off | $\checkmark$ |
| 52 | EV52 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 53 | EV53 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 54 | EV54 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 55 | EV55 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 56 | EV56 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 57 | EV57 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 58 | EV58 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 59 | EV59 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 60 | EV60 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 61 | EV61 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 62 | EV62 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 63 | EV63 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 64 | EV64 | 0-3071 | - | ditto | 0 |  | On/Off |  |

Event record default setting

| No. | Name | Range | Unit | Contents | Default setting |  |  | All models |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Sig. NO. | Signal name | type |  |
| 65 | EV65 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 66 | EV66 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 67 | EV67 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 68 | EV68 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 69 | EV69 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 70 | EV70 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 71 | EV71 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 72 | EV72 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 73 | EV73 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 74 | EV74 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 75 | EV75 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 76 | EV76 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 77 | EV77 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 78 | EV78 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 79 | EV79 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 80 | EV80 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 81 | EV81 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 82 | EV82 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 83 | EV83 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 84 | EV84 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 85 | EV85 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 86 | EV86 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 87 | EV87 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 88 | EV88 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 89 | EV89 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 90 | EV90 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 91 | EV91 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 92 | EV92 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 93 | EV93 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 94 | EV94 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 95 | EV95 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 96 | EV96 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 97 | EV97 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 98 | EV98 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 99 | EV99 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 100 | EV100 | 0-3071 | - | ditto | 0 |  | On/Off |  |
| 101 | EV101 | 0-3071 | - | ditto | 1243 | SET.GROUP1 | On | $\checkmark$ |
| 102 | EV102 | 0-3071 | - | ditto | 1244 | SET.GROUP2 | On | $\checkmark$ |
| 103 | EV103 | 0-3071 | - | ditto | 1245 | SET.GROUP3 | On | $\checkmark$ |
| 104 | EV104 | 0-3071 | - | ditto | 1246 | SET.GROUP4 | On | $\checkmark$ |
| 105 | EV105 | 0-3071 | - | ditto | 1247 | SET.GROUP5 | On | $\checkmark$ |
| 106 | EV106 | 0-3071 | - | ditto | 1248 | SET.GROUP6 | On | $\checkmark$ |
| 107 | EV107 | 0-3071 | - | ditto | 1249 | SET.GROUP7 | On | $\checkmark$ |
| 108 | EV108 | 0-3071 | - | ditto | 1250 | SET.GROUP8 | On | $\checkmark$ |
| 109 | EV109 | 0-3071 | - | ditto | 1448 | Sys. Set change | On | $\checkmark$ |
| 110 | EV110 | 0-3071 | - | ditto | 1449 | Rly. Set change | On | $\checkmark$ |
| 111 | EV111 | 0-3071 | - | ditto | 1450 | Grp. Set change | On | $\checkmark$ |
| 112 | EV112 | 0-3071 | - | ditto | 0 |  | On |  |
| 113 | EV113 | 0-3071 | - | ditto | 0 |  | On |  |
| 114 | EV114 | 0-3071 | - | ditto | 0 |  | On |  |
| 115 | EV115 | 0-3071 | - | ditto | 0 |  | On |  |
| 116 | EV116 | 0-3071 | - | ditto | 0 |  | On |  |
| 117 | EV117 | 0-3071 | - | ditto | 0 |  | On |  |
| 118 | EV118 | 0-3071 | - | ditto | 0 |  | On |  |
| 119 | EV119 | 0-3071 | - | ditto | 1445 | PLC data CHG | On | $\checkmark$ |
| 120 | EV120 | 0-3071 | - | ditto | 0 |  | On |  |
| 121 | EV121 | 0-3071 | - | ditto | 1409 | LED RST | On | $\checkmark$ |
| 122 | EV122 | 0-3071 | - | ditto | 1435 | F.record_CLR | On | $\checkmark$ |
| 123 | EV123 | 0-3071 | - | ditto | 0 |  | On |  |
| 124 | EV124 | 0-3071 | - | ditto | 1436 | E.record_CLR | On | $\checkmark$ |
| 125 | EV125 | 0-3071 | - | ditto | 1437 | D.record_CLR | On | $\checkmark$ |
| 126 | EV126 | 0-3071 | - | ditto | 0 |  | On |  |
| 127 | EV127 | 0-3071 | - | ditto | 0 |  | On |  |
| 128 | EV128 | 0-3071 | - | ditto | 0 |  | On |  |

Disturbance record default setting

| No. | Name | Range | Unit | Contents | Default setting |  | Model |  |  |  |  | Default setting |  | Model |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Signal No. | Signal name | $\begin{aligned} & 101 \\ & 102 \end{aligned}$ | $\begin{aligned} & 201 \\ & 202 \\ & 203 \end{aligned}$ | $\begin{aligned} & 301 \\ & 302 \\ & 303 \end{aligned}$ | 401 | 501 | Signal NO. | Signal name | 204 | 205 | 206 |
| 1 | SIG1 | 0-3071 | - | disturbance record triger | 235 | TRIP-A | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 235 | TRIP-A |  | $\checkmark$ |  |
| 2 | SIG2 | 0-3071 | - | ditto | 236 | TRIP-B | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 236 | TRIP-B |  | $\checkmark$ |  |
| 3 | SIG3 | 0-3071 | - | ditto | 237 | TRIP-C | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 237 | TRIP-C |  | $\checkmark$ |  |
| 4 | SIG4 | 0-3071 | - | ditto | 291 | ARC1 | -- | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 291 | ARC1 |  | $\checkmark$ |  |
| 5 | SIG5 | 0-3071 | - | ditto | 292 | ARC2 | -- | -- | $\checkmark$ | -- | $\checkmark$ | 0 | NA |  | -- |  |
| 6 | SIG6 | 0-3071 | - | ditto | 194 | BU_TRIP | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 194 | BU_TRIP |  | $\checkmark$ |  |
| 7 | SIG7 | 0-3071 | - | ditto | 231 | CAR_TRIP | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 231 | CAR_TRIP |  | $\checkmark$ |  |
| 8 | SIG8 | 0-3071 | - | ditto | 342 | Z1_TRIP | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 342 | Z1_TRIP |  | $\checkmark$ |  |
| 9 | SIG9 | 0-3071 | - | ditto | 343 | Z1X_TRIP | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 343 | Z1X_TRIP |  | $\checkmark$ |  |
| 10 | SIG10 | 0-3071 | - | ditto | 347 | Z2+Z3+ZR1 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 347 | Z2+Z3+ZR1 |  | $\checkmark$ |  |
| 11 | SIG11 | 0-3071 | - | ditto | 349 | EF/DEF_ALARM | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 349 | EF/DEF_ALARM |  | $\checkmark$ |  |
| 12 | SIG12 | 0-3071 | - | ditto | 328 | OC_BU-TRIP | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 328 | OC_BU-TRIP |  | $\checkmark$ |  |
| 13 | SIG13 | 0-3071 | - | ditto | 350 | SOTF+STUB | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 350 | SOTF+STUB |  | $\checkmark$ |  |
| 14 | SIG14 | 0-3071 | - | ditto | 176 | PSB_DET | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 176 | PSB_DET |  | $\checkmark$ |  |
| 15 | SIG15 | 0-3071 | - | ditto | 203 | OST_TRIP | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 203 | OST_TRIP |  | $\checkmark$ |  |
| 16 | SIG16 | 0-3071 | - | ditto | 225 | EXT_CAR-S | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 225 | EXT_CAR-S |  | $\checkmark$ |  |
| 17 | SIG17 | 0-3071 | - | ditto | 204 | EXT_CAR-R1 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 204 | EXT_CAR-R1 |  | $\checkmark$ |  |
| 18 | SIG18 | 0-3071 | - | ditto | 1540 | Z1X_INIT | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 612 | EXT_CAR-R2 |  | $\checkmark$ |  |
| 19 | SIG19 | 0-3071 | - | ditto | 1536 | CB1_CONT-A | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 1536 | CB1_CONT-A |  | $\checkmark$ |  |
| 20 | SIG20 | 0-3071 | - | ditto | 1537 | CB1_CONT-B | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 1537 | CB1_CONT-B |  | $\checkmark$ |  |
| 21 | SIG21 | 0-3071 | - | ditto | 1538 | CB1_CONT-C | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 1538 | CB1_CONT-C |  | $\checkmark$ |  |
| 22 | SIG22 | 0-3071 | - | ditto | 1542 | DS_N/O_CONT | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 1542 | DS_N/O_CONT |  | $\checkmark$ |  |
| 23 | SIG23 | 0-3071 | - | ditto | 1545 | CB1_READY | -- | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 1545 | CB1_READY |  | $\checkmark$ |  |
| 24 | SIG24 | 0-3071 | - | ditto | 1546 | CB2_READY | -- | -- | $\checkmark$ | -- | $\checkmark$ | 0 | NA |  | -- |  |
| 25 | SIG25 | 0-3071 | - | ditto | 1552 | CB2_CONT-A | -- | -- | $\checkmark$ | -- | $\checkmark$ | 0 | NA |  | -- |  |
| 26 | SIG26 | 0-3071 | - | ditto | 1553 | CB2_CONT-B | -- | -- | $\checkmark$ | -- | $\checkmark$ | 0 | NA |  | -- |  |
| 27 | SIG27 | 0-3071 | - | ditto | 1554 | CB2_CONT-C | -- | -- | $\checkmark$ | -- | $\checkmark$ | 0 | NA |  | -- |  |
| 28 | SIG28 | 0-3071 | - | ditto | 0 | NA | -- |  |  |  |  | 0 | NA |  | -- |  |
| 29 | SIG29 | 0-3071 | - | ditto | 0 | NA | -- |  |  |  |  | 0 | NA |  | -- |  |
| 30 | SIG30 | 0-3071 | - | ditto | 0 | NA | -- |  |  |  |  | 0 | NA |  | -- |  |
| 31 | SIG31 | 0-3071 | - | ditto | 0 | NA | -- |  |  |  |  | 0 | NA |  | -- |  |
| 32 | SIG32 | 0-3071 | - | ditto | 0 | NA | -- |  |  |  |  | 0 | NA |  | -- |  |

## PLC default setting

| Output |  | Timing |  |  |  | Logic expression |  | Delay Time/ Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Relay model | relay model | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 309 | 90 |  |  | 101, 102, 201, 202, 203, 301, 302, 303, 401, 501 | 204, 205, 206 | Norm | $\begin{array}{\|c\|c\|} \hline \text { Back } \\ \text { Up } \end{array}$ | $\begin{aligned} & \hline \text { Release } \\ & \text { Signal } \end{aligned}$ | $\begin{gathered} \text { Off } \\ \text { Delay } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { On } \\ \text { Delay } \end{array}$ | One | Time Value |  |
|  |  |  |  |  |  | Filename: GRZ100-B1-04 | Filename: GRZ100-B2-02 |  |  |  |  |  |  |  |  |
| 1536 | CB1_CONT-A | x |  |  |  | [513]B11_COMMAND |  |  |  |  |  |  |  |  | $\times$ |
| 1537 | CB1_CONT-B | x |  |  |  | [514]B12_COMMAND |  |  |  |  |  |  |  |  | ${ }^{\mathrm{x}}$ |
| 1538 | CB1_CONT-C | x |  |  |  | [515]B]_COMMAND |  |  |  |  |  |  |  |  | $\times$ |
| 1539 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1540 | Z1x_INIT | x |  |  |  | -- | [524]B12_COMMAND |  |  |  |  |  |  |  | $x$ |
| 1541 | EXT_VTF | x |  |  |  | [518]B16 |  |  |  |  |  |  |  |  | x |
| 1542 | DS_NO_CONT | x |  |  |  | [519]B7] |  |  |  |  |  |  |  |  | $x$ |
| 1543 | DS_N/C_CONT | x |  |  |  | [520] ${ }^{\text {B }}$ |  |  |  |  |  |  |  |  | $\times$ |
| 1544 | ARC_BLOCK | x |  |  |  |  |  |  |  |  |  |  |  |  | $\times$ |
| 1545 | CB1_READY | x |  |  |  | [522]B10_COMMAND | [539][127_COMMAND |  |  |  |  |  |  |  | $\times$ |
| 1546 | CB2_READY | x |  |  |  | [523]B11_COMMAND | -- |  |  |  |  |  |  |  | $\times$ |
| 1547 | ARC_RESET | x |  |  |  | [524]B112_COMMAND | [538][126_COMmAND |  |  |  |  |  |  |  | $\times$ |
| 1548 | \|ND.RESET | x |  |  |  | [525]B13_COMMAND | [522]B110_COMMAND |  |  |  |  |  |  |  | $\times$ |
| 1549 | M-PROT_TRIP | x |  |  |  | [526]B114_COMMAND | -- |  |  |  |  |  |  |  | $\times$ |
| 1550 | M-PROT_ON | x |  |  |  | [527]B15_COMMAND | -- |  |  |  |  |  |  |  | $\times$ |
| 1551 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1552 | CB2_CONT-A | x |  |  |  | [531]E19_COMMAND | .- |  |  |  |  |  |  |  | $x$ |
| 1553 | CB2_CONT-B | x |  |  |  | [532]B12_COMMAND | -- |  |  |  |  |  |  |  | $\times$ |
| 1554 | CB2_CONT-C | x |  |  |  | [533][121_COMMAND | -- |  |  |  |  |  |  |  | $\times$ |
| 1555 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1556 | EXT_TRIP-A | x |  |  |  | [ 528$]$ B116 |  |  |  |  |  |  |  |  | $x$ |
| 1557 | Ext_TRIP-B | x |  |  |  | [529]\|17 |  |  |  |  |  |  |  |  | $\times$ |
| 1558 | EXT_TRIP-C | x |  |  |  | [530] ${ }^{\text {l18 }}$ |  |  |  |  |  |  |  |  | $\times$ |
| 1559 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1560 | EXT_CBFIN-A | x |  |  |  | [ 528$]$ B116 |  |  |  |  |  |  |  |  | $x$ |
| 1561 | EXT_CBFIN-B | x |  |  |  | [529]117 |  |  |  |  |  |  |  |  | $\times$ |
| 1562 | EXT_CBFIN-C | x |  |  |  | [530] ${ }^{\text {b12 }}$ |  |  |  |  |  |  |  |  | $\times$ |
| 1563 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1564 | ARC_BLOCK1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1565 | ARC_BLOCK2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1566 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1567 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1568 | EXT_CAR.R1-1 | x |  |  |  | [1287] |  |  |  |  |  |  |  |  | $\times$ |
| 1569 | EXT_CAR.R1-2 | x |  |  |  | [1288]B15_COM_UF | -- |  |  |  |  |  |  |  | $\times$ |
| 1570 | OPEN_TERM-R1 | x |  |  |  | [1122]S |  |  |  |  |  |  |  |  | x |
| 1571 | SEVERE_CF-R1 | x |  |  |  | [1123]SU |  |  |  |  |  |  |  |  | x |
| 1572 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1573 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1574 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1575 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1576 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1577 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1578 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1579 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1580 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1581 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1582 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1583 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1584 | EXT_CAR.R2-1 | x |  |  |  | -- | [1288]B15_COM_UF |  |  |  |  |  |  |  | $\times$ |
| 1585 | EXT_CAR.R2-2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1586 | OPEN_TERM-R2 | x |  |  |  | [1170)S |  |  |  |  |  |  |  |  | $x$ |
| 1587 | SEVERE_CF-R2 | x |  |  |  | [1171]SU |  |  |  |  |  |  |  |  | x |
| 1588 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1589 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1590 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1591 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1592 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1593 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1594 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1595 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1596 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1597 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1598 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1599 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1600 | PROT_BLOCK | x |  |  |  | -- | [523]B11_COMMAND |  |  |  |  |  |  |  |  |
| 1601 | CRT_BLOCK | x |  |  |  | [521]B19_COMMAND + [15 | [1514] YYID2_err |  |  |  |  |  |  |  | $\times$ |
| 1602 | DISCRT_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1603 | DEFCRT_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1604 | PSBTP_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |









