Low Voltage AC Power Circuit Breakers

Types DSII and DSLII
800, 1600, 2000, 3200, 4000, and 5000 Amperes
30 kA, 42 kA, 50 kA, 65 kA, 85 kA, 130 kA,
and 200 kA Interrupting Capacities

The industry’s leading low voltage power breakers featuring more accessories and communications,
easier wiring, and improved protection.

Cutler-Hammer
Proven Technology with the Enhancements and Additional Ratings Our Customers Asked For

For over 25 years, Types DS and DSL Low Voltage AC Power Circuit Breakers have continually set industry standards for quality, reliability, and extended operating life resulting in the largest installed base of low voltage power circuit breakers.

But electrical distribution system requirements are changing...and our customers asked for enhancements that provide the capabilities of more accessories, more communications, easier wiring, and improved protection. And they emphasized that we add these enhancements without altering the breakers’ proven construction and performance characteristics.

That’s just what we did...and the enhanced DSII and DSLII Breakers provide exactly what our customers require. We even added new ratings to help meet their expanding distribution system requirements.

Where They’re Used

DSII and DSLII Breakers are designed specifically for use in metal-enclosed low voltage switchgear assemblies applied at nominal system voltages of 208-240, 480, or 600 VAC. Six continuous current frame sizes, 800 through 5,000 amperes are covered by just three breaker frame sizes.

Above 240 VAC, DSII and DSLII Breakers have a short time rating that is equal to the instantaneous rating. This provides for better downstream coordination, allowing the breaker closest to the fault to trip.

DSII and DSLII Breakers are also fully interchangeable, meaning they can be placed into compartments having the same dimensions and ratings.

100 Percent Rated

DSII and DSLII Breakers are 100 percent rated, UL listed, and are built and tested to applicable NEMA, ANSI, IEEE, and UL standards in an ISO 9001 certified facility.

Quality and Reliability

Cutler-Hammer performs consistent endurability and reliability tests on DSII and DSLII Breakers.

■ **Mini-Life Tests.** Daily, a breaker is randomly selected from the production line and tested for an average 150 mechanical operations to assure performance as required.

■ **Maxi-Life Tests.** MTBF testing continuously tests DSII and DSLII Breakers until they fail. This identifies any weak links in the breaker mechanism and also demonstrates how design changes improve the performance and quality of the breakers.

Ratings

Type DSII Circuit Breakers

<table>
<thead>
<tr>
<th>Breaker Type</th>
<th>Frame Size</th>
<th>Interrupting Ratings, rms Symmetrical Amperes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>With Instantaneous Trip / Without Instantaneous Trip</td>
</tr>
<tr>
<td></td>
<td></td>
<td>208-240V / 480V / 600V / 208V-240V / 480V / 600V</td>
</tr>
<tr>
<td>DSII-308</td>
<td>800</td>
<td>42.000 / 30.000 / 30.000 / 30.000 / 30.000 / 30.000</td>
</tr>
<tr>
<td>DSII-508</td>
<td>800</td>
<td>65.000 / 50.000 / 42.000 / 50.000 / 50.000 / 42.000</td>
</tr>
<tr>
<td>DSII-608</td>
<td>800</td>
<td>65.000 / 50.000 / 50.000 / 65.000 / 65.000 / 50.000</td>
</tr>
<tr>
<td>DSII-616</td>
<td>1600</td>
<td>65.000 / 65.000 / 65.000 / 65.000 / 65.000 / 65.000</td>
</tr>
<tr>
<td>DSII-620</td>
<td>2000</td>
<td>65.000 / 65.000 / 65.000 / 65.000 / 65.000 / 65.000</td>
</tr>
<tr>
<td>DSII-632</td>
<td>3200</td>
<td>65.000 / 65.000 / 65.000 / 65.000 / 65.000 / 65.000</td>
</tr>
<tr>
<td>DSII-840</td>
<td>4000</td>
<td>130.000 / 85.000 / 85.000 / 85.000 / 85.000 / 85.000</td>
</tr>
<tr>
<td>DSII-850</td>
<td>5000</td>
<td>130.000 / 85.000 / 85.000 / 85.000 / 85.000 / 85.000</td>
</tr>
</tbody>
</table>

Note: DSLII-308, DSLII-516, and DSLII-620 include current limiters integral with drawout breaker elements. DSLII-632 includes DSLII-840 Breaker and DSLII-850 includes DSLII-840 Breaker and DSL II-T40 drawout fuse truck, in separate interlocked compartments.