| PLC default setting |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Timing |  |  |  | Logic expression |  | Delay Time/Flip Flop |  |  |  |  |  |  |  |
| № | Signal |  | Cycle |  |  | Turn | Relay model | relay model |  | Flip Flop |  | Timer |  |  |  | None |
|  |  |  | 30 | 90 |  |  |  | 204, 205, 206 | Norm | $\begin{gathered} \text { Back } \\ \text { Up } \end{gathered}$ | $\begin{aligned} & \text { Release } \\ & \text { Signal } \end{aligned}$ | $\begin{array}{\|c} \hline \text { Oft } \\ \text { Delay } \end{array}$ | $\begin{gathered} \text { On } \\ \text { Delay } \end{gathered}$ | $\begin{aligned} & \text { One } \\ & \text { Shot } \end{aligned}$ | Time Value |  |
|  |  |  |  |  |  | Filename: GRZ100-B2-02 |  |  |  |  |  |  |  |  |  |
| 2816 | TEMP001 |  | x |  |  |  |  | -- | [148]Z1G_TRIP + [160]Z1S_TRIP |  |  |  |  |  |  |  | $x$ |
| 2817 | TEMP002 |  | $\times$ |  |  |  | -- | [153]22G_TRIP + [162]Z2S_TRIP |  |  |  |  |  |  |  | $\times$ |
| 2818 | TEMP003 |  | x |  |  |  | -- | [156]Z3G_TRIP + [165]Z3S_TRIP |  |  |  |  |  |  |  | x |
| 2819 | TEMP004 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2820 | TEMP005 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2821 | TEMP006 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2822 | TEMP007 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2823 | TEMP008 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2824 | TEMP009 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2825 | TEMP010 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2826 | TEMP011 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2827 | TEMP012 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2828 | TEMP013 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2829 | TEMP014 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2830 | TEMP015 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2831 | TEMP016 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2832 | TEMP017 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2833 | TEMP018 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2834 | TEMP019 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2835 | TEMP020 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2836 | TEMP021 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2837 | TEMP022 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2838 | TEMP023 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2839 | TEMP024 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2840 | TEMP025 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2841 | TEMP026 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2842 | TEMP027 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2843 | TEMP028 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2844 | TEMP029 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2845 | TEMP030 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2846 | TEMP031 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2847 | TEMP032 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2848 | TEMP033 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2849 | TEMP034 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2850 | TEMP035 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2851 | TEMP036 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2852 | TEMP037 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2853 | TEMP038 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2854 | TEMP039 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2855 | TEMP040 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2856 | TEMP041 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2857 | TEMP042 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2858 | TEMP043 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2859 | TEMP044 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2860 | TEMP045 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2861 | TEMP046 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2862 | TEMP047 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2863 | TEMP048 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2864 | TEMP049 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2865 | TEMP050 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2866 | TEMP051 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2867 | TEMP052 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2868 | TEMP053 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2869 | TEMP054 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2870 | TEMP055 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2871 | TEMP056 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2872 | TEMP057 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2873 | TEMP058 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2874 | TEMP059 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2875 | TEMP060 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2876 | TEMP061 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2877 | TEMP062 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2878 | TEMP063 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2879 | TEMP064 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2880 | TEMP065 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2881 | TEMP066 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2882 | TEMP067 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2883 | TEMP068 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2884 | TEMP069 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |




| PLC default setting |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| № | Signal |  | Cycle |  |  | Turn | Relay model | relay model | Flip Flop |  |  | Timer |  |  |  | None |
|  |  |  | 30 | 90 | User |  | 101, 102, 201, 202, 203, 301, 302, 303, 401, 501 | 204, 205, 206 | Norm | $\begin{gathered} \text { Back } \\ \text { Up } \end{gathered}$ | Release Signal | $\begin{array}{\|c\|} \hline \text { Off } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{gathered} \text { On } \\ \text { Delay } \end{gathered}$ | $\begin{aligned} & \hline \text { One } \\ & \text { Shot } \end{aligned}$ | Time Value |  |
|  |  |  |  |  |  |  | Filename: GRZ100-B1-04 | Filename: GRZ100-B2-02 |  |  |  |  |  |  |  |  |
| 3023 | TEMP208 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3024 | TEMP209 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3025 | TEMP210 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3026 | TEMP211 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3027 | TEMP212 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3028 | TEMP213 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3029 | TEMP214 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3030 | TEMP215 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3031 | TEMP216 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3032 | TEMP217 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3033 | TEMP218 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3034 | TEMP219 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3035 | TEMP220 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3036 | TEMP221 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3037 | TEMP222 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3038 | TEMP223 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3039 | TEMP224 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3040 | TEMP225 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3041 | TEMP226 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3042 | TEMP227 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3043 | TEMP228 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3044 | TEMP229 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3045 | TEMP230 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3046 | TEMP231 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3047 | TEMP232 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3048 | TEMP233 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3049 | TEMP234 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3050 | TEMP235 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3051 | TEMP236 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3052 | TEMP237 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3053 | TEMP238 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3054 | TEMP239 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3055 | TEMP240 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3056 | TEMP241 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3057 | TEMP242 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3058 | TEMP243 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3059 | TEMP244 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3060 | TEMP245 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3061 | TEMP246 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3062 | TEMP247 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3063 | TEMP248 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3064 | TEMP249 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3065 | TEMP250 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3066 | TEMP251 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3067 | TEMP252 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3068 | TEMP253 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3069 | TEMP254 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3070 | TEMP255 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3071 | TEMP256 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Appendix I

## Commissioning Test Sheet (sample)

1. Relay identification
2. Preliminary check
3. Hardware check
3.1 User interface check
3.2 Binary input/Binary output circuit check
3.3 AC input circuit check
4. Function test
4.1 Phase fault element ZS test
4.2 Earth fault element ZG test
4.3 Out-of-step element OST test
4.4 Phase selection element UVC test
4.5 Directional earth fault element DEF test
4.6 Negative sequence directional element DOCN test
4.7 Inverse definite minimum time overcurrent element (IDMT) EFI and OCI test
4.8 Voltage and synchronism check elements test
4.9 Thermal overload element
4.10 Current change detection element
4.11 Level detectors test
4.12 BCD element check
4.13 Overvoltage and undervoltage elements test
5. Protection scheme test
6. Metering and recording check
7. Conjunctive test

## 1. Relay identification

Type $\qquad$ Serial number $\qquad$
Model $\qquad$ System frequency $\qquad$
Station $\qquad$ Date $\qquad$
Circuit $\qquad$ Engineer $\qquad$
Protection scheme $\qquad$ Witness $\qquad$
Active settings group number $\qquad$

## 2. Preliminary check

Ratings


CT shorting contacts $\square$
DC power supply $\square$
Power up $\square$
Wiring


Relay inoperative $\square$ alarm contact

Calendar and clock $\square$

## 3. Hardware check

3.1 User interface check

3.2 Binary input/Binary output circuit check

Binary input circuit
Binary output circuit

$\square$
3.3 AC input circuit $\square$

## 4. Function test

4.1 Phase fault element ZS test

| Element | Reach setting (ZS) | IT | 2IT $\times$ ZS | Measured voltage (2Va) |
| :---: | :--- | :--- | :--- | :--- |
| Z1S |  |  |  |  |
| Z1XS |  |  |  |  |
| Z2S |  |  |  |  |
| Z3S |  |  |  |  |
| ZFS |  |  |  |  |
| Z4S |  |  |  |  |
| ZR1S |  |  |  |  |
| ZR2S |  |  |  |  |
| ZNDS |  |  |  |  |
| PSBSIN |  |  |  |  |
| PSBSOU |  |  |  |  |
| T |  |  |  |  |

4.2 Earth fault element ZG test

| Element | Reach setting (ZG) | IT | 2IT $\times$ ZG | Measured voltage (2Va) |
| :---: | :--- | :--- | :--- | :--- |
| Z1G |  |  |  |  |
| Z1XG |  |  |  |  |
| Z2G |  |  |  |  |
| Z3G |  |  |  |  |
| ZFG |  |  |  |  |
| Z4G |  |  |  |  |
| ZR1G |  |  |  |  |
| ZR2G |  |  |  |  |
| ZNDG |  |  |  |  |
| PSGBIN |  |  |  |  |
| PSBGOUT |  |  |  |  |

### 4.3 Out-of-step element OST test

| Element | Reach setting (ZOST) | IT | $\mathbf{2 I T} \times$ Z OST | Measured voltage (2V $\mathbf{a})$ |
| :---: | :---: | :---: | :---: | :---: |
| OSTXF |  |  |  |  |
| OSTXB |  |  |  |  |
| OSTR1 |  |  |  |  |
| OSTR2 |  |  |  |  |

### 4.4 Phase selection element UVC test

| Element | Reach setting (UVCZ) | IT | IT $\times$ UVCZ + UVCV | Measured voltage |
| :---: | :---: | :---: | :---: | :---: |
| UVC | 0 | 0 |  |  |

### 4.5 Directional earth fault element DEF test

(1)

| Element | Current setting | Measured current |
| :---: | :---: | :---: |
| DEFF |  |  |
| DEFR |  |  |

(2)

| Element | Voltage setting | Measured voltage |
| :---: | :---: | :---: |
| DEFF |  |  |
| DEFR |  |  |

4.6 Negative sequence directional element DOCN test

| Element | Test current | Measured voltage |
| :---: | :---: | :---: |
| DOCNF | $I_{\mathrm{N}}$ |  |
| DOCNR | $I_{\mathrm{N}}$ |  |

4.7 Inverse definite minimum time overcurrent element (IDMT) EFI and OCI test

| Element | Test current | Measured operating time |
| :---: | :---: | :---: |
| EFI | $1.2 \times \mathrm{I}_{\mathrm{S}}$ |  |
|  | $20 \times \mathrm{I}_{\mathrm{S}}$ |  |
| OCl | $1.2 \times \mathrm{I}_{\mathrm{S}}$ |  |
|  | $20 \times \mathrm{I}_{\mathrm{S}}$ |  |

4.8 Voltage and synchronism check elements test
(1) Voltage check element

| Element | Setting | Measured voltage |
| :---: | :---: | :---: |
| OVB |  |  |
| UVB |  |  |
| OVL1 |  |  |
| UVL1 |  |  |
| OVL2 |  |  |
| UVL2 |  |  |

(2) Synchronism check element
(1) Voltage check

| Element | Setting | Measured voltage |
| :---: | :---: | :---: |
| SYN1 (SY1UV) |  |  |
| SYN1 (SY1OV) |  |  |
| SYN2 (SY2UV) |  |  |
| SYN2 (SY2OV) |  |  |

(2) Phase angle check

| Element | Setting | Measured angle |
| :---: | :---: | :---: |
| SYN1 (SY1 $\theta$ ) |  |  |
| SYN2 (SY2 $\theta$ ) |  |  |

4.9 Thermal overload element test

| Element | Test current | Measured operating time |
| :---: | :---: | :---: |
| THM-A | $1.2 \times \mathrm{I}_{\mathrm{S}}$ |  |
| THM-T | $10 \times \mathrm{I}_{\mathrm{S}}$ |  |

### 4.10 Current change detection element

| Element | Test current | Result |
| :---: | :---: | :---: |
| OCD | $1.2 \times$ Fixed setting |  |
| OCDP | $1.2 \times$ Setting value |  |

4.11 Level detectors test

| Element | Setting | Measured value |
| :---: | :---: | :---: |
| OCH |  |  |
| EF |  |  |
| EFL |  |  |
| OC |  |  |
| OVG |  |  |
| UVLS |  |  |
| UVLG |  |  |
| UVFS |  |  |
| UVFG |  |  |
| OCBF |  |  |

4.12 BCD element check
$\square$
4.13 Overvoltage and undervoltage elements test
(1) Operating value test

| Element | Voltage <br> setting | Measured <br> voltage | Element | Voltage <br> setting | Measured <br> voltage |
| :---: | :--- | :--- | :---: | :---: | :---: |
| OVS1 |  |  | OVG1 |  |  |
| OVS2 |  |  | OVG2 |  |  |
| UVS1 |  |  | UVG1 |  |  |
| UVS2 |  |  | UVG2 |  |  |

(2) Operating time test (IDMT)

| Element | Voltage setting | Multiplier setting | Changed voltage | Measured time |
| :---: | :---: | :---: | :---: | :---: |
| OVS1 |  | 10.0 | $1.5 \times$ Voltage setting |  |
| OVG1 |  | 10.0 | $1.5 \times$ Voltage setting |  |
| UVS1 |  | 10.0 | $0.5 \times$ Voltage setting |  |
| UVG1 |  | 10.0 | $0.5 \times$ Voltage setting |  |

5. Protection scheme test

| Scheme | Results |
| :--- | :---: |
|  |  |
|  |  |
|  |  |

6. Metering and recording check

7. Conjunctive test

| Scheme | Results |
| :---: | :---: |
| On load check |  |
| Signaling circuit |  |
| Tripping circuit |  |
| Reclosing circuit |  |

## Appendix J

## Return Repair Form

## RETURN / REPAIR FORM

Please complete this form up and return it to TOSHIBA CORPORATION with the GRZ100 to be repaired.

## TOSHIBA CORPORATION Fuchu Complex

1, Toshiba-cho, Fuchu-shi, Tokyo, Japan
For: Power Systems Protection \& Control Department
Quality Assurance Section

Type: $\qquad$ GRZ100 Model: $\qquad$ (Example: Type:_GRZ100 Model:_204B-22-10 _

Product No.: $\qquad$
Serial No. : $\qquad$
Date:

1. Why the relay is being returned ?
$\square$ mal-operation
$\square$ does not operate
$\square$ increased error
$\square$ investigation
$\square$ others
$\qquad$
$\qquad$
$\qquad$
$\qquad$
2. Fault records, event records or disturbance records stored in the relay and relay settings are very helpful information to investigate the incident.

Please inform us of this information in respect to in the incident on a Floppy Disk, or by completing the Fault Record sheet and Relay Setting sheet attached.