Type DSLII Circuit Breakers

<table>
<thead>
<tr>
<th>Breaker Type</th>
<th>Frame Size</th>
<th>All Types 200,000 on System Voltages 600 or Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSLII-308</td>
<td>800</td>
<td>All Types 200,000 on System Voltages 600 or Below</td>
</tr>
<tr>
<td>DSLII-516</td>
<td>1600</td>
<td>All Types 200,000 on System Voltages 600 or Below</td>
</tr>
<tr>
<td>DSLII-620</td>
<td>2000</td>
<td>All Types 200,000 on System Voltages 600 or Below</td>
</tr>
<tr>
<td>DSLII-632</td>
<td>3200</td>
<td>All Types 200,000 on System Voltages 600 or Below</td>
</tr>
<tr>
<td>DSLII-840</td>
<td>4000</td>
<td>All Types 200,000 on System Voltages 600 or Below</td>
</tr>
<tr>
<td>DSLII-850</td>
<td>5000</td>
<td>All Types 200,000 on System Voltages 600 or Below</td>
</tr>
</tbody>
</table>

Breaker Weights/Dimensions

<table>
<thead>
<tr>
<th>Breaker Type</th>
<th>Frame Size</th>
<th>Dimensions – Inches</th>
<th>Weight – Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Height</td>
<td>Width</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.22</td>
<td>18.38</td>
</tr>
<tr>
<td>DSII-308</td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSII-508</td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSII-608</td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSII-616</td>
<td>1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSII-620</td>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSII-632</td>
<td>3200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSII-840</td>
<td>4000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSII-850</td>
<td>5000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type DSLII Circuit Breakers

<table>
<thead>
<tr>
<th>Breaker Type</th>
<th>Frame Size</th>
<th>Dimensions – Inches</th>
<th>Weight – Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Height</td>
<td>Width</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.22</td>
<td>18.38</td>
</tr>
<tr>
<td>DSLII-308</td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSLII-516</td>
<td>1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSLII-620</td>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSLII-632</td>
<td>3200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSLII-840(1)</td>
<td>4000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Breaker and drawout fuse truck in separate interlocked compartments.
Up to 60 Contact Points and Only One Standard Connection Drawing

The one standard connection drawing feature provides significant time savings because a switchgear builder can prewire a harness prior to installation, making connections to the secondary and zone selective interlocking (ZSI) contacts when the breaker is being installed in the cell.

New Secondary Contacts
Provide for More Accessories and Easier Wiring

Up to 60 Contact Points and Only One Standard Connection Drawing

The one standard connection drawing feature provides significant time savings because a switchgear builder can prewire a harness prior to installation, making connections to the secondary and zone selective interlocking (ZSI) contacts when the breaker is being installed in the cell.

New Secondary Contacts
DSII and DSLII breakers are now available with up to 48 points of secondary contact in modules of 12 contacts each. More secondary contacts facilitate wiring while providing for nearly twice the number or breaker accessory connections.

One Standard Connection Drawing

Up to 60 Contact Points and Only One Standard Connection Drawing

New Internal Zone Selective Interlocking Contacts

For customers whose distribution systems require the added protection of zone selective interlocking (ZSI), we placed the floating design socket plug – with 12 points of contact—internal to the breaker, next to the secondary disconnect contacts providing for ease of wiring.

New Internal Zone Selective Interlocking Provides Positive System Coordination without Time Delays

Cutler-Hammer pioneered ZSI, which allows the breaker closest to the fault to trip without any preset time delay. Through a hardwired connection between a downstream breaker’s Digitrip Trip Unit and a DSII or DSLII main breaker’s Digitrip Trip Unit, a restraining signal is sent upstream...allowing the breaker closest to the fault to trip instantaneously while the remainder of the distribution system remains on line, thus avoiding unnecessary and often costly downtime.

IMPACC Communications

The floating design socket plug is also used when customers require the highly reliable, comprehensive power monitoring capabilities provided by the IMPACC communications system.
Built-In Safety Features
Provide Optimum Operator Safety
and System Security

- **Four position automatic mechanical interlocking system** when the breaker is in a breaker compartment.
 1. **Remove.** The breaker is nearest the front of the compartment and open with the closing springs discharged. It cannot be closed electrically or manually. It is padlockable in this position.
 2. **Disconnect.** A storage position with the breaker in the compartment but open and disconnected. It can be padlocked in place.
 3. **Test.** Main disconnects are disengaged, secondary contacts are engaged. All functions of the breaker and trip unit can be tested in this position.
 4. **Connected.** Both main and secondary contacts are connected and the breaker is ready for normal operation.

- **Dead front faceplate shield** isolates the operator from high voltage when the breaker is energized. When the breaker is in a compartment, the compartment door acts as a double dead front shield.

- **Padlocking provision** enables the breaker to be padlocked in a trip-free condition. The breaker cannot be closed or moved with the levering device. The padlock itself is placed in the padlock plate that extends through the front of the breaker faceplate. This helps prevent unauthorized racking and operation of the breaker.

- **Glass polyester insulation** provides sufficient mechanical strength to resist short circuit forces and is highly resistant to heat and arcing.

- **Interference interlocks** are provided to prevent insertion of breakers with mismatched disconnects or insufficient interrupting ratings into compartments carrying a higher current.

- **Electrical lockout for manually operated breakers** prevents closing of an unenergized circuit. When the circuit is energized, the breaker can be closed by pushing the push-to-close mechanism release button.

- **Closed breaker interlock** prevents operation of the spring release when the breaker is already closed.

DE-ION® Arc Extinguishers
Provide Superior Arc Quenching

Cutler-Hammer developed the DE-ION arc extinguisher that assists in the interruption of high energy faults by dissipating the large amounts of arc energy. Each arc extinguisher includes a series of steel plates that attract the arc and interrupt it by cooling and stretching the arc.

User Friendly Operation – Types DSII and DSLII Breakers

Controls and indicators are functionally grouped on the front of the breakers.
Extend Interrupting Ratings up to 200,000 Amperes rms Symmetrical

DSL II Breakers are a combination of series connected current limiters and standard DS II Breakers...extending the interrupting rating of DS II Breakers up to 200 kA.

Consequently, they’re used on systems where the overload protection and switching functions of air power breakers are required...and available fault currents exceed the interrupting ratings of the circuit breakers alone and/or exceed the withstand and interrupting ratings of downstream circuit components.

Current Limiters Mounting

800, 1600, and 2000 Ampere Breakers: Integ rally mounted in the drawout breaker.
3200 and 4000 Ampere Breakers: Mounted on separate drawout trucks that fit into compartments of equal size to their compatible breakers and are positioned adjacent to one another.

Exclusive Features

■ Fault Interruption. On overloads and faults within the breaker interrupting rating, the breaker protects the limiters. On higher fault currents exceeding the breaker rating, the limiters protect the breaker.

With properly selected and coordinated limiters, the breaker itself will clear overloads and faults within its interrupting rating leaving the limiters intact and undamaged. The limiters will provide fast interruption of fault currents beyond the breaker rating up to a maximum 200,000 rms symmetrical amperes.

■ Single-Phasing Protection. Interlock arrangements trip the breaker whenever any limiter blows, preventing single-phasing. The breaker cannot be reclosed on a live source unless there are three unblown limiters on the breaker.

There are three blown limiter indicators on the breaker faceplate, providing a visual indication when a limiter in any phase has interrupted a fault.

■ Safety Features. Current limiters on Types DSLII-308, DSLII-516, and DSLII-620 Breakers are accessible only when a breaker has been completely withdrawn from its compartment.

For Types DSLII-632 and DSLII-840 Breakers, current limiters are mounted on a separate fuse truck. It is key interlocked with the breaker to prevent withdrawal or insertion unless the breaker is disconnected.

Additional ly, many minor replacement functions involving the mechanism, control, and/or accessory devices can be easily accomplished.

True Two-Step Stored Energy Mechanism for Manually and Electrically Operated Breakers

“Stored energy” is energy held in waiting, ready to open or close the breaker within five cycles or less. The unique cam and spring design provides necessary energy for a single close-open sequence as well as the energy for multiple charge-close operations such as this possible sequence: charge-close-recharge-open-close-open.

This means the energy required to open the breaker is always prestored following a closing operation.

On manually operated breakers, closing springs are charged by hand. For electrically operated breakers, springs are normally charged by an electric motor but can be manually charged in the absence of control power.

More Information

Further information and pricing can be found in PL 33-882.
Cutler-Hammer introduced the first microprocessor-based trip unit and has advanced this technology into a new family of Digitrip® RMS Electronic and Digitrip OPTIM™ Programmable Trip Units.

Digitrip RMS S10 is the standard trip unit of DSII and DSLII Breakers. It enables the user to select as many as nine phase and ground current protection settings for maximum flexibility in trip-curve shaping and multi-unit coordination.