## Fault Record

Date/Month/Year Time
(Example: 04/ Nov./ 1997 15:09:58.442)
Faulty phase:
Fault Locator: km ( \%)

Prefault values
(CT ratio: $\mathrm{kA} /$ :
A, VT ratio: $\mathrm{kV} /$ : V )

| $\mathrm{V}_{\mathrm{a}}:$ | kV or $\mathrm{V} \angle$ |
| :--- | :--- |
| $\mathrm{V}_{\mathrm{b}}:$ | kV or $\mathrm{V} \angle$ |
| $\mathrm{V}_{\mathrm{C}}:$ | kV or $\mathrm{V} \angle$ |
| $\mathrm{V}_{\mathrm{ab}}:$ | kV or $\mathrm{V} \angle$ |
| $\mathrm{V}_{\mathrm{bc}}:$ | kV or $\mathrm{V} \angle$ |
| $\mathrm{V}_{\mathrm{ca}}:$ | kV or $\mathrm{V} \angle$ |
| $\mathrm{V}_{1}:$ | kV or $\mathrm{V} \angle$ |
| $\mathrm{V}_{2}:$ | kV or $\mathrm{V} \angle$ |
| $\mathrm{V}_{0}:$ | kV or $\mathrm{V} \angle$ |

$\circ \quad \mathrm{I}_{\mathrm{a}}$ :
kA or $\mathrm{A} \angle$
kA or $\mathrm{A} \angle \quad \circ$

Fault values

| $\mathrm{V}_{\mathrm{a}}$ : | kV or V $\angle$ | - | I : | kA or $\mathrm{A} \angle$ |
| :---: | :---: | :---: | :---: | :---: |
| Vb : | kV or V $\angle$ | - | Ib: | kA or $\mathrm{A} \angle$ |
| $\mathrm{V}_{\mathrm{C}}$ : | kV or V $\angle$ | - | $\mathrm{IC}_{\mathrm{C}}$ : | kA or $\mathrm{A} \angle$ |
| $\mathrm{V}_{\mathrm{ab}}$ : | kV or V $\angle$ | - | $\mathrm{I} \mathrm{ab}^{\text {: }}$ | kA or $\mathrm{A} \angle$ |
| Vbc: | kV or $\mathrm{V} \angle$ | - | Ibc: | kA or $\mathrm{A} \angle$ |
| $\mathrm{V}_{\mathrm{ca}}$ : | kV or $\mathrm{V} \angle$ | - | $\mathrm{I}_{\mathrm{Ca}}$ : | kA or $\mathrm{A} \angle$ |
| $\mathrm{V}_{1}$ : | kV or V $\angle$ | - | I1: | kA or $\mathrm{A} \angle$ |
| $\mathrm{V}_{2}$ : | kV or V $\angle$ | - | I2: | kA or $\mathrm{A} \angle$ |
| $\mathrm{V}_{0}$ : | kV or $\mathrm{V} \angle$ | - | $\mathrm{I}_{0}$ : | kA or $\mathrm{A} \angle$ |
|  |  |  | $\mathrm{I}_{0 \mathrm{a}}$ : | kA or $\mathrm{A} \angle$ |
| Ra : | $\Omega$ |  | $\mathrm{X}_{\mathrm{a}}$ : | $\Omega$ |
| $\mathrm{R}_{\mathrm{b}}$ : | $\Omega$ |  | $\mathrm{X}_{\mathrm{b}}$ : | $\Omega$ |
| $\mathrm{R}_{\mathrm{C}}$ : | $\Omega$ |  | $\mathrm{X}_{\mathrm{C}}$ : | $\Omega$ |
| $\mathrm{R}_{\mathrm{ab}}$ : | $\Omega$ |  | $\mathrm{X}_{\mathrm{ab}}$ : | $\Omega$ |
| Rbc : | $\Omega$ |  | $\mathrm{X}_{\mathrm{bc}}$ : | $\Omega$ |
| $\mathrm{R}_{\mathrm{Ca}}$ : | $\Omega$ |  | $\mathrm{X}_{\text {ca }}$ : | $\Omega$ |

3. What was the message on the LCD display at the time of the incident.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
4. Please write the detail of the incident.
$\qquad$
5. Date of the incident occurred.

Day/ Month/ Year: / / /
(Example: 10/ July/ 1998)
6. Please write any comments on the GRZ100, including the document.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Customer

Name:
Company Name: $\qquad$
Address: $\qquad$
$\qquad$

Telephone No.: $\qquad$
Facsimile No.: $\qquad$
Signature:

## Appendix K <br> Technical Data

| Ratings |  |
| :---: | :---: |
| AC current $\mathrm{I}_{\mathrm{n}}$ : <br> AC voltage $\mathrm{V}_{\mathrm{n}}$ : <br> Frequency: <br> DC power supply: <br> AC ripple on DC supply IEC60255-11 <br> DC supply interruption IEC60255-11 <br> Permissive duration of DC supply voltage interruption to maintain normal operation: <br> Restart time: <br> Binary input circuit DC voltage | 1 A or 5 A <br> $100 \mathrm{~V}, 110 \mathrm{~V}, 115 \mathrm{~V}, 120 \mathrm{~V}$ <br> 50 Hz or 60 Hz <br> $110 \mathrm{Vdc} / 125 \mathrm{Vdc}$ (Operative range: 88 - 150Vdc) <br> $220 \mathrm{Vdc} / 250 \mathrm{Vdc}$ (Operative range: 176 - 300 Vdc ) <br> $48 \mathrm{Vdc} / 54 \mathrm{Vdc} / 60 \mathrm{Vdc}$ (Operative range: 38.4-72Vdc) <br> $24 \mathrm{Vdc} / 30 \mathrm{Vdc}$ Operative range: 19.2 - 36Vdc <br> maximum 12\% <br> less than 50 ms at 110 V <br> less than 10 s <br> $110 \mathrm{Vdc} / 125 \mathrm{Vdc}$ <br> $220 \mathrm{Vdc} / 250 \mathrm{Vdc}$ <br> $48 \mathrm{Vdc} / 54 \mathrm{Vdc} / 60 \mathrm{Vdc}$ <br> $24 \mathrm{Vdc} / 30 \mathrm{Vdc}$ |
| Overload Ratings |  |
| AC current input <br> AC voltage input | 4 times rated continuous 100 times rated for 1s <br> 2 times rated continuous <br> 2.5 times rated for 1 s |
| Burden |  |
| AC current input <br> AC voltage input DC power supply: <br> Binary input circuit: | 0.2 VA per phase (at rated 5 A ) <br> 0.4 VA at zero-sequence circuit (at rated 5A) <br> 0.1 VA per phase (at rated 1 A ) <br> 0.3 VA at zero-sequence circuit (at rated 1A) <br> 0.1 VA (at rated voltage) <br> less than15W (quiescent) <br> less than 25 W (operation) <br> $\leq 0.5 \mathrm{~W} /$ input at 110 Vdc |
| CT Ratio Setting |  |
| CT ratio | 1 to 20000 in 1 steps |
| Full Scale of Current for Measurement |  |
| Current | 65 times rated current |
| Phase Fault Distance Measuring Element |  |
| Z1S, Z2S and Z1XS $\begin{aligned} & \text { Z1S } \theta 1 \\ & \text { Z1S } \theta 2 \end{aligned}$ <br> ZFS, ZR1S and ZR2S | 0.10 to $250.00 \Omega$ in $0.01 \Omega$ steps ( 1 A relay) <br> 0.01 to $50.00 \Omega$ in $0.01 \Omega$ steps ( 5 A relay) <br> $0^{\circ}$ to $45^{\circ}$ in $1^{\circ}$ steps <br> $45^{\circ}$ to $90^{\circ}$ in $1^{\circ}$ steps <br> 0.1 to $250.0 \Omega$ in $0.1 \Omega$ steps ( 1 A relay) <br> 0.01 to 50.00 in $0.01 \Omega$ steps ( 5 A relay) |
| Z3S and Z4S | 0.1 to $250.0 \Omega$ in $0.1 \Omega$ steps ( 1 A relay) <br> 0.01 to 50.00 in $0.01 \Omega$ steps ( 5 A relay) |
| Characteristic angle | $45^{\circ}$ to $90^{\circ}$ in $1^{\circ}$ steps |
| Z1S and Z4S offset | $7.5 \Omega$ fixed (1A relay) <br> $1.5 \Omega$ fixed ( 5 A relay) |
| ZNDS | 0.1 to $250.0 \Omega$ in $0.1 \Omega$ steps ( 1 A relay) <br> 0.01 to 50.00 in $0.01 \Omega$ steps ( 5 A relay) |
| Blinder (BFRS1, BFRS2, BFRS3, BRRS, BNDS) <br> BRLS: Linked with BRRS <br> Characteristic angle (BFRS1, BFRS2, BFRS3, BRRS, BNDS) Characteristic angle (BFLS) | $\begin{aligned} & 0.5 \text { to } 100.0 \Omega \text { in } 0.1 \Omega \text { steps (1A relay) } \\ & 0.10 \text { to } 20.00 \Omega \text { in } 0.01 \Omega \text { steps (5A relay) } \\ & 75^{\circ} \text { fixed } \\ & 90^{\circ} \text { to } 135^{\circ} \end{aligned}$ |


| Earth Fault Distance Measuring Element |  |
| :---: | :---: |
| Z1G, Z2G and Z1XG | 0.10 to $250.00 \Omega$ in $0.01 \Omega$ steps ( 1 A relay) <br> 0.01 to $50.00 \Omega$ in $0.01 \Omega$ steps ( 5 A relay) |
| Z1G $\theta 1$ | $0^{\circ}$ to $45^{\circ}$ in $1^{\circ}$ steps |
| Z1G $\theta 2$ | $45^{\circ}$ to $90^{\circ}$ in $1^{\circ}$ steps |
| ZR1G | 0.1 to $250.0 \Omega$ in $0.1 \Omega$ steps ( 1 A relay) |
|  | 0.01 to 50.00 in $0.01 \Omega$ steps (5A relay) |
| ZFG, Z3G, ZR2G and Z4G | 0.1 to $500.0 \Omega$ in $0.1 \Omega$ steps (1A relay) |
|  | 0.01 to 100.00 in $0.01 \Omega$ steps (5A relay) |
| Characteristic angle | $45^{\circ}$ to $90^{\circ}$ in $1^{\circ}$ steps |
| ZNDG | 0.1 to $500.0 \Omega$ in $0.1 \Omega$ steps ( 1 A relay) |
|  | 0.01 to 100.00 in $0.01 \Omega$ steps (5A relay) |
| Blinder (BFRG1, BFRG2, BFRG3, BRRG, BNDG) | 0.5 to $100.0 \Omega$ in $0.1 \Omega$ steps ( 1 A relay) |
| BRLG: Linked with BRRG | 0.10 to $20.00 \Omega$ in $0.01 \Omega$ steps (5A relay) |
| Characteristic angle (BFRG1, BFRG2, BFRG3, BRRG, | $75^{\circ}$ fixed |
| BNDG) |  |
| Characteristic angle (BFLG) | $90^{\circ}$ to $135^{\circ}$ |
| Time Setting for Zone Protection |  |
| Time setting of Z1S, Z2S, Z3S, ZFS, ZR1S, ZR2S, ZNDS, Z1G, Z2G, Z3G, ZFG, ZR1G, ZR2G, ZNDG | 0.00 to 10.00 s in 0.01 s steps |
| Command Protection |  |
| Coordination time for BOP scheme | 0 to 50 ms in 1 ms steps |
| Operating and Resetting Time of Distance Measuring Element |  |
| Typical operating time | 20ms |
| Operating time curve (SIR curve) | Refer to Figure 13. |
| Resetting time | less than 30 ms (for tripping output) <br> less than 40 ms (for signal output) |
| Accuracy of Distance Measuring Element |  |
| Static accuracy | $\pm 5 \%$ under SIR < 30, $\pm 10 \%$ under $30<$ SIR < 50 |
| Static angle accuracy | $\pm 5^{\circ}$ |
| Transient overreach | +5\% |
| Minimum Operating Current |  |
| Current | 0.08A (1A relay) <br> 0.4 A ( 1 A relay) |
| Residual Current Compensation |  |
| Residual current compensation for reactance element of Z1G, Z1XG, Z2G, ZFG, ZR1G | Adjustable as follows: |
| Earth return compensation | 0 to $1000 \%$ in $1 \%$ steps |
| Mutual coupling compensation (ZR1G excluded) | 0 to $1000 \%$ in $1 \%$ steps |
| Phase Selection Element |  |
| Undervoltage | 10 to 60 V in 1 V steps |
| Impedance | 0.0 to $250.0 \Omega$ in $1 \Omega$ steps ( 1 A relay) |
|  | 0.0 to $50.0 \Omega$ in $1 \Omega$ steps (5A relay) |
| Characteristic angle | $45^{\circ}$ to $90^{\circ}$ in $1^{\circ}$ steps |
| Residual current compensation | Automatically set according to residual current compensation setting of reactance element |
| Switch-on-to-fault and Stub protection |  |
| Overcurrent | 0.4 to 3.0 A in 0.1 A steps ( 1 A relay) <br> 2.0 to 15.0 A in 0.1 A steps (5A relay) |


| Broken Conductor Detection |  |
| :---: | :---: |
| Broken conductor threshold $\left(\mathrm{I}_{2} / \mathrm{I}_{1}\right)$ : DTL delay: | OFF, 0.10 to 1.00 in 0.01 steps 0.00 to 300.00 s in 0.01 s steps |
| Voltage Transformer Failure Supervision |  |
| Undervoltage element (phase-to-phase) <br> Undervoltage element (phase-to-earth) <br> Current change detection element <br> Residual voltage element <br> Residual current element | 50 to 100 V in 1 V steps <br> 10 to 60 V in 1 V steps <br> 0.1 A fixed (1A relay) <br> 0.5 A fixed (5A relay) <br> 20V fixed <br> Common use with earth fault detection element |
| Power Swing Blocking |  |
| Detection zone (PSBZS, PSBZG) <br> Current change detection element <br> Detection time <br> Resetting time | 2.5 to $75.0 \Omega$ in $0.1 \Omega$ steps ( 1 A relay) 0.50 to 15.00 in $0.01 \Omega$ steps ( 5 A relay) 0.1 to 2.0 A in 0.1 A steps ( 1 A relay) 0.5 to 10.0 A in 0.1 A steps (5A relay) 30 to 60 ms in 1 ms steps 500 ms fixed |
| Out-of-step Protection |  |
| Resistive reach (OSTR1) <br> Resistive reach (OSTR2) <br> Resistive reach (OSTXF) <br> Resistive reach (OSTXF) <br> Detection time (TOST) | 15 to $150 \Omega$ in $1 \Omega$ steps ( 1 A relay) 3.0 to $30.0 \Omega$ in $0.1 \Omega$ steps (5A relay) 5 to $50 \Omega$ in $1 \Omega$ steps ( 1 A relay) 1.0 to $10.0 \Omega$ in $0.1 \Omega$ steps (5A relay) 5 to $250 \Omega$ in $1 \Omega$ steps ( 1 A relay) 1.0 to $50.0 \Omega$ in $0.1 \Omega$ steps (5A relay) 1 to $50 \Omega$ in $1 \Omega$ steps ( 1 A relay) 0.2 to $10.0 \Omega$ in $0.1 \Omega$ steps (5A relay) 0.01 to 1.00 s in 0.01 s steps |
| Breaker Failure (BF) Protection |  |
| Overcurrent element <br> BF timer for retry-trip of failed breaker BF timer for related breaker trip Operating time of overcurrent element Resetting time of overcurrent element | 0.1 to 2.0 A in 0.1 A steps ( 1 A relay) <br> 0.5 to 10.0 A in 0.1 A steps ( 5 A relay) <br> 50 to 500 ms in 1 ms steps <br> 50 to 500 ms in 1 ms steps <br> less than 20 ms at 50 Hz or less than 17 ms at 60 Hz <br> less than 15 ms at 50 Hz or less than 13 ms at 60 Hz |
| Inverse Time Overcurrent Protection |  |
| Overcurrent <br> Time multiplier <br> Characteristic <br> Accuracy of inverse time characteristics <br> Reset definite time | 0.10 to 5.00 A in 0.01 A steps ( 1 A relay) <br> 0.5 to 25.0 A in 0.1 A steps ( 5 A relay) <br> 0.05 to 1.00 in 0.01 steps <br> Refer to Figure 8. <br> Standard, Very and Long-time: IEC60255-3 class 5 <br> Extremely inverse: IEC60255-3 class 7.5 <br> 0.0 to 10.0 s in 0.1 s steps |
| Definite Time Overcurrent Protection |  |
| Overcurrent <br> Time for delayed trip <br> Operating time of overcurrent element <br> Accuracy of pick-up value | 0.1 to 20.0 A in 0.1 A steps ( 1 A relay) 0.5 to 100.0 A in 0.1 A steps ( 5 A relay) 0.00 to 10.00 s in 0.01 s steps less than 20 ms $\pm 5 \%$ |