For more sophisticated distribution systems, other Digitrip Electronic or Programmable Trip Units may be specified to provide IMPACC communications, systems diagnostics information, and systems monitoring information including power factor, voltage values, harmonic distortion values, and waveform capture.

For additional Digitrip information, contact your Cutler-Hammer distributor or sales engineer and request brochures SA-11581 and SA-12137.

Digitrip RMS Electronic and OPTIM Programmable Trip Units Selection Guide

<table>
<thead>
<tr>
<th>Digitrip RMS Electronic</th>
<th>RMS S10</th>
<th>RMS S110</th>
<th>OPTIM 750</th>
<th>RMS S810</th>
<th>RMS S910</th>
<th>OPTIM 1050</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIP UNIT SENSING</td>
<td>rms Sensing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PROTECTION AND COORDINATION</td>
<td>Protection Options</td>
<td>LI, LS, LSI, LIG</td>
</tr>
<tr>
<td>Fixed Rating Plug (I_n)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Overtemperature Trip</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Adjustable Rating Plug (I_n)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Long Delay Setting</td>
<td>0.5-1.0 (I_n)</td>
<td>0.5-1.0 x (I_n)</td>
<td>0.4-1.0 x (I_n)</td>
<td>0.5-1.0 x (I_n)</td>
<td>0.5-1.0 x (I_n)</td>
<td>0.4-1.0 x (I_n)</td>
</tr>
<tr>
<td>Long Delay Thermal Memory</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>High Load Alarm</td>
<td>No</td>
<td>0.85 x I_n</td>
<td>0.5-1.0 x I_n</td>
<td>0.85 x I_n</td>
<td>0.5-1.0 x I_n</td>
<td>0.85 x I_n</td>
</tr>
<tr>
<td>Short Delay Setting</td>
<td>200-600% S1 & S2 x (I_n)</td>
<td>200-600% S1 & S2 x (I_n)</td>
<td>150-800% x (I_n)</td>
<td>200-600% S1 & S2 x (I_n)</td>
<td>200-600% S1 & S2 x (I_n)</td>
<td>150-800% x (I_n)</td>
</tr>
<tr>
<td>Short Delay Time</td>
<td>100-500 ms</td>
<td>100-500 ms</td>
<td>100-500 ms</td>
<td>100-500 ms</td>
<td>100-500 ms</td>
<td>100-500 ms</td>
</tr>
<tr>
<td>Short Delay Time ZSI</td>
<td>100-500 ms</td>
<td>100-500 ms</td>
<td>100-500 ms</td>
<td>100-500 ms</td>
<td>100-500 ms</td>
<td>100-500 ms</td>
</tr>
<tr>
<td>Instantaneous Setting</td>
<td>200-600% M1 & M2 x (I_n)</td>
<td>200-600% M1 & M2 x (I_n)</td>
<td>200-600% x (I_n)</td>
<td>200-600% M1 & M2 x (I_n)</td>
<td>200-600% M1 & M2 x (I_n)</td>
<td>200-600% x (I_n)</td>
</tr>
<tr>
<td>Discriminator</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ground Fault Setting</td>
<td>25-100% x (I_n)</td>
</tr>
<tr>
<td>Ground Fault Time</td>
<td>100-500 ms</td>
<td>100-500 ms</td>
<td>100-500 ms</td>
<td>100-500 ms</td>
<td>100-500 ms</td>
<td>100-500 ms</td>
</tr>
<tr>
<td>Ground Fault ZSI</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SYSTEM DIAGNOSTICS</td>
<td>Cause of Trip LEDs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Magnitude of Trip Information</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Remote Signal Contacts</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SYSTEM MONITORING</td>
<td>Digital Display</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Current</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Voltage</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Power and Energy</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Power Quality – Harmonics</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Power Factor</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SYSTEM COMMUNICATIONS</td>
<td>IMPACC</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FIELD TESTING</td>
<td>Testing Method</td>
<td>Integral</td>
<td>Integral</td>
<td>OPTIMizer, BIM, IMPACC</td>
<td>Integral</td>
<td>Integral</td>
</tr>
</tbody>
</table>

- ^1^ LS, LSG only.
- ^2^ Not to exceed 1200A.
- ^3^ By OPTIMizer/BIM.
- ^4^ Set by adjustable rating plug.
- ^5^ Over IMPACC only.
IMPACC Communications: A Highly Reliable System that Will Improve the Operating Efficiency of Your Plant or Building

As a high frequency-based system, IMPACC is unaffected by the electromagnetic fields that result when current flows through conductors. This helps provide for increased reliability while significantly reducing equipment and installation costs.

A master control unit (connected to the DSII or DSLII Breaker with a shielded twisted pair communications wire) is used to monitor, control, and communicate with the breaker’s Digitrip RMS Trip Unit. The master control unit may be a personal computer, an existing building management system, a programmable logic controller, or a distributed control system.

Through IMPACC, information communicated from a DSII or DSLII Breaker includes breaker status (open/close/trip), cause and magnitude of trip, metering values, trip rating, and time stamping of events. The breaker itself can be remotely opened or closed.

For additional IMPACC information, contact your Cutler-Hammer distributor or sales engineer and ask for brochure SA-11998.

A Full Range of Factory Installed Breaker Accessories

- Electrical Operator. A universal type electric motor, internal to the breaker, that charges the springs automatically.
- Shunt Trip for Manually Operated Breakers. Provides remote controlled tripping.
- Undervoltage Release – Instantaneous. Trips the breaker instantaneously when voltage on its coil falls between 30 to 60 percent of normal.
- Undervoltage Release – Time Delay. Provided with a nonadjustable time delay that prevents the breaker from tripping during momentary fluctuations of system voltage.
- Auxiliary Switches. Provide the capability to remotely indicate if the breaker is open or closed and may be used on breakers with either manual or electrically operated stored energy mechanisms.
 Two types of auxiliary switches are available: 2A/2B switches have two normally open and two normally closed contacts. 5A/5B switches have five normally open and five normally closed contacts.
- Operation Counter. A mechanical counter that provides a record of the number of breaker operations.
 Contact your Cutler-Hammer distributor or sales engineer for a complete list of accessories.

Low Voltage Switchgear Structural Components

The Cutler-Hammer value added modular approach for assembling low voltage switchgear featuring DSII Breakers and structures provides switchgear manufacturers with opportunities to add the most value to their low voltage switchgear. For more information refer to PL 33-823.

DSII Power Modules
Complete structures including fully equipped breaker compartments. The switchgear manufacturer provides value added items such as doors, bus, cable area compartment, instruments, relays, and associated wiring.

DSII Substructure
The basic assembled breaker supporting structure including breaker mounting pan, contact mounting plate, stationary main contacts, drawout extension rails, and side and back sheets. The switchgear manufacturer provides value added items such as doors, bus cable area compartment, instruments, relays, and associated wiring.

DSII Breaker Cell Parts
Breaker mounting pan, contact mounting plate, and stationary main contacts. In addition to assembling these parts, the switchgear manufacturer provides value added items such as doors, bus, cable area compartment, side sheets, instruments, relays, and associated wiring. Breaker cell parts are available individually or as an entire kit.
Medium Voltage Equipment
- Load Interrupter Switchgear
- Metal-Clad Switchgear
- Vacuum Circuit Breakers

Unit Substations
- Primary Unit Substations
- Secondary Unit Substations
- Unitized Power Centers

Transformers
- Dry-Type Distribution Transformers

Low Voltage Switchboards/Switchgear
- Low Voltage Distribution Switchboards
- Low Voltage Metal Enclosed Switchgear
 - with DSII Power Breakers
- Pow-R-M-S Switchboards with SPB Drawout Power Breakers

Distribution Equipment
- AC Disconnects
- Loadcenters
- Meter Centers
- Panelboards
- Safety Switches

Circuit Breakers
- The Complete Line of Westinghouse Molded Case and Power Circuit Breakers

Busway
- Low Voltage Busway
- Medium Voltage Busway

Control Products
- Adjustable Frequency Drives
- Adjustable Voltage Control Counters
- Electronic Operator Interface
- Group Control
- IMPACC Systems—Integrated Monitoring Protection and Control Communication Systems
- Individual Enclosed Control
- IO Metering and Protection Devices
- Low Voltage Motor Control Centers
- Medium Voltage Starters
- Motor Circuit Protectors
- Motor Starters
- Overload Relays
- Programmable Logic Controllers
 - 22.5mm Pushbuttons
 - 30.5mm Pushbuttons, Limit Switches and Relays
- Sensors
- Vacuum Contactors

Other Products
- Automatic Transfer Switches
- Electro/Centers
- Enclosed Circuit Breakers
- Excitation Control
- Ground Fault Protection
- High Voltage Fuses
- Network Protectors
- Neutral Grounding Resistors
- Systems Voltage Monitors
- Vacuum Interrupters

Cutler-Hammer
Westinghouse & Cutler-Hammer Products
Five Parkway Center
Pittsburgh, PA 15220