| Directional Earth Fault Protection |  |
| :---: | :---: |
| Characteristic angle <br> Polarising voltage (3V0) <br> Zero-sequence current (3I0) <br> Time multiplier for inverse time characteristic <br> Definite time delay for backup trip <br> Accuracy of pick-up value | $\begin{aligned} & 0 \text { to } 90^{\circ} \text { in } 1^{\circ} \text { steps ( } 3 \mathrm{I} 0 \text { lags for }-3 \mathrm{~V} 0 \text { ) } \\ & 1.7 \text { to } 21.0 \mathrm{~V} \text { in } 0.1 \mathrm{~V} \text { steps } \\ & 0.10 \text { to } 1.00 \mathrm{~A} \text { in } 0.01 \mathrm{~A} \text { in } 0.01 \mathrm{~A} \text { steps ( } 1 \mathrm{~A} \text { relay) } \\ & 0.5 \text { to } 5.0 \mathrm{~A} \text { in } 0.1 \mathrm{~A} \text { steps ( } 5 \mathrm{~A} \text { relay) } \\ & 0.05 \text { to } 1.00 \text { in } 0.01 \text { steps } \\ & 0.00 \text { to } 10.00 \mathrm{~s} \text { in } 0.01 \mathrm{~s} \text { steps } \\ & \pm 5 \% \end{aligned}$ |
| Directional Earth Fault Command Protection |  |
| Time for delayed trip Coordination time | 0.00 to 0.30 s in 0.01 s steps <br> 0 to 50 ms in 1 ms steps |
| Inverse Time Earth Fault Protection |  |
| Earth fault <br> Time multiplier <br> Characteristic <br> Accuracy of inverse time characteristics <br> Reset definite time | 0.10 to 1.00 A in 0.01 A steps ( 1 A relay) <br> 0.5 to 5.0 A in 0.1 A steps ( 5 A relay) <br> 0.05 to 1.00 in 0.01 steps <br> Refer to Figure 8. <br> Standard, Very and Long-time: IEC60255-3 class 5 <br> Extremely inverse: IEC60255-3 class 7.5 <br> 0.0 to 10.0 s in 0.1 s steps |
| Definite Time Earth Fault Protection |  |
| Earth fault <br> Time for delayed trip <br> Accuracy of pick-up value | 0.10 to 1.00 A in 0.01 A steps ( 1 A relay) <br> 0.5 to 5.0 A in 0.1 A steps ( 5 A relay) <br> 0.00 to 10.00 s in 0.01 s steps $\pm 5 \%$ |
| Weak Infeed and Echo Protection |  |
| Phase-to-phase undervoltage element Phase-to-earth undervoltage element | 50 to 100 V in 1 V steps 10 to 60 V in 1 V steps |
| Thermal overload Protection |  |
| Thermal setting (THM $=$ k. $\mathrm{I}_{\mathrm{FLC}}$ ) <br> Time constant ( $\tau$ ) <br> Thermal alarm <br> Pre-load current setting | OFF, $0.40-2.00 \mathrm{~A}$ in 0.01 A steps ( 1 A rating) OFF, $2.0-10.0 \mathrm{~A}$ in 0.1 A steps ( 5 A rating) 0.5 - 300.0mins in 0.1 min steps OFF, $50 \%$ to $99 \%$ in $1 \%$ steps $0.00-1.00 \mathrm{~A}$ in 0.01 A steps ( 1 A rating) $0.0-5.0 \mathrm{~A}$ in 0.1 A steps ( 5 A rating) |
| Overvoltage Protection |  |
| $1^{\text {st }}, 2^{\text {nd }}$ Overvoltage thresholds: <br> Delay type: <br> IDMTL Time Multiplier Setting TMS: <br> DTL delay: <br> DO/PU ratio <br> Reset Delay (1 ${ }^{\text {st }}$ threshold only): | OFF, $5.0-150.0 \mathrm{~V}$ in 0.1 V steps (for both phase-to-phase and phase-to-neutral voltage) <br> DTL, IDMTL ( $1^{\text {st }}$ threshold only) <br> $0.05-100.00$ in 0.01 steps <br> $0.00-300.00 \mathrm{~s}$ in 0.01 s steps <br> $10-98 \%$ in $1 \%$ steps <br> $0.0-300.0 \mathrm{~s}$ in 0.1 s steps |
| Undervoltage Protection |  |
| $1^{\text {st }}, 2^{\text {nd }}$ Undervoltage thresholds: <br> Delay type: <br> IDMTL Time Multiplier Setting TMS: <br> DTL delay: <br> DO/PU ratio <br> Reset Delay (1 ${ }^{\text {st }}$ threshold only): | OFF, $5.0-150.0 \mathrm{~V}$ in 0.1 V steps (for both phase-to-phase and phase-to-neutral voltage) <br> DTL, IDMTL ( $1^{\text {st }}$ threshold only) <br> $0.05-100.00$ in 0.01 steps <br> $0.00-300.00 \mathrm{~s}$ in 0.01 s steps <br> $10-98 \%$ in $1 \%$ steps <br> $0.0-300.0 \mathrm{~s}$ in 0.1 s steps |


| Autoreclose Function |  |
| :---: | :---: |
| Number of shots <br> Timer settings <br> Dead time for single-phase autoreclose <br> Dead time for three-phase autoreclose <br> Multi-shot dead line time <br> Multi-shot reset time <br> Reclaim time <br> Pulse width of reclosing signal output <br> Autoreclose reset time <br> Reset time for developing fault <br> One-and-a-half breaker scheme <br> Follower breaker autoreclose delay time <br> Voltage and synchronism check element <br> Synchronism check angle <br> UV element <br> OV element <br> Busbar or line dead check <br> Busbar or line live check <br> Synchronism check time <br> Voltage check time <br> Operating time of synchronism check element <br> Operating time of UV and OV elements | 1 to 4 shots <br> 0.01 to 10.00 s in 0.01 s steps <br> 0.01 to 100.00 s in 0.01 s steps <br> 5.0 to 300.0 s in 0.1 s steps <br> 5.0 to 300.0 s in 0.1 s steps 5 to 300 s in 1s steps 0.1 to 10.0 s in 0.1 s steps 0.01 to 100.00 s in 0.01 s steps 0.01 to 10.00 s in 0.01 s steps <br> 0.1 to 10.0 s in 0.1 s steps <br> 5 to $75^{\circ}$ in $1^{\circ}$ steps 10 to 150 V in 1 V steps 0.01 to 10.00 s in 0.01 s steps 0.01 to 1.00 s in 0.01 s steps less than 50 ms less than 40 ms |
| Fault Locator |  |
| Line reactance and resistance setting <br> Line length <br> Correction factor of impedance between lines Correction factor of impedance between in each phase Accuracy <br> Minimum measuring cycles | 0.0 to $999.9 \Omega$ in $0.1 \Omega$ steps ( 1 A relay) 0.00 to $199.99 \Omega$ in $0.01 \Omega$ steps ( 5 A relay) <br> 0.0 to 399.9 km in 0.1 km steps <br> 80 to $120 \%$ in $1 \%$ steps <br> 80 to $120 \%$ in $1 \%$ steps <br> $\pm 2.5 \mathrm{~km}$ (up to 100 km ) <br> $\pm 2.5 \%$ (up to 399.9 km ) <br> 2.5 cycles |
| Disturbance Record Initiation |  |
| Overcurrent element <br> Undervoltage element <br> Pre-fault time <br> Post-fault time | 0.1 to 50.0 A in 0.1 A steps ( 1 A relay) 0.5 to 250.0 A in 0.1 A steps ( 5 A relay) 0 to 132 V in 1 V steps (for phase fault) 0 to 76 V in 1 V steps (for earth fault) 0.3 s fixed 0.1 to 3.0 s in 0.1 s steps |


| Communication Port |  |
| :---: | :---: |
| Front communication port (local PC) |  |
| Connection | Point to point |
| Cable type | Multi-core (straight) |
| Cable length | 15m (max.) |
| Connector | RS232C 9-pin D-subminiature connector female |
| Rear communication port (remote PC) |  |
| RS485 I/F: |  |
| Transmission data rate for RSM system | 64kbps |
| Connection | Multidrop mode (max. 32 relays) |
| Connector | Screw terminals |
| Cable and length | Twisted pair cable, max. 1200m |
| Isolation | 2 kVac for 1min. |
| Fibre optic I/F: | ST connector, graded-index multi-mode $50 / 125 \mu \mathrm{~m}$ or $62.5 / 125 \mu \mathrm{~m}$ type optical fibres |
| Ethernet LAN I/F: | 10BASE-T, RJ-45 connector |
| IRIG-B Port |  |
| Connection | BNC connector |
| Cable type | 50 ohm coaxial cable |
| Binary Inputs |  |
| Operating voltage | Typical $74 \mathrm{Vdc}($ min. 70 Vdc ) for $110 \mathrm{~V} / 125 \mathrm{Vdc}$ rating Typical $138 \mathrm{Vdc}(\mathrm{min} .125 \mathrm{Vdc})$ for $220 \mathrm{~V} / 250 \mathrm{Vdc}$ rating Typical $31 \mathrm{Vdc}(\min .28 \mathrm{Vdc})$ for $48 \mathrm{~V} / 54 \mathrm{~V} / 60 \mathrm{Vdc}$ rating Typical 15Vdc(min. 14 Vdc ) for 24 Vdc rating |
| Contact Ratings |  |
| Trip contacts |  |
| Make and carry | 5A continuously, <br> $30 \mathrm{~A}, 290 \mathrm{Vdc}$ for 0.5 s (L/R=10ms) |
| Break | $0.15 \mathrm{~A}, 290 \mathrm{Vdc}(\mathrm{L} / \mathrm{R}=40 \mathrm{~ms})$ |
| Auxiliary contacts |  |
| Make and carry | 4A continuously, <br> $10 \mathrm{~A}, 220 \mathrm{Vdc}$ for 0.5 s ( $\mathrm{L} / \mathrm{R} \geqq 5 \mathrm{~ms}$ ) |
| Break | $0.1 \mathrm{~A}, 220 \mathrm{Vdc}(\mathrm{L} / \mathrm{R}=40 \mathrm{~ms})$ |
| Durability |  |
| Make and carry | 10,000 operations minimum |
| Break | 100,000 operations minimum |
| Mechanical design |  |
| Weight | 10kg (Type-A), 13kg (Type-B) |
| Case colour | 2.5Y7.5/1(approximation to Munsell value) |
| Installation | Flush mounting or rack mounting |



Phase to phase fault


Note: In the case of a 60 Hz relay the operate time is reduced by approximately $15 \%$ to $20 \%$.

## CT Requirement

The requirement for minimum CT knee-point voltage for GRZ100 is assessed for the following three cases separately:
a) Stability for faults beyond the zone 1 reach point:
$\mathrm{V}_{\mathrm{k}}>\mathrm{k}_{1} \times \mathrm{I}_{\mathrm{f}_{-} 1 \_\max } \times\left(\mathrm{R}_{\mathrm{ct}}+\mathrm{R}_{2}\right)$
b) Stability for close-up reverse faults:
$\mathrm{V}_{\mathrm{k}}>\mathrm{k}_{2} \times \mathrm{I}_{\mathrm{f}_{-} \text {rev_max }} \times\left(\mathrm{R}_{\mathrm{ct}}+\mathrm{R}_{2}\right)$
c) Dependability of tripping for close-up forward faults:
$\mathrm{V}_{\mathrm{k}}>\mathrm{k}_{3} \times \mathrm{I}_{\mathrm{f} \_ \text {max }} \times\left(\mathrm{R}_{\mathrm{ct}}+\mathrm{R}_{2}\right)$
where,
$\mathrm{V}_{\mathrm{k}}$ : Knee point voltage.
$\mathrm{I}_{\mathrm{f}_{-} 1 \_ \text {max }}$ : Maximum fault current at the zone 1 reach point.
$\mathrm{I}_{\mathrm{f} \text { _rev_max }}$ : Maximum close-up reverse fault current.
$\mathrm{I}_{\mathrm{f} \text { _max }}$ : Maximum close-up forward fault current.
$\mathrm{R}_{\mathrm{ct}}$ : Resistance of CT.
$\mathrm{R}_{2}$ : Burden including connecting leads.
$\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}$ : Transient dimensioning factor
(All values refer to the CT secondary side)
The minimum requirement for $\mathrm{V}_{\mathrm{k}}$ is determined for each of the three cases and the highest of the three results is used to dimension the CT. $\mathrm{k}_{1}, \mathrm{k}_{2}$ and $\mathrm{k}_{3}$ are chosen depending on the primary system time constant as follows:

| Primary system time constant, Td (ms) | Transient dimensioning factor, $\mathbf{k}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | a) Stability for faults beyond the zone 1 reach point $\left(\mathrm{I}_{\mathrm{f} \_11} \max \right)$ | b) Stability for close-up reverse faults ( $\mathrm{I}_{\mathrm{f} \text { rev_max }}$ ) | c) Dependability of tripping for close-up forward faults ( $l_{f}$ max ) |
|  | $\mathrm{k}_{1}$ | $\mathrm{k}_{2}$ | $\mathrm{k}_{3}$ |
| <35 | 6 | 2 | 2 |
| < 50 | 7 | 3 | 2 |
| < 75 | 8 | 6 | 2 |
| <100 | 8 | 6 | 2 |
| < 150 | 8 | 6 | 2 |

Notes:

1. Knee-point voltage, $\mathrm{V}_{\mathrm{k}}$, is defined according to IEC 60044-1 as the minimum sinusoidal e.m.f. (r.m.s.) at rated power frequency when applied to the secondary terminals of the transformer, all other terminals being open circuited, which when increased by $10 \%$, causes the r.m.s. exciting current to increase by no more than $50 \%$.
2. In cases where CTs are specified as P-class protective current transformers according to IEC 60044-1 (e.g. 5P10, 5P20 etc.), the knee point voltage can be approximated as follows:
$\mathrm{V}_{\mathrm{k}} \approx 0.8 \times \mathrm{n} \times \mathrm{I}_{\mathrm{n}} \times\left(\mathrm{R}_{\mathrm{ct}}+\mathrm{R}_{\mathrm{VA}}\right)$
where,
$\mathrm{V}_{\mathrm{k}}$ : $\quad$ Knee point voltage.
$\mathrm{I}_{\mathrm{n}}$ : $\quad$ Rated secondary current.
$\mathrm{R}_{\mathrm{c}}$ : $\quad$ Resistance of CT.
$\mathrm{R}_{\mathrm{VA}}$ : Rated burden.
$\mathrm{n}: \quad$ Accuracy limiting factor of CT (e.g. 20 for 5P20)
(All values refer to the CT secondary side)
3. Remanent flux has not been considered. In cases where a high level of remanent flux may be experienced, it may be necessary to include an additional margin when dimensioning the CT.
4. The data provided is valid for 50 Hz and 60 Hz power systems.

## ENVIRONMENTAL PERFORMANCE CLAIMS

| Test | Standards | Details |
| :---: | :---: | :---: |
| Atmospheric Environment |  |  |
| Temperature | IEC60068-2-1/2 | Operating range: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Storage / Transit: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. |
| Humidity | IEC60068-2-78 | 56 days at $40^{\circ} \mathrm{C}$ and $93 \%$ relative humidity. |
| Enclosure Protection | IEC60529 | IP51 (Rear: IP20) |
| Mechanical Environment |  |  |
| Vibration | IEC60255-21-1 | Response - Class 1 <br> Endurance - Class 1 |
| Shock and Bump | IEC60255-21-2 | Shock Response Class 1 <br> Shock Withstand Class 1 <br> Bump Class 1 |
| Seismic | IEC60255-21-3 | Class 1 |
| Electrical Environment |  |  |
| Dielectric Withstand | IEC60255-5 | 2 kVrms for 1 minute between all terminals and earth. 2 kVrms for 1 minute between independent circuits. 1 kVrms for 1 minute across normally open contacts. |
| High Voltage Impulse | IEC60255-5 | Three positive and three negative impulses of $5 \mathrm{kV}($ peak $), 1.2 / 50 \mu \mathrm{~s}, 0.5 \mathrm{~J}$ between all terminals and between all terminals and earth. |
| Electromagnetic Environment |  |  |
| High Frequency Disturbance / Damped Oscillatory Wave | $\begin{aligned} & \text { IEC60255-22-1 Class 3, } \\ & \text { IEC61000-4-12 I } \\ & \text { EN61000-4-12 } \end{aligned}$ | 1 MHz 2.5 kV applied to all ports in common mode. 1 MHz 1.0 kV applied to all ports in differential mode. |
| Electrostatic Discharge | $\begin{aligned} & \text { IEC60255-22-2 Class 3, } \\ & \text { IEC61000-4-2 / EN61000-4-2 } \end{aligned}$ | 6kV contact discharge, 8kV air discharge. |
| Radiated RF Electromagnetic Disturbance | $\begin{aligned} & \hline \text { IEC60255-22-3 Class 3, } \\ & \text { IEC61000-4-3 / EN61000-4-3 } \end{aligned}$ | Field strength $10 \mathrm{~V} / \mathrm{m}$ for frequency sweeps of 80 MHz to 1 GHz and 1.7 GHz to 2.2 GHz . Additional spot tests at $80,160,450,900$ and 1890MHz. |
| Fast Transient Disturbance | $\begin{aligned} & \text { IEC60255-22-4, IEC61000-4-4 } \\ & \text { / EN61000-4-4 } \end{aligned}$ | $4 \mathrm{kV}, 2.5 \mathrm{kHz}, 5 / 50 \mathrm{~ns}$ applied to all inputs. |
| Surge Immunity | $\begin{aligned} & \text { IEC60255-22-5, } \\ & \text { IEC61000-4-5 / EN61000-4-5 } \end{aligned}$ | $1.2 / 50 \mu \mathrm{~s}$ surge in common/differential modes: <br> HV ports: 2kV/1kV (peak) <br> PSU and I/O ports: $2 \mathrm{kV} / 1 \mathrm{kV}$ (peak) <br> RS485 port: 1kV (peak) |
| Conducted RF Electromagnetic Disturbance | $\begin{aligned} & \text { IEC60255-22-6 Class 3, } \\ & \text { IEC61000-4-6 / EN61000-4-6 } \end{aligned}$ | 10 Vrms applied over frequency range 150 kHz to 100 MHz . Additional spot tests at 27 and 68 MHz . |
| Power Frequency Disturbance | $\begin{aligned} & \text { IEC60255-22-7, } \\ & \text { IEC61000-4-16 । } \\ & \text { EN61000-4-16 } \end{aligned}$ | 300 V 50 Hz for 10 s applied to ports in common mode. 150 V 50 Hz for 10 s applied to ports in differential mode. Not applicable to AC inputs. |
| Conducted and Radiated Emissions | $\begin{aligned} & \text { IEC60255-25, } \\ & \text { EN55022 Class A, } \\ & \text { IEC61000-6-4 / EN61000-6-4 } \end{aligned}$ | Conducted emissions: <br> 0.15 to 0.50 MHz : $<79 \mathrm{~dB}$ (peak) or $<66 \mathrm{~dB}$ (mean) <br> 0.50 to 30 MHz : $<73 \mathrm{~dB}$ (peak) or $<60 \mathrm{~dB}$ (mean) <br> Radiated emissions (at 30m): <br> 30 to 230MHz: <30dB <br> 230 to 1000 MHz : $<37 \mathrm{~dB}$ |
| $C \pi$ | 89/336/EEC | Compliance with the European Commission Electromagnetic Compatibility Directive is demonstrated according to EN 61000-6-2 and EN 61000-6-4. |
|  | 73/23/EEC | Compliance with the European Commission Low Voltage Directive is demonstrated according to EN 50178 and EN 60255-5. |

## Appendix L

Symbols Used in Scheme Logic

Symbols used in the scheme logic and their meanings are as follows:

## Signal names

Marked with $\square$ : Measuring element output signal
Marked with 9 : Signal number
Marked with $\square \square$ : Signal number and name of binary input by PLC function


Signal No. Signal name
Marked with [ ] : Scheme switch
Marked with " " : Scheme switch position
Unmarked : Internal scheme logic signal

## AND gates



## OR gates



| A | B | C | Output |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 0 |
| Other cases |  | 1 |  |

Signal inversion


| A | Output |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |

Timer


## One-shot timer



XXX - YYY: Setting range

## Flip-flop



| $S$ | $R$ | Output |
| :---: | :---: | :---: |
| 0 | 0 | No change |
| 1 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 1 | 0 |

## Scheme switch



| A | Switch | Output |
| :---: | :---: | :---: |
| 1 | ON | 1 |
| Other cases |  | 0 |

$+$ $\qquad$ Output
ON

| Switch | Output |
| :---: | :---: |
| ON | 1 |
| OFF | 0 |

## Appendix M

Example of Setting Calculation

## 1. Power System Data

[Example system]


- Line impedance of A $\mathrm{s} / \mathrm{s}-\mathrm{Bs} / \mathrm{s}$
- Positive sequence impedance: $0.0197+\mathrm{j} 0.2747$ (ohms/km)
- Zero sequence impedance: $\quad 0.4970+\mathrm{j} 1.4387$ (ohms/km)
- Mutual impedance: $\quad 0.0212+\mathrm{j} 0.3729(\mathrm{ohms} / \mathrm{km})$
- Back impedance
- A s/s: 0.94 (\%pu) at 100MVA base
- B s/s: 0.94 (\%pu) at 100MVA base
- Normal load current: 594.7A
- Minimum fault current: 2.05kA


## 2. Relay Setting

- Relay application:

Relay type: GRZ100-201
Protection scheme: BOP (Blocking overreach protection), 3 zone time-stepped distance protection

Autoreclose mode: $1+3$

## 3. Setting Calculation

### 3.1 Normal load current

To calculate load current, back impedance is converted from a percent unit value to an impedance value.
Base impedance Zbase $=(\text { Vbase })^{2} / V$ Abase

$$
\begin{aligned}
& =(150 \mathrm{kV} / \sqrt{3})^{2} / 100 \mathrm{MVA} \\
& =75 \mathrm{ohms}
\end{aligned}
$$

Therefore, load current $\mathrm{I}_{\mathrm{L}}$ is:
$\mathrm{I}_{\mathrm{L}}=($ Source voltage $) /(\mathrm{A} s / \mathrm{s}$ back impedance + Line impedance $+\mathrm{B} \mathrm{s} / \mathrm{s}$ impedance $)$

$$
=(150 \mathrm{kV} / \sqrt{3}) /\left(0.94 \times 75+16.8 \times \sqrt{\left(0.0197^{2}+0.2747^{2}\right)}+0.94 \times 75\right)
$$

$$
=594.7 \mathrm{~A}
$$

### 3.2 Minimum fault current

The minimum fault current Ifmin on a protected transmission line is the current of the phase to earth fault on the nearest remote terminal.


To calculate $\mathrm{I}_{\text {fmin }}$, zero sequence earth fault current $\left(\mathrm{I}_{\mathrm{O}}\right)$, positive sequence earth fault current ( $\mathrm{I}_{1}$ ) and negative earth fault current ( $\mathrm{I}_{2}$ ) are calculated as follows:
$\mathrm{I}_{0}=\mathrm{I}_{1}=\mathrm{I}_{2}=($ Source voltage $) /\{($ Back impedance of A s/s)
$+($ Transmission line zero sequence impedance $)$
$+($ Transmission line positive sequence impedance $\left.) \times 2^{*}\right\}$
$=(150 \mathrm{kV} / \sqrt{3}) /\left\{(0.94 \times 75)+16.8 \times \sqrt{\left(0.4970^{2}+1.4387^{2}\right)}\right.$ $\left.+2 \times 16.8 \times \sqrt{\left(0.0197^{2}+0.2747^{2}\right)}\right\}$

$$
=822.28 \mathrm{~A}
$$

So,
$\mathrm{I}_{\mathrm{fmin}}=\mathrm{I}_{0}+\mathrm{I}_{1}+\mathrm{I}_{2}=3 \times 822.28=2.47 \mathrm{kA}$
*Note: Assuming that positive sequence impedance $=$ negative sequence impedance.

### 3.3 Scheme setting

| Element | Contents | Setting |
| :---: | :---: | :---: |
| SCHEME | Protection scheme selection | BOP |
| ZS-C | Mho or Quadrilateral characteristic | Mho or Quad (Note *1) |
| ZG-C | Mho or Quadrilateral characteristic | Mho or Quad (Note *1) |
| CRSCM | Carrier out of service | ON |
| CHSEL | Carrier channel configuration | SINGLE |
| BOSW | Carrier sending signal | A |
| ZONESEL | Carrier control element | Z2 |
| ECHO | ECHO carrier send | ON |
| WKIT | Weak carrier trip | ON |
| CH-DEF | DEF carrier channel | -- |
| PSB-Z1 | PSB for Z1 elements | ON |
| PSB-Z1X | PSB for Z1X elements | ON |
| PSB-Z2 | PSB for Z2 elements | ON |
| PSB-Z3 | PSB for Z3 elements | ON |
| PSB-CR | PSB for carrier trip | ON |
| PSB-ZF | PSB for ZF elements | OFF |
| PSB-ZR1 | PSB for ZR1 elements | OFF |
| PSB-ZR2 | PSB for ZR2 elements | OFF |
| PSB-TP | Trip under PSB | ON |
| BLZONE | Blinder setting mode | COM |
| Z1CNT | Z1 trip mode | 1 |
| TPMODE | Trip mode | -- |
| STUB | STUB protection | OFF |
| SOTF-OC | SOTF OC trip | ON |
| SOTF-Z1 | SOTF Z1 trip | OFF |
| SOTF-Z2 | SOTF Z2 trip | OFF |
| SOTF-Z3 | SOTF Z3 trip | OFF |
| SOTF-F | SOTF ZF trip | OFF |
| SOTF-R1 | SOTF ZR1 trip | OFF |
| SOTF-R2 | SOTF ZR2 trip | OFF |
| SOTF-ND | SOTF ZND trip | OFF |
| ZFBT | ZF element back-up trip | OFF |
| ZR1BT | ZR1 element back-up trip | OFF |
| ZR2BT | ZR2 element back-up trip | OFF |
| ZNDBT | ZND element back-up trip | OFF |
| OCBT | OC back-up trip | OFF |
| OCIBT | OCI back-up trip | OFF |
| EFBT | EF back-up trip | ON |
| EFBTAL | EF back-up trip alarm | ON |
| DEFFEN | DEF back-up trip | ON |
| DEFBTAL | DEF back-up trip alarm | ON |
| BF1 | CBF re-trip | OFF |
| BF2 | CBF related trip | OFF |
| BFEXT | CBF initiation by ext. trip | OFF |


| OST | Out of step trip | OFF |
| :--- | :--- | :---: |
| THMT | Thermal trip | OFF |
| THMAL | Thermal alarm | OFF |
| Autoreclose mode | Autoreclosing mode | SPAR\&TPAR |
| ARC-SM | Multi. Shot ARC mode | OFF |
| ARC-CB | ARC mode for 1.5CB system | -- |
| ARC-DEF | REC. by DG carr. trip | OFF |
| ARC-BU | ARC initiated by back-up trip | OFF |
| ARC-EXT | ARC initiated by ext. trip | OFF |
| VCHK | TPAR condition | LB |
| VTPHSEL | VT phase selection | A |
| VT-RATE | VT rating | PH/G |
| 3PH-VT | 3ph. VT location | BUS |

### 3.4 Impedance setting

| Element | Standard setting (Recommended) | Setting |
| :--- | :--- | :--- |
| Z1S | $80 \%$ of protected line reactance | $80 \%$ |
| Z1XS | $120 \%$ or more of protected line reactance | $130 \%$ |
| Z2S | $120 \%$ or more of protected line reactance | $130 \%$ |
| Z3S | $100 \%$ of protected line impedance plus 150\% <br> of next line section | $300 \%$ |
| Z3S $\theta$ | Line angle setting (Note *1) |  |
| Z4S | $120 \%$ of Z3S | $120 \%$ of Z3S setting |
| Z1G | $75 \%-80 \%$ of protected line reactance | $75 \%$ |
| Z1XG | $120 \%$ or more of protected line reactance | $130 \%$ |
| Z2G | $120 \%$ or more of protected line reactance | $130 \%$ |
| Z3G | $400 \%-600 \%$ of protected line impedance | $500 \%$ |
| Z3G 0 | Line angle setting (Note *1) |  |
| Z4G | $120 \%$ of Z3G | $120 \%$ of Z3G setting |
| PSBSZ | 2 ohms (5A rating) | 2 ohms |
| PSBGZ | 2 ohms (5A rating) | 2 ohms |

## Step 1

Calculate the setting impedance from the given recommended reach point table.

## Step 2

Multiply the actual impedance by the factor " k " to calculate the relay impedance:
Relay impedance $=\mathrm{k} \times$ Actual impedance
Factor " k " is calculated as follows:

$$
\mathrm{K}=(\mathrm{CT} \text { ratio }) /(\mathrm{VT} \text { ratio })=(600 / 5 \mathrm{~A}) /((150 \mathrm{kV} / \sqrt{3}) /(110 \mathrm{~V}) / \sqrt{3}))=0.088
$$

Note *1: Z3S日 and Z3G 0 line angle settings are applicable if [ZS-C] and [ZG-C] are set to "Mho".

Line angle $\theta=\tan ^{-1}(0.2747 / 0.0197)=85.9^{\circ}$

The line angle setting is set to $85^{\circ}$. Alternatively set to a smaller angle (e.g. $80^{\circ}$ ) in consideration of higher levels of fault resistance.
<Z1S, Z1XS, Z2S, Z3S, Z4S, Z1G, Z1XG, Z2G element>
Z1S, Z1XS, Z2S, Z3S, Z4S, Z1G, Z1XG, Z2G element settings are calculated as shown in the following table.

## <Z3G, Z4G element>

Zero sequence current compensation is not applied to Z3 or Z4. Z3G and Z4G settings should be larger than the calculated values because of the underreaching effect without zero sequence current compensation.
a. Setting condition of Z3G element:

The Z3G element must operate on all faults for which the Z2G element operates.
(lower setting limit: Z3G > Z2G)
The Z3G element must not operate on load current. (upper setting limit), so:
X3G setting $=$ [Zline $\times 130 \%]($ Z2G setting $) \times 2.6$ (operating margin for no zero phase sequence current compensation) $\times 1.5$ (operating margin)

$$
=500 \% \text { of Zline }
$$

b. Setting condition of Z4G element

The operation zone of the Z4G element includes the operating zone of the Z3G element remote terminal relay.

| Element | Actual impedance (ohms) | k factor | Relay impedance (ohms) |
| :---: | :---: | :---: | :---: |
| Z1S | 3.692 | 0.088 | 0.32 |
| Z1XS | 5.999 |  | 0.53 |
| Z2S | 5.999 |  | 0.53 |
| Z3S | 13.84 |  | 1.22 |
| Z4S | 16.61 |  | 1.46 |
| Z1G | 3.461 |  | 0.30 |
| Z1XG | 5.999 |  | 0.53 |
| Z2G | 5.999 |  | 0.53 |
| Z3G | 23.07 |  | 2.03 |
| Z4G | 27.68 |  | 2.44 |
| PSBSZ | ----- |  | 2.00 |
| PSBGZ | ----- |  | 2.00 |

### 3.5 Blinder setting

Zero sequence compensation is not applied to the blinder elements.
Recommended setting: 5.00 ohms
These elements should not operate under maximum load current:
Rset < load impedance/margin

```
\(<\mathrm{V}\) rating/(2.5 times of I rating)
\(=(110 \mathrm{~V} / \sqrt{3}) /(2.5 \times 5 \mathrm{~A})\)
\(=5.08\)
```

| Element | Setting |
| :--- | :--- |
| BFRS | $5.00 \Omega$ |
| BFLS $\theta$ | $120^{\circ}$ |
| BRRS | $5.00 \Omega$ |
| BRLS | Linked with BFRS |
| BFRG | $5.00 \Omega$ |
| BFLG $\theta$ | $120^{\circ}$ |
| BRRG | $5.00 \Omega$ |
| BRLG | Linked with BRRG |

### 3.6 Zero sequence compensation

In the GRZ100, vector type zero sequence compensation is applied to Zone 1 and Zone 2, and the compensation factor is given in the resistive and reactive components independently.

## Step 1

Calculate the positive, zero sequence impedance and mutual impedance:

$$
\begin{aligned}
& \mathrm{Z}_{1}=\left[\mathrm{R}_{1}: 0.0197\right]+\mathrm{j}\left[\mathrm{X}_{1}: 0.2747\right] \text { (ohms) } \\
& \mathrm{Z}_{0}=\left[\mathrm{R}_{0}: 0.497\right]+\mathrm{j}\left[\mathrm{X}_{0}: 1.4287\right] \text { (ohms) } \\
& \mathrm{Z}_{\mathrm{m}}=\left[\mathrm{R}_{\mathrm{m}}: 0.0212\right]+\mathrm{j}\left[\mathrm{X}_{\mathrm{m}}: 0.3729\right] \text { (ohms) }
\end{aligned}
$$

## Step 2

Calculate the zero and mutual sequence compensation factor setting according to the following equations:
$\mathrm{K}_{\mathrm{RS}}=\mathrm{R}_{0} / \mathrm{R}_{1} \times 100=0.497 / 0.0197=2523(* 2)$
$K \mathrm{XS}=\mathrm{X}_{0} / \mathrm{X}_{1} \times 100=1.4387 / 0.2747=524$
$\mathrm{K}_{\mathrm{Rm}}=\mathrm{R}_{\mathrm{m}} / \mathrm{R}_{1} \times 100=0.0212 / 0.0197=108$
$\mathrm{K} \mathrm{Xm}=\mathrm{X}_{\mathrm{m}} / \mathrm{X}_{1} \times 100=0.3729 / 0.2747=136$
Note *2: If the calculated value exceeds 1000, then a setting of 1000 should be applied, this being considered to be the maximum practical value.

| Element | Setting |
| :--- | :--- |
| KRS | 1000 |
| KXS | 524 |
| $\mathrm{~K}_{\mathrm{Rm}}$ | 108 |
| KXm | 136 |

### 3.7 Current setting

a. Definite time earth fault protection (EF)

The EF element may be used either to provide back-up earth fault protection or, alternatively, open circuit protection. For example, to detect open faults of the CT circuit, the operating value of the detector should be lower than the normal load current on the line:
$\mathrm{EF} \leq($ normal load current $/ \mathrm{CT}$ ratio $) \times 0.5$

$$
\begin{aligned}
& =(594.7 \times 5 / 600) \times 0.5 \\
& =2.48 \mathrm{~A}
\end{aligned}
$$

| Element | Setting (A) |
| :--- | :--- |
| EF | 2.4 |

b. Directional earth fault element (DEF)

The DEF element should not be operated by the unbalance current or voltage present in normal conditions. It is recommended to set the current and voltage after measuring the actual unbalance residual current and voltage on the site.
DEFFI, DEFRI > Max. zero sequence current ( $3 \mathrm{I}_{0}$ ) in normal conditions
DEFFV, DEFRV > Max. zero sequence voltage ( $3 \mathrm{~V}_{\mathrm{O}}$ ) in normal conditions

| Element | Setting |
| :--- | :--- |
| DEFFI | $2.5(\mathrm{~A})$ |
| DEFRI | $2.5(\mathrm{~A})$ |
| DEFFV | $21.0(\mathrm{~V})$ |
| DEFRV | $21.0(\mathrm{~V})$ |
| DEFF $\theta$ | 85 |
| DEFR $\theta$ | 85 |

c. IDMT overcurrent element (EFI)

The EFI element should not be operated by the unbalance current present under normal conditions. It is recommended to set the current after measuring the actual unbalance residual current for the protected line.
EFI $>$ Max. zero sequence current $\left(3 \mathrm{I}_{\mathrm{O}}\right)$ in normal condition

| Element | Setting |
| :--- | :--- |
| EFI | $2.5(\mathrm{~A})$ |
| TEFI | 0.5 |
| MEFI | S |
| DEFI | F |

d. Switch-on-to-fault/stub protection (OCH)

The setting of the OCH element should be lower than the minimum fault current (Ifmin) at the busbar:

$$
\begin{aligned}
\mathrm{OCH} & <(\mathrm{I} \text { fmin } / \mathrm{CT} \text { ratio }) \times 0.5 \\
& =\{(0.8(\text { margin }) \times 2.47 \mathrm{kA}) /(600 / 5)\} \times 0.5
\end{aligned}
$$

$$
=8.23 \mathrm{~A}
$$

| Element | Setting |
| :--- | :--- |
| OCH | $8.2(\mathrm{~A})$ |

e. Breaker failure protection (BF)

The setting of the BF element should be lower than the minimum fault current:

$$
\begin{aligned}
\text { OCBF } & <(\text { Ifmin } / \text { CT ratio }) \times 0.5 \\
& =\{(0.5 \times 2.47 \mathrm{kA}) /(600 / 5)\} \times 0.5 \\
& =5.14 \mathrm{~A}
\end{aligned}
$$

Setting of TBF1 $=$ Breaker opening time + OCBF reset time + Margin

$$
=40 \mathrm{~ms}+10 \mathrm{~ms}+20 \mathrm{~ms}
$$

$$
=70 \mathrm{~ms}
$$

Setting of TBF2 $=$ TBF1 + Output relay operating time + Breaker opening time + OCBF reset time + Margin
$=70 \mathrm{~ms}+10 \mathrm{~ms}+40 \mathrm{~ms}+10 \mathrm{~ms}+10 \mathrm{~ms}$
$=140 \mathrm{~ms}$

| Element | Setting |
| :--- | :--- |
| OCBF | $5.1(\mathrm{~A})$ |
| TBF1 | 70 ms |
| TBF2 | 140 ms |

### 3.8 Undervoltage element

a. Undervoltage element with current compensation (Phase selector)
(1) Undervoltage element (UVCV)

The UVCV element should be set not to work with the current of the power system.
UVCV < rated voltage $\times 0.7$
$=63.5 \mathrm{~V} \times 0.7$
$=44.5$
(2) Reach setting (UVCZ)

The UVCZ element is set to the line impedance value:

$$
\begin{aligned}
\mathrm{UVCZ} & =16.8 \times \sqrt{\left(0.0197^{2}+0.2747^{2}\right)} \times 0.088 \\
& =0.41 \mathrm{ohms}
\end{aligned}
$$

| Element | Setting |
| :--- | :--- |
| UVCV | 45 V |
| UVCZ | 0.41 |
| UVC $\theta$ | 85 |

b. VT failure supervision

The undervoltage element for VT failure supervision (UVFS, UVFG) is set to about 50\% of the rated voltage.

| Element | Setting |
| :--- | :--- |
| UVFS | 52 V |
| UVFG | 30 V |

c. Weak infeed tripping function

The undervoltage element for weak infeed tripping (UVLS, UVLG) is set to $70 \%$ of the rated voltage.

| Element | Setting |
| :--- | :--- |
| UVLS | 77 V |
| UVLG | 45 V |

### 3.9 Time setting

a. Time delay setting for zone distance protection
b. Coordination time setting for protection signaling channel

This time setting is required only for the Blocking scheme. The time should be set larger than the time delay of protection signaling equipment (PSE) including propagation time of PLC (Power Line Carrier) or other communication link. The time setting should include an operation margin of 5 ms .

Time setting $=$ Time delay of PSE + Margin

$$
\begin{aligned}
& =12 \mathrm{~ms}+5 \mathrm{~ms} \\
& =17 \mathrm{~ms}
\end{aligned}
$$

c. Time setting of earth fault element EF (TEF)

This time setting is for time delay of the EF element. If it is set to 3s, the trip/alarm contact will close 3s after detecting an unbalance current (residual current) such as a CT open circuit fault. In addition to CT open circuit faults, this element can detect a broken conductor condition.
d. Time setting of directional earth fault relay (TDEF)

Set the time delay for the directional earth fault element for back-up.

| Element | Setting (s) |
| :--- | :--- |
| TZ1S | 0.00 |
| TZ2S | 0.30 |
| TZ3S | 0.40 |
| TZ1G | 0.00 |
| TZ2G | 0.30 |
| TZ3G | 0.40 |
| TCHD | 0.017 |
| TEF | 3.00 |
| TDEF | 3.00 |

### 3.10 Autoreclose setting

a. Dead timer reset timing
b. Dead line timer

The SPAR and TPAR timer are provided to present the deionized time of the line. The SPAR element is initiated simultaneously by the reclose initiation for single-pole autoreclose dead time. TPAR is for three-pole autoreclose dead time.
c. Reclaim timer

The reclosing command signal is blocked during adjusted time set by reclaim timer, after the breaker is closed manually or automatically.
d. ARC reset timer

This time element starts to run upon reclosing initiation.
e. ARC output pulse timer

The duration of the reclosing pulse depends on the operation time of the breaker. The required pulse time is set by this time element.

| Element | Setting (s) |
| :--- | :--- |
| TEVLV | 0.30 |
| TSPR | 0.80 |
| TTPR | 0.60 |
| TRDY | 60 |
| TRR | 2.00 |
| TW | 0.2 |

### 3.11 Synchronism check element

The synchronism check element setting is as follows.

| Element | Setting |
| :--- | :--- |
| SY1UV | 83 V |
| SY10V | 51 V |
| SY1 $\theta$ | 30 deg. |
| TSYN1 | 1.00 s |
| TDBL1 | 0.05 s |
| TLBD1 | 0.05 s |
| OVB | 51 V |
| UVB | 13 V |
| OVL1 | 51 V |
| UVL1 | 13 V |

## Appendix N

IEC60870-5-103: Interoperability
and Troubleshooting

## IEC60870-5-103 Configurator

IEC103 configurator software is included in a same CD as RSM100, and can be installed easily as follows:

## Installation of IEC103 Configurator

Insert the CD-ROM (RSM100) into a CDROM drive to install this software on a PC.
Double click the "Setup.exe" of the folder "\IEC103Conf" under the root directory, and operate it according to the message.

When installation has been completed, the IEC103 Configurator will be registered in the start menu.

## Starting IEC103 Configurator

Click [Start $] \rightarrow[$ Programs $] \rightarrow[$ IEC103 Configurator $] \rightarrow[$ IECConf] to the IEC103 Configurator software.

Note: The instruction manual of IEC103 Configurator can be viewed by clicking [Help] $\rightarrow$ [Manual] on IEC103 Configurator.

## IEC60870-5-103: Interoperability

## 1. Physical Layer

1.1 Electrical interface: EIA RS-485

Number of loads, 32 for one protection equipment
1.2 Optical interface

Glass fibre (option)
ST type connector (option)
1.3 Transmission speed

User setting: 9600 or $19200 \mathrm{bit} / \mathrm{s}$

## 2. Application Layer

COMMON ADDRESS of ASDU
One COMMON ADDRESS OF ASDU (identical with station address)

## 3. List of Information

The following items can be customized with the original software tool "IEC103 configurator". (For details, refer to "IEC103 configurator" manual No.6F2S0839.)

- Items for "Time-tagged message": Type ID(1/2), INF, FUN, Transmission condition(Signal number), COT
- Items for "Time-tagged measurands": INF, FUN, Transmission condition(Signal number), COT, Type of measurand quantities
- Items for "General command": INF, FUN, Control condition(Signal number)
- Items for "Measurands": Type ID(3/9), INF, FUN, Number of measurand, Type of
measurand quantities
- Common setting
- Transmission cycle of Measurand frame
- FUN of System function
- Test mode, etc.

CAUTION: To be effective the setting data written via the RS232C, turn off the DC supply of the relay and turn on again.

## 3. 1 IEC60870-5-103 Interface

### 3.1.1 Spontaneous events

The events created by the relay will be sent using Function type (FUN) / Information numbers (INF) to the IEC60870-5-103 master station.

### 3.1.2 General interrogation

The GI request can be used to read the status of the relay, the Function types and Information numbers that will be returned during the GI cycle are shown in the table below.

For details, refer to the standard IEC60870-5-103 section 7.4.3.

### 3.1.3 Cyclic measurements

The relay will produce measured values using Type ID=3 or 9 on a cyclical basis, this can be read from the relay using a Class 2 poll. The rate at which the relay produces new measured values can be customized.

### 3.1.4 Commands

The supported commands can be customized. The relay will respond to non-supported commands with a cause of transmission (COT) of negative acknowledgement of a command.
For details, refer to the standard IEC60870-5-103 section 7.4.4.

### 3.1.5 Test mode

In test mode, both spontaneous messages and polled measured values, intended for processing in the control system, are designated by means of the CAUSE OF TRANSMISSION 'test mode'. This means that CAUSE OF TRANSMISSION $=7$ 'test mode' is used for messages normally transmitted with COT=1 (spontaneous) or COT=2 (cyclic).
For details, refer to the standard IEC60870-5-103 section 7.4.5.

### 3.1.6 Blocking of monitor direction

If the blocking of the monitor direction is activated in the protection equipment, all indications and measurands are no longer transmitted.

For details, refer to the standard IEC60870-5-103 section 7.4.6.

### 3.2 List of Information

The followings are the default settings.

## List of Information

| INF | Description | Contents | IEC103 Configurator Default setting |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | GI | $\begin{array}{\|c\|} \hline \text { Type } \\ \text { ID } \end{array}$ | COT | FUN | DPI |  |  |
|  |  |  |  |  |  |  | Signal No. | OFF | ON |
| Standard Information numbers in monitor direction |  |  |  |  |  |  |  |  |  |
| System Function |  |  |  |  |  |  |  |  |  |
| 0 | End of General Interrogation | Transmission completion of GI items. | -- | 8 | 10 | 255 | -- | -- | -- |
| 0 | Time Synchronization | Time Synchronization ACK. | -- | 6 | 8 | 255 | -- | -- | -- |
| 2 | Reset FCB | Reset FCB(toggle bit) ACK | -- | 5 | 3 | 128 | -- | -- | -- |
| 3 | Reset CU | Reset CU ACK | -- | 5 | 4 | 128 | -- | -- | -- |
| 4 | Start/Restart | Relay start/restart | -- | 5 | 5 | 128 | -- | -- | -- |
| 5 | Power On | Relay power on. |  |  | Not supported |  | -- | -- | -- |
| Status Indications |  |  |  |  |  |  |  |  |  |
| 16 | Auto-recloser active | If it is possible to use auto-recloser, this item is set active, if impossible, inactive. | GI | 1 | 1, 9, 11, 12 | 128 | 1411 | 1 | 2 |
| 17 | Teleprotection active | If protection using telecommunication is available, this item is set to active. If not, set to inactive. | GI | 1 | 1, 9, 12 | 128 | 1412 | 1 | 2 |
| 18 | Protection active | If the protection is available, this item is set to active. If not, set to inactive. | GI | 1 | 1, 9, 12 | 128 | 1413 | 1 | 2 |
| 19 | LED reset | Reset of latched LEDs | -- | 1 | 1, 11, 12 | 128 | 1409 | -- | 2 |
| 20 | Monitor direction blocked | Block the 103 transmission from a relay to control system. IECBLK: "Blocked" settimg. | GI | 1 | 9, 11 | 128 | 1241 | 1 | 2 |
| 21 | Test mode | Transmission of testmode situation froma relay to control system. IECTST "ON" setting. | GI | 1 | 9, 11 | 128 | 1242 | 1 | 2 |
| 22 | Local parameter Setting | When a setting change has done at the local, the event is sent to control system. |  |  |  | t suppor |  |  |  |
| 23 | Characteristic1 | Setting group 1 active | GI | 1 | 1, 9, 11, 12 | 128 | 1243 | 1 | 2 |
| 24 | Characteristic2 | Setting group 2 active | GI | 1 | 1, 9, 11, 12 | 128 | 1244 | 1 | 2 |
| 25 | Characteristic3 | Setting group 3 active | GI | 1 | 1, 9, 11, 12 | 128 | 1245 | 1 | 2 |
| 26 | Characteristic4 | Setting group 4 active | GI | 1 | 1, 9, 11, 12 | 128 | 1246 | 1 | 2 |
| 27 | Auxiliary input1 | Binary input 1 |  |  |  | No set |  |  |  |
| 28 | Auxiliary input2 | Binary input 2 |  |  |  | No set |  |  |  |
| 29 | Auxiliary input3 | Binary input 3 |  |  |  | No set |  |  |  |
| 30 | Auxiliary input4 | Binary input 4 |  |  |  | No set |  |  |  |
| Supervision Indications |  |  |  |  |  |  |  |  |  |
| 32 | Measurand supervision I | Zero sequence current supervision | GI | 1 | 1, 9 | 128 | 1267 | 1 | 2 |
| 33 | Measurand supervision V | Zero sequence voltage supervision | GI | 1 | 1, 9 | 128 | 1268 | 1 | 2 |
| 35 | Phase sequence supervision | Negative sequence voltage supevision | GI | 1 | 1,9 | 128 | 1269 | 1 | 2 |
| 36 | Trip circuit supervision | Output circuit supervision |  |  |  | t supportas |  |  |  |
| 37 | I>>backup operation |  |  |  |  | t suppor |  |  |  |
| 38 | VT fuse failure | VT failure | GI | 1 | 1, 9 | 128 | 172 | 1 | 2 |
| 39 | Teleprotection disturbed | CF(Communication system Fail) supervision | GI | 1 | 1, 9 | 128 | 253 | 1 | 2 |
| 46 | Group warning | Only alarming | GI | 1 | 1,9 | 128 | 1258 | 1 | 2 |
| 47 | Group alarm | Trip blocking and alarming | GI | 1 | 1, 9 | 128 | 1252 | 1 | 2 |
| Earth Fault Indications |  |  |  |  |  |  |  |  |  |
| 48 | Earth Fault L1 | A phase earth fault | No set |  |  |  |  |  |  |
| 49 | Earth Fault L2 | B phase earth fault | No set |  |  |  |  |  |  |
| 50 | Earth Fault L3 | C phase earth fault | No set |  |  |  |  |  |  |
| 51 | Earth Fault Fwd | Earth fault forward | Not supported |  |  |  |  |  |  |
| 52 | Earth Fault Rev | Earth fault reverse | Not supported |  |  |  |  |  |  |


| INF | Description | Contents | IEC103 Configurator Default setting |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | GI | Type ID | COT | FUN | DPI |  |  |
|  |  |  |  |  |  |  | Signal NO. | OFF | ON |
| Fault Indications |  |  |  |  |  |  |  |  |  |
| 64 | Start/pick-up L1 | A phase, A-B phase or C-A phase element pick-up | No set |  |  |  |  |  |  |
| 65 | Start/pick-up L2 | B phase, A-B phase or B-C phase element pick-up | No set |  |  |  |  |  |  |
| 66 | Start/pick-up L3 | C phase, B-C phase or C-A phase element pick-up | No set |  |  |  |  |  |  |
| 67 | Start/pick-up N | Earth fault element pick-up | No set |  |  |  |  |  |  |
| 68 | General trip | Any trip | -- | 2 | 1 | 128 | 1280 | -- | 2 |
| 69 | Trip L1 | A phase, A-B phase or C-A phase trip | No set |  |  |  |  |  |  |
| 70 | Trip L2 | B phase, A-B phase or B-C phase trip | No set |  |  |  |  |  |  |
| 71 | Trip L3 | C phase, B-C phase or C-A phase trip | No set |  |  |  |  |  |  |
| 72 | Trip l>>(back-up) | Back up trip | -- | 2 | 1 | 128 | 194 | -- | 2 |
| 73 | Fault location X In ohms | Fault location | -- | 4 | 1 | 128 | 1048 | -- | -- |
| 74 | Fault forward/line | Forward fault | Not supported |  |  |  |  |  |  |
| 75 | Fault reverse/Busbar | Reverse fault | Not supported |  |  |  |  |  |  |
| 76 | Teleprotection Signal transmitted | Carrier signal sending | Not supported |  |  |  |  |  |  |
| 77 | Teleprotection Signal received | Carrier signal receiving | Not supported |  |  |  |  |  |  |
| 78 | Zone1 | Zone 1 trip | -- | 2 | 1 | 128 | 342 | -- | 2 |
| 79 | Zone2 | Zone 2 trip | -- | 2 | 1 | 128 | 344 | -- | 2 |
| 80 | Zone3 | Zone 3 trip | -- | 2 | 1 | 128 | 345 | -- | 2 |
| 81 | Zone4 | Zone 4 trip | No set |  |  |  |  |  |  |
| 82 | Zone5 | Zone 5 trip | No set |  |  |  |  |  |  |
| 83 | Zone6 | Zone 6 trip | No set |  |  |  |  |  |  |
| 84 | General Start/Pick-up | Any elements pick-up | No set |  |  |  |  |  |  |
| 85 | Breaker Failure | CBF trip or CBF retrip | -- | 2 | 1 | 128 | 199 | -- | 2 |
| 86 | Trip measuring system L1 |  | Not supported |  |  |  |  |  |  |
| 87 | Trip measuring system L2 |  | Not supported |  |  |  |  |  |  |
| 88 | Trip measuring system L3 |  | Not supported |  |  |  |  |  |  |
| 89 | Trip measuring system E |  | Not supported |  |  |  |  |  |  |
| 90 | Trip 1> | Inverse time OC trip | -- | 2 | 1 | 128 | 327 | -- | 2 |
| 91 | Trip l>> | Definite time OC trip | -- | 2 | 1 | 128 | 326 | -- | 2 |
| 92 | Trip IN> | Inverse time earth fault OC trip | -- | 2 | 1 | 128 | 184 | -- | 2 |
| 93 | Trip IN>> | Definite time earth fault OC trip | -- | 2 | 1 | 128 | 678 | -- | 2 |
| Autoreclose indications |  |  |  |  |  |  |  |  |  |
| 128 | CB 'ON' by Autoreclose | CB close command output | -- | 1 | 1 | 128 | 291 | -- | 2 |
| 129 | CB 'ON' by long-time Autoreclose |  | Not supported |  |  |  |  |  |  |
| 130 | Autoreclose Blocked | Autoreclose block | GI | 1 | 1, 9 | 128 | 1544 | 1 | 2 |

Details of Fault location settings in IEC103 configurator

| INF | Tbl | Offset | Data type | Coeff |
| :---: | :---: | :---: | :---: | :---: |
| 73 | 5 | 26 | short | 0.1 |


| INF | Description | Contents | IEC103 configurator Default setting |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | GI | Type ID | COT | FUN | Max. No. |
| Measurands |  |  |  |  |  |  |  |
| 144 | Measurand I | <meaurand l> | No |  |  |  | 0 |
| 145 | Measurand I,V | <meaurand l> | No |  |  |  | 0 |
| 146 | Measurand I,V,P,Q | <meaurand l> | No |  |  |  | 0 |
| 147 | Measurand IN,VEN | <meaurand l> | No |  |  |  | 0 |
| 148 | $\begin{aligned} & \hline \text { Measurand IL1,2,3, VL1,2,3, } \\ & \mathrm{P}, \mathrm{Q}, \mathrm{f} \end{aligned}$ | Ia, Ib, Ic, Va, Vb, Vc, P, Q, f measurand <meaurand II> | -- | 9 | 2, 7 | 128 | 9 |
| Generic Function |  |  |  |  |  |  |  |
| 240 | Read Headings |  | Not supported |  |  |  |  |
| 241 | Read attributes of all entries of a group |  | Not supported |  |  |  |  |
| 243 | Read directory of entry |  | Not supported |  |  |  |  |
| 244 | Real attribute of entry |  | Not supported |  |  |  |  |
| 245 | End of GGI |  | Not supported |  |  |  |  |
| 249 | Write entry with confirm |  | Not supported |  |  |  |  |
| 250 | Write entry with execute |  | Not supported |  |  |  |  |
| 251 | Write entry aborted |  | Not supported |  |  |  |  |

Details of MEA settings in IEC103 configurator

| INF | MEA | Tbl | Offset | Data type | Limit |  | Coeff |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Lower | Upper |  |
| 148 | la | 1 | 36 | short | 0 | 4096 | 3.41333 |
|  | lb | 1 | 40 | short | 0 | 4096 | 3.41333 |
|  | Ic | 1 | 44 | short | 0 | 4096 | 3.41333 |
|  | Va | 1 | 0 | short | 0 | 4096 | 0.26877 |
|  | Vb | 1 | 4 | short | 0 | 4096 | 0.26877 |
|  | Vc | 1 | 8 | short | 0 | 4096 | 0.26877 |
|  | P | 2 | 8 | long | -4096 | 4096 | 0.00071661 |
|  | Q | 2 | 12 | long | -4096 | 4096 | 0.00071661 |
|  | f | 2 | 16 | short | 0 | 4096 | 0.34133 |


| INF | Description | Contents | IEC103 Configurator Default setting |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Control } \\ \text { direction } \end{array} \\ \hline \end{array}$ | Type ID | COT | FUN |
| Selection of standard information numbers in control direction |  |  |  |  |  |  |
| System functions |  |  |  |  |  |  |
| 0 | Initiation of general interrogation |  | -- | 7 | 9 | 255 |
| 0 | Time synchronization |  | -- | 6 | 8 | 255 |
| General commands |  |  |  |  |  |  |
| 16 | Auto-recloser on/off |  | ON/OFF | 20 | 20 | 128 |
| 17 | Teleprotection on/off |  | ON/OFF | 20 | 20 | 128 |
| 18 | Protection on/off | (*1) | ON/OFF | 20 | 20 | 128 |
| 19 | LED reset | Reset indication of latched LEDs. | ON | 20 | 20 | 128 |
| 23 | Activate characteristic 1 | Setting Group 1 | ON | 20 | 20 | 128 |
| 24 | Activate characteristic 2 | Setting Group 2 | ON | 20 | 20 | 128 |
| 25 | Activate characteristic 3 | Setting Group 3 | ON | 20 | 20 | 128 |
| 26 | Activate characteristic 4 | Setting Group 4 | ON | 20 | 20 | 128 |
| Generic functions |  |  |  |  |  |  |
| 240 | Read headings of all defined groups |  | Not supported |  |  |  |
| 241 | Read values or attributes of all entries of one group |  | Not supported |  |  |  |
| 243 | Read directory of a single entry |  | Not supported |  |  |  |
| 244 | Read values or attributes of a single entry |  | Not supported |  |  |  |
| 245 | General Interrogation of generic data |  | Not supported |  |  |  |
| 248 | Write entry |  | Not supported |  |  |  |
| 249 | Write entry with confirmation |  | Not supported |  |  |  |
| 250 | Write entry with execution |  | Not supported |  |  |  |

(*1) Note: While the relay receives the "Protection off" command, " IN SERVICE LED" is off.

Details of Command settings in IEC103 configurator

| INF | DCO |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Sig off | Sig on | Rev | Valid time |
| 16 | 2684 | 2684 | $\checkmark$ | 0 |
| 17 | 2685 | 2685 | $\checkmark$ | 0 |
| 18 | 2686 | 2686 | $\checkmark$ | 0 |
| 19 | 0 | 2688 |  | 200 |
| 23 | 0 | 2640 |  | 1000 |
| 24 | 0 | 2641 |  | 1000 |
| 25 | 0 | 2642 |  | 1000 |
| 26 | 0 | 2643 |  | 1000 |

$\checkmark$ : signal reverse

| Description | Contents | GRZ100 supported | Comment |
| :---: | :---: | :---: | :---: |
| Basic application functions |  |  |  |
| Test mode |  | Yes |  |
| Blocking of monitor direction |  | Yes |  |
| Disturbance data |  | No |  |
| Generic services |  | No |  |
| Private data |  | Yes |  |
| Miscellaneous |  |  |  |
| Measurand |  | Max. MVAL = rated value times |  |
| Current L1 | Ia | Configurable |  |
| Current L2 | Ib | Configurable |  |
| Current L3 | Ic | Configurable |  |
| Voltage L1-E | Va | Configurable |  |
| Voltage L2-E | Vb | Configurable |  |
| Voltage L3-E | Vc | Configurable |  |
| Active power P | P | Configurable |  |
| Reactive power Q | Q | Configurable |  |
| Frequency f | f | Configurable |  |
| Voltage L1 - L2 | Vab | Configurable |  |

Details of Common settings in IEC103 configurator

- Setting file’s remark: GRZ100_1.00
- Remote operation valid time [ms]: 4000
- Local operation valid time [ms]: 4000
- Measurand period [s]: 2
- Function type of System functions: 128
- Signal No. of Test mode: 1242
- Signal No. for Real time and Fault number: 1279


## [Legend]

GI: General Interrogation (refer to IEC60870-5-103 section 7.4.3)
Type ID: Type Identification (refer to IEC60870-5-103 section 7.2.1)
1 : time-tagged message
2 : time-tagged message with relative time
3 : measurands I
4 : time-tagged measurands with relative time
5 : identification
6 : time synchronization
8 : general interrogation termination
9 : measurands II
10: generic data
11: generic identification
20: general command
23: list of recorded disturbances
26: ready for transmission for disturbance data
27: ready for transmission of a channel
28: ready for transmission of tags
29: transmission of tags
30: transmission of disturbance values
31: end of transmission
COT: Cause of Transmission (refer to IEC60870-5-103 section 7.2.3)
1: spontaneous
2: cyclic
3: reset frame count bit (FCB)
4: reset communication unit (CU)
5: start / restart
6: power on
7: test mode
8: time synchronization
9: general interrogation
10: termination of general interrogation
11: local operation
12: remote operation
20: positive acknowledgement of command
21: negative acknowledgement of command
31: transmission of disturbance data
40: positive acknowledgement of generic write command
41: negative acknowledgement of generic write command
42: valid data response to generic read command
43: invalid data response to generic read command
44: generic write confirmation
FUN: Function type (refer to IEC60870-5-103 section 7.2.5.1)
DPI: Double-point Information (refer to IEC60870-5-103 section 7.2.6.5)
DCO: Double Command (refer to IEC60870-5-103 section 7.2.6.4)

## IEC103 setting data is recommended to be saved as follows:

## (1) Naming for IEC103setting data

The file extension of IEC103 setting data is ".csv". The version name is recommended to be provided with a revision number in order to be changed in future as follows:

First draft: ******_01.csv
Second draft: ******_02.csv
Third draft: ******_03.csv
$\uparrow$ Revision number

The name "******" is recommended to be able to discriminate the relay type such as GRZ100 or GRL100, etc. The setting files remark field of IEC103 is able to enter up to 12 one-byte characters. It is utilized for control of IEC103 setting data.


## (2) Saving thelEC103 setting data

The IEC103 setting data is recommended to be saved in external media such as FD (floppy disk) or CD-R, not to remain in the folder.

## Troubleshooting

| No. | Phenomena | Supposed causes | Check / Confirmation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Object | Procedure |  |  |
| 1 | Communication trouble (IEC103 communication is not available.) | Address setting is incorrect. | $\begin{aligned} & \mathrm{BCU} \\ & \mathrm{RY} \end{aligned}$ | Match address setting between BCU and relay. Avoid duplication of address with other relay. |  |  |
|  |  | Transmission baud rate setting is incorrect. | $\begin{aligned} & \mathrm{BCU} \\ & \mathrm{RY} \end{aligned}$ | Match transmission baud rate setting between $B C U$ and relay. |  |  |
|  |  | Start bit, stop bit and parity settings of data that BCU transmits to relay is incorrect. | BCU | Go over the following settings by BCU. Relay setting is fixed as following settings. <br> - Start bit: 1bit <br> - Stop bit: 1bit <br> - Parity setting: even |  |  |
|  |  | The PRTCL1 setting is incorrect. (The model with PRTCL1 setting.) | RY | Change the PRTCL1 setting. Relation between PRTCL1 setting and available transmission protocol is referred to the following table. |  |  |
|  |  |  |  | RS485 port at the back of the relay | $\begin{aligned} & \text { PRTCL1 } \\ & \text { =HDLC } \end{aligned}$ | $\begin{aligned} & \text { PRTCL1 } \\ & \text { =IEC } \end{aligned}$ |
|  |  |  |  | COM1 (CH1) | HDLC | IEC |
|  |  |  |  | COM2 (CH2) | IEC | - |
|  |  | RS485 or optical cable interconnection is incorrect. | Cable | - Check the connection port.(CH1/CH2) <br> - Check the interconnection of RS485 A/B/COM <br> - Check the send and received interconnection of optical cable. |  |  |
|  |  | The setting of converter is incorrect. (RS485/optic conversion is executed with the transmission channel, etc.) | Converter | In the event of using G1IF2, change the DIPSW setting in reference to INSTRUCTION MANUAL (6F2S0794). |  |  |
|  |  | The relationship between logical " $0 / 1$ " of the signal and Sig.on/off is incorrect. (In the event of using optical cable) | $B C U$ | Check the following; <br> Logical0 : Sig.on Logical1:Sig.off |  |  |
|  |  | Terminal resistor is not offered. (Especially when RS485 cable is long.) | cable | Impose terminal resistor (150[ohms]) to both ends of RS 485 cable. |  |  |
|  |  | Relay cannot receive the requirement frame from BCU. <br> (The timing coordination of sending and receiving switch control is irregular in half-duplex communication.) | $B C U$ | Check to secure the margin more than 15 ms between receiving the reply frame from the relay and transmitting the next requirement frame on $B C U$. |  |  |
|  |  | The requirement frame from BCU and the reply frame from relay contend. <br> (The sending and receiving timing coordination is irregular in half-duplex communication.) | BCU | Check to set the time-out of reply frame from the relay. <br> Time-out setting: more than 100 ms (acceptable value of response time 50 ms plus margin) |  |  |


| No. | Phenomena | Supposed causes | Check / Confirmation |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Object | Procedure |
| 2 | HMI does not display IEC103 event on the SAS side. | The relevant event sending condition is not valid. | RY | Change the event sending condition (signal number) of IEC103 configurator if there is a setting error. When the setting is correct, check the signal condition by programmable LED, etc. |
|  |  | The relevant event Information Number (INF) and/or Function Type (FUN) may be different between the relay and SAS. | $\begin{aligned} & \text { RY } \\ & \text { SAS } \end{aligned}$ | Match the relevant event Information Number (INF) or Function Type (FUN) between the relay and SAS. |
|  |  | The relay is not initialised after writing IEC103 configurator setting. | RY | Check the sum value of IEC103 setting data from the LCD screen. When differing from the sum value on IEC103 configurator, initialise the relay. |
|  |  | It changes to the block mode. | RY | Change the IECBR settling to Normal. |
| 3 | Time can be synchronised with IEC103 communication. | BCU does not transmit the frame of time synchronisation. | BCU | Transmit the frame of time synchronisation. |
|  |  | The settling of time synchronisation source is set to other than IEC. | RY | Change the settling of time synchronisation source to IEC. |

(Note) BCU: Bay control unit, RY: Relay

## Appendix 0

## Programmable Reset Characteristics and Implementation of Thermal Model to IEC60255-8

## Programmable Reset Characteristics

The overcurrent stages for phase and earth faults, OC1 and EF1, each have a programmable reset feature. Resetting may be instantaneous or definite time delayed.
Instantaneous resetting is normally applied in multi-shot auto-reclosing schemes, to ensure correct grading between relays at various points in the scheme.

The definite time delayed reset characteristic may be used to provide faster clearance of intermittent ('pecking' or 'flashing') fault conditions. An example of where such phenomena may be experienced is in plastic insulated cables, where the fault energy melts the cable insulation and temporarily extinguishes the fault, after which the insulation again breaks down and the process repeats.

An inverse time overcurrent protection with instantaneous resetting cannot detect this condition until the fault becomes permanent, thereby allowing a succession of such breakdowns to occur, with associated damage to plant and danger to personnel. If a definite time reset delay of, for example, 60 seconds is applied, on the other hand, the inverse time element does not reset immediately after each successive fault occurrence. Instead, with each new fault inception, it continues to integrate from the point reached during the previous breakdown, and therefore operates before the condition becomes permanent. Figure O-1 illustrates this theory.


Figure 0-1

## Implementation of Thermal Model to IEC60255-8

Heating by overload current and cooling by dissipation of an electrical system follow exponential time constants. The thermal characteristics of the electrical system can be shown by equation (1).

$$
\begin{equation*}
\theta=\frac{\mathrm{I}^{2}}{\mathrm{I}_{\mathrm{AOL}}^{2}}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right) \times 100 \% \tag{1}
\end{equation*}
$$

where:
$\theta=$ thermal state of the system as a percentage of allowable thermal capacity,
I = applied load current,
$\mathrm{I}_{\mathrm{AOL}}=$ allowable overload current of the system,
$\tau=$ thermal time constant of the system.
The thermal state $\theta$ is expressed as a percentage of the thermal capacity of the protected system, where $0 \%$ represents the cold state and $100 \%$ represents the thermal limit, that is the point at which no further temperature rise can be safely tolerated and the system should be disconnected. The thermal limit for any given electrical plant is fixed by the thermal setting $\mathrm{I}_{\mathrm{AOL}}$. The relay gives a trip output when $\theta=$ 100\%.

If current I is applied to a cold system, then $\theta$ will rise exponentially from $0 \%$ to ( $\mathrm{I}^{2} / \mathrm{I}_{\mathrm{AOL}}{ }^{2} \times 100 \%$ ), with time constant $\tau$, as in Figure O-2. If $\theta=100 \%$, then the allowable thermal capacity of the system has been reached.


Figure 0-2

A thermal overload protection relay can be designed to model this function, giving tripping times according to the IEC60255-8 ‘Hot' and ‘Cold’ curves.

$$
\begin{array}{ll}
\mathrm{t}=\tau \cdot \operatorname{Ln}\left[\frac{\mathrm{I}^{2}}{\mathrm{I}^{2}-\mathrm{I}_{\mathrm{AOL}}^{2}}\right] & \text { (1) } \cdots \cdots \text { Cold curve } \\
\mathrm{t}=\tau \cdot \operatorname{Ln}\left[\frac{\mathrm{I}^{2}-\mathrm{I}_{\mathrm{P}}^{2}}{\mathrm{I}^{2}-\mathrm{I}_{\mathrm{AOL}}^{2}}\right] & \text { (2) } \cdots \cdots \text { Hot curve }
\end{array}
$$

where:

$$
\mathrm{I}_{\mathrm{P}}=\text { prior load current. }
$$

In fact, the cold curve is simply a special case of the hot curve where prior load current $I_{P}=0$, catering for the situation where a cold system is switched on to an immediate overload.

Figure O-3 shows a typical thermal profile for a system which initially carries normal load current, and is then subjected to an overload condition until a trip results, before finally cooling to ambient temperature.


Figure 0-3

## Appendix P

## Inverse Time Characteristics



Normal Inverse


Very Inverse


## Appendix Q

Failed Module Tracing and Replacement

## 1. Failed module tracing and its replacement

If the "ALARM" LED is ON, the following procedure is recommended. If not repaired, contact the vendor.

Procedure


End

## Countermeasure



As shown in the table, some of the messages cannot identify the fault location definitely but suggest plural possible failure locations. In these cases, the failure location is identified by replacing the suggested failed modules with spare modules one by one until the "ALARM" LED is turned off.

If both "IN SERVICE" LED and "ALARM" LED are OFF, check the followings.
Check: Is DC supply voltage available with the correct polarity and of adequate magnitude, and connected to the correct terminals?

Table Q-1 LCD Message and Failure Location

| Message | Failure location |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | VCT | SPM | $\begin{aligned} & 101 \text { or } \\ & 108 \end{aligned}$ | 102 | 103 | 104 | 105 | 106 | FD | HMI | Channel | Disconnector | AC <br> cable | VT |
| Checksum err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| ROM data err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| ROM-RAM err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| SRAM err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| BU-RAM err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| DPRAM err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| EEPROM err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| A/D err |  | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |
| V0 err | $\times(2)$ | $\times(1)$ |  |  |  |  |  |  |  |  |  |  | $\times(2)$ |  |
| V2 err | $\times$ (2) | $\times(1)$ |  |  |  |  |  |  |  |  |  |  | $\times$ (2) |  |
| 10 err | $\times(2)$ | $\times(1)$ |  |  |  |  |  |  |  |  |  |  | $\times(2)$ |  |
| CT err | $\times(2)$ | $\times(2)$ |  |  |  |  |  |  |  |  |  |  | $\times(1)$ |  |
| DIO err |  | $\times(2)$ | $\times(1)$ | $\times(1)$ | $\times$ (1) | $\times(1)$ | $\times(1)$ | $\times(1)$ |  |  |  |  |  |  |
| RSM err |  | $\times(1)$ | $\times$ (2) |  |  |  |  |  |  |  |  |  |  |  |
| FD:checksum err |  | $\times(2)$ | $\times$ (1) |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD: ROM-RAM err |  | $\times(2)$ | $\times$ (1) |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD: SRAM err |  | $\times(2)$ | $\times$ (1) |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD:Sampling err |  | $\times(2)$ | $\times$ (1) |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD:DO err |  | $\times(2)$ | $\times$ (1) |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD:ROM data err |  | $\times(2)$ | $\times$ (1) |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD:Unbalanced err |  | $\times(2)$ | $\times$ (1) |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD: A/D err |  | $\times(2)$ | $\times$ (1) |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| FD stopped |  | $\times(2)$ |  |  |  |  |  |  | $\times(1)$ |  |  |  |  |  |
| DS fail |  | $\times(2)$ | $\times(2)$ |  |  |  |  |  |  |  |  | $\times$ (1) |  |  |
| Ch. fail |  | $\times(2)$ | $\times$ (2) | $\times(2)$ |  |  |  |  |  |  | $\times(1)$ |  |  |  |
| VT fail |  |  |  |  |  |  |  |  |  |  |  |  | $\times(2)$ | $\times(1)$ |
| No-working of LCD |  | $\times(2)$ |  |  |  |  |  |  |  | $\times(1)$ |  |  |  |  |

The location marked with (1) has a higher probability than the location marked with (2).

## 2. Methods of Replacing the Modules

A CAUTION When handling a module, take anti-static measures such as wearing an earthed wrist band and placing modules on an earthed conductive mat. Otherwise, many of the electronic components could suffer damage.

CAUTION After replacing the SPM module, check all of the settings including the PLC and IEC103 setting data are restored the original settings.

The initial replacement procedure is as follows:

## 1). Switch off the DC power supply.

A WARNING Hazardous voltage may remain in the DC circuit just after switching off the DC power supply. It takes about 30 seconds for the voltage to discharge.
2). Remove the front panel cover.

## 3). Open the front panel.

Open the front panel of the relay by unscrewing the binding screw located on the left side of the front panel.


Case size : $1 / 2$ "inchs


## 4). Detach the holding bar.

Detach the module holding bar by unscrewing the binding screw located on the left side of the bar.


## 5). Unplug the cables.

Unplug the ribbon cable running among the modules by nipping the catch (in case of black connector) and by pushing the catch outside (in case of gray connector) on the connector.


## 6). Pull out the module.

Pull out the failure module by pulling up or down the top and bottom levers (white).


## 7). Insert the replacement module.

Insert the replacement module into the same slots where marked up.

## 8). Do the No. 5 to No. 1 steps in reverse order.

A CAUTION Supply DC power after checking that all the modules are in their original positions and the ribbon cables are plugged in. If the ribbon cables are not plugged in enough (especially the gray connectors), the module could suffer damage.

Details of the gray connector on modules (top side)

$\times$ Not enough


OEnough

## 9). Lamp Test

- RESET key is pushed 1 second or more by LCD display off.
- It checks that all LCDs and LEDs light on.
10). Check the automatic supervision functions.
- LCD not display "Auto-supervision" screens in turn, and Event Records
- Checking the "IN SERVICE" LED light on and "ALARM LED" light off.


# Appendix R 

## Ordering



## Version-up Records

| Version No. | Date | Revised Section | Contents |
| :---: | :---: | :---: | :---: |
| 0.0 | Oct. 10, 2006 | -- | First issue |
| 0.1 | Nov. 6, 2006 | 2.4.9.2 | Modified the description and Figures 2.4.9.7 to 2.4.9.10. |
| 0.2 | Apr. 12, 2007 | $\begin{aligned} & \text { 2.4.1.3, 2.4.3.4, } \\ & 2.4 .4 .1 \\ & 2.4 .10 \\ & 2.5 .1 \\ & 3.4 .1,3.4 .3 \\ & \text { 4.2, 4.4 } \\ & \text { 6.7.2 } \\ & \text { Appendices } \\ & \hline \end{aligned}$ | Modified the description. <br> Added Figure 2.4.10.2. <br> Modified the description of 'Reactance element'. <br> Modified the description. <br> Modified the description. <br> Modified the description and Table 6.7.2.1. <br> Modified Appendix C, E, F, G, N and added Appendix P |
| 0.3 | Jul. 26, 2007 | 2.4.1.3 <br> 2.4.3.1 to 2.4.3.3, <br> 2.4.3.5, 2.4.4.1 <br> 2.4.9.1, 2.4.9.2 <br> 2.4.10 <br> 2.5.9 <br> 4.2.3.1 <br> 4.2.4.6 <br> 6.7.3 <br> Appendices | Modified the description and Figures 2.4.1.11 and 2.4.1.12. <br> Modified the description and Figures 2.4.3.1 to 2.4.3.3, 2.4.3.5, 2.4.3.6, 2.4.4.3 to 2.4.4.5. <br> Modified the description and the setting range table. <br> Modified the description the setting range table. <br> Added the description of $\mathrm{OV} * 1-4$ and $\mathrm{UV} * 1-4$. <br> Added recording items to fault record screen. <br> Modified the description. <br> Modified the description of 'CAUTION'. <br> Modified Appendix B, K, M and Q. |
| 0.4 | Jun. 23, 2008 | $\begin{array}{\|l\|} \hline 2.4 .6 \\ 2.7 .1,6.5 .5 \\ 4.2 .7 .1 \\ 6.5 .1 .1 \\ 6.6 .1 \\ \text { Appendices } \\ \hline \end{array}$ | Modified the description of 'Setting'. <br> Added 'Note'. <br> Modified the description of 'THMRST'. <br> Modified the description and Figure 6.5.1.2. <br> Modified the description. <br> Modified Appendix G and K. |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